Biosynthesis and Comprehensive Structural Characterization of TiO₂-Loaded Bentonite Nanocomposites using Orange Peel Extract

Authors

  • Kabir Muhammad Yahaya
    Confluence University of Science and Technology, Osara image/svg+xml
  • Abdulmumuni Sumaila
    Department of Chemistry, Confluence University of Science and Technology Osara, Kogi State
  • Ruqayya Avosuahi Yahaya
    Confluence University of Science and Technology, Osara image/svg+xml
  • Sa’adatu Abdulsalam
    Confluence University of Science and Technology, Osara image/svg+xml
  • Ibrahim Jimoh
    Confluence University of Science and Technology, Osara image/svg+xml
  • Ibrahim Abdulkarim
    Confluence University of Science and Technology, Osara image/svg+xml
  • Ahmed Onimisi Sumaila
    Confluence University of Science and Technology, Osara image/svg+xml
  • Ruqayyah Oluwakemisola Yusuf
    Confluence University of Science and Technology, Osara image/svg+xml

Keywords:

Biosynthesis, Bentonite, Titanium Dioxide, Nanocomposites, Orange Peel Extract

Abstract

Increasing contamination of water resources by industrial effluents has necessitated the development of low-cost, eco-friendly, and efficient materials for wastewater treatment. Among such materials, titanium dioxide (TiO₂) is recognized for its excellent photocatalytic activity, while bentonite clay provides high surface area and strong adsorption capacity. This study reports a green biosynthesis route for TiO₂-loaded bentonite nanocomposites (BTNCs) using orange peel extract as a natural reducing and stabilizing agent to integrate the photocatalytic and adsorptive properties of TiO₂ and bentonite respectively. Characterization of the synthesized nanocomposites was carried out using a suite of analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. Characterization via XRD, SEM, and Raman spectroscopy confirmed the successful incorporation of anatase TiO₂ nanoparticles (~17.5 nm) uniformly dispersed within the bentonite matrix, with evidence of Ti–O–Si bond formation indicating strong interaction between TiO₂ and bentonite. The eco-friendly synthesis method discourages the use of toxic reagents and offers multifunctional nanomaterials with promising applications in photocatalytic wastewater treatment.

Dimensions

Ali, S., Ahmed, S., Naz, R., Khan, T., & Jamal, A. (2022). Green synthesis of TiO₂ nanoparticles using citrus fruit extracts: A review of applications and environmental implications. Journal of Environmental Chemical Engineering, 10(3), 107524. https://doi.org/10.1016/j.jece.2022.107524. DOI: https://doi.org/10.1016/j.jece.2022.107524

Aljeboree, A. M., &Alkaim, A. F. (2024). Studying removal of anionic dye by prepared highly adsorbent surface hydrogel nanocomposite as an applicable for aqueous solution. Scientific Reports, 14(1), 9102. https://doi.org/10.1038/s41598-024-59545-y. DOI: https://doi.org/10.1038/s41598-024-59545-y

Alshangiti, D. M., El-Damhougy, T. K., Zaher, A., Madani, M., &Mohamady Ghobashy, M. (2023). Revolutionizing biomedicine: Advancements, applications, and prospects of nanocomposite macromolecular carbohydrate-based hydrogel biomaterials: A review. RSC Advances, 13(50), 35251–35291. https://doi.org/10.1039/d3ra07391b. DOI: https://doi.org/10.1039/D3RA07391B

Antunes Filho, S., Dos Santos, M. S., Dos Santos, O. A. L., Backx, B. P., Soran, M. L., Opriş, O., Lung, I., Stegarescu, A., &Bououdina, M. (2023). Biosynthesis of nanoparticles using plant extracts and essential oils. Molecules, 28(7), 3060. https://doi.org/10.3390/molecules28073060. DOI: https://doi.org/10.3390/molecules28073060

Bharath, G., Rambabu, K., Banat, F., & Show, P. L. (2022). A circular economy approach for synthesis of functional nanomaterials from fruit waste for environmental remediation: Recent advancements. Bioresource Technology, 360, 127643. https://doi.org/10.1016/j.biortech.2022.127643. DOI: https://doi.org/10.1016/j.biortech.2022.127643

Cao, Y., Yuan, Q., Liu, J., Wang, X., & Hu, C. (2020). Green synthesis of reusable multifunctional γ-Fe₂O₃/bentonite modified by doped TiO₂ hollow spherical nanocomposite for removal of BPA. Science of the Total Environment, 708, 134669. https://doi.org/10.1016/j.scitotenv.2019.134669. DOI: https://doi.org/10.1016/j.scitotenv.2019.134669

Chakraborty, S., Das, P., & Paul, R. (2022). Structural and surface characterization of TiO₂–clay nanocomposites synthesized using green protocols. Materials Today: Proceedings, 62, 2572–2577. https://doi.org/10.1016/j.matpr.2022.03.154. DOI: https://doi.org/10.1016/j.matpr.2022.03.154

Cuevas, J., Cabrera, M. Á., Fernández, C., Mota-Heredia, C., Fernández, R., Torres, E., Turrero, M. J., & Ruiz, A. I. (2022). Bentonite powder XRD quantitative analysis using Rietveld refinement: Revisiting and updating bulk semiquantitative mineralogical compositions. Minerals, 12(6), 772. https://doi.org/10.3390/min12060772. DOI: https://doi.org/10.3390/min12060772

Ganguly, P., Bhattacharya, T., & Saha, S. (2023). A review on the bentonite-supported photocatalysts for water purification. Journal of Environmental Management, 328, 116993. https://doi.org/10.1016/j.jenvman.2023.116993. DOI: https://doi.org/10.1016/j.jenvman.2022.116993

Hayat, J., Akodad, M., Moumen, A., Baghour, M., Skalli, A., Ezrari, S., &Belmalha, S. (2020). Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from two different localities of Northeast Morocco. Heliyon, 6(11), e05609. https://doi.org/10.1016/j.heliyon.2020.e05609. DOI: https://doi.org/10.1016/j.heliyon.2020.e05609

Jacob, A. G., Alisi, I. O., &Surajo, J. M. (2025). Kaolinite clay as green and sustainable raw material for zeolites production: A review. FUDMA Journal of Sciences, 9, 18–35. https://doi.org/10.33003/fjs-2025-09(AHBSI)-3496. DOI: https://doi.org/10.33003/fjs-2025-09(AHBSI)-3496

Kgabi, D. P., &Ambushe, A. A. (2023). Characterization of South African bentonite and kaolin clays. Sustainability, 15(17), 12679. https://doi.org/10.3390/su151712679. DOI: https://doi.org/10.3390/su151712679

Khansili, N., Sharma, N., & Singh, H. (2022). Curcumin functionalized TiO₂ modified bentonite clay for aflatoxin B1 determination. Materials Today: Proceedings, 62, 1453–1460. https://doi.org/10.1016/j.matpr.2022.03.154. DOI: https://doi.org/10.1016/j.matpr.2022.03.154

Krishnan, B., & Mahalingam, S. (2017). Ag/TiO₂/bentonite nanocomposite for biological applications: Synthesis, characterization, antibacterial and cytotoxic investigations. Advanced Powder Technology, 28(9), 2265–2280. https://doi.org/10.1016/j.apt.2017.06.007 DOI: https://doi.org/10.1016/j.apt.2017.06.007

Krishnan, B., Kumar, R., & Pillai, V. (2017). Ag/TiO₂/bentonite nanocomposite: Green synthesis, antibacterial and cytotoxic investigations. Applied Clay Science, 146, 516–525. https://doi.org/10.1016/j.clay.2017.06.009. DOI: https://doi.org/10.1016/j.clay.2017.06.009

Kumar, S., Singh, J., & Meena, R. (2023). Recent advances in TiO₂ nanocomposites: Synthesis, properties, and environmental applications. Applied Surface Science Advances, 14, 100387. https://doi.org/10.1016/j.apsadv.2023.100387. DOI: https://doi.org/10.1016/j.apsadv.2023.100387

Lawal, H., Saeed, S. I., Gaddafi, M. S., & Kamaruzzaman, N. F. (2025). Green nanotechnology: Naturally sourced nanoparticles as antibiofilm and antivirulence agents against infectious diseases. International Journal of Microbiology, 2025, 8746754. https://doi.org/10.1155/ijm/8746754. DOI: https://doi.org/10.1155/ijm/8746754

Liu, Y., Li, J., Yang, J., & Wang, Y. (2021). Enhanced photocatalytic activity of mixed-phase TiO₂: Synergistic effect of anatase and rutile. Applied Surface Science, 545, 149009. https://doi.org/10.1016/j.apsusc.2020.149009. DOI: https://doi.org/10.1016/j.apsusc.2021.149009

Luma, H. A. (2025). Preparation of TiO₂ nanoparticles using microwave and techniques of pulsed laser ablation and their properties. International Journal of Research and Review, 12(4), 316–326. https://doi.org/10.52403/ijrr.20250439. DOI: https://doi.org/10.52403/ijrr.20250439

Maged, A., Kharbish, S., Ismael, I. S., & Bhatnagar, A. (2020). Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution. Environmental Science and Pollution Research, 27(26), 32980–32997. https://doi.org/10.1007/s11356-020-09267-1. DOI: https://doi.org/10.1007/s11356-020-09267-1

Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Shuaib, D. T., Mohammed, A. K., & Sumaila, A. (2020). Application of TiO₂ and ZnO nanoparticles immobilized on clay in wastewater treatment: A review. Applied Water Science, 10, 206. https://doi.org/10.1007/s13201-020-01239-y. DOI: https://doi.org/10.1007/s13201-019-1138-y

Patra, J. K., & Baek, K. H. (2020). Green nanobiotechnology: Factors affecting synthesis and characterization techniques. Journal of Nanobiotechnology, 18, 1–24. https://doi.org/10.1186/s12951-020-00635-4.

Rahman, A., Alam, M. N., & Mahbub, K. R. (2023). Green synthesis of TiO₂ nanoparticles using citrus peel extracts and evaluation of their structural and antibacterial properties. Journal of Environmental Chemical Engineering, 11(2), 110204. https://doi.org/10.1016/j.jece.2023.110204. DOI: https://doi.org/10.1016/j.jece.2023.110204

Ramesh, M., Chidambaram, R., & Sundararajan, V. (2023). Eco-friendly synthesis of metal oxide nanocomposites using plant extracts and their applications in environmental and biomedical fields: A review. Environmental Research, 225, 115466. https://doi.org/10.1016/j.envres.2023.115466. DOI: https://doi.org/10.1016/j.envres.2023.115466

Saeidi, H., Ghaedi, M., &Daneshfar, A. (2021). Functionalized bentonite clay as a novel support for photocatalytic and adsorption processes: A review. Environmental Nanotechnology, Monitoring & Management, 15, 100450. https://doi.org/10.1016/j.enmm.2021.100450. DOI: https://doi.org/10.1016/j.enmm.2021.100450

Saheed, M., Jimoh Oladejo, T., Rabi, E., Muhammed Binin, E., Azeezah Taiwo, A., Damola Taye, S., Abdulmumuni, S., Adekunle Jelili, O., Hassana Ladio, A., Saka Abdulkareem, A., & Muhammed Muhammed, N. (2023). Photocatalytic degradation and defluorination of per- and poly-fluoroalkyl substances (PFASs) using biosynthesized TiO₂ nanoparticles under UV–visible light. Engineering Proceedings, 37(1), 114. https://doi.org/10.3390/ECP2023-14630. DOI: https://doi.org/10.3390/ECP2023-14630

Sarkar, S., Kumar, A., & Mandal, S. (2022). Heavy metal pollution and its control in cement industry wastewater: A review. Environmental Science and Pollution Research, 29, 21845–21860. https://doi.org/10.1007/s11356-021-17010-2.

Singh, S., Kumar, V., & Chauhan, R. (2022). Removal of toxic metals from wastewater using nanocomposite adsorbents: A review. Environmental Nanotechnology, Monitoring & Management, 18, 100724. https://doi.org/10.1016/j.enmm.2022.100724. DOI: https://doi.org/10.1016/j.enmm.2022.100724

Taudul, B., Tielens, F., & Calatayud, M. (2023). On the origin of Raman activity in anatase TiO₂ (nano)materials: An ab initio investigation of surface and size effects. Nanomaterials, 13, 1856. https://doi.org/10.3390/nano13121856. DOI: https://doi.org/10.3390/nano13121856

Ulhaq, I., Aziz, A., & Hussain, M. (2021). Engineering TiO₂ supported CTAB-modified bentonite for simultaneous photocatalysis and adsorption of hydrocarbons in refinery wastewater. Environmental Nanotechnology, Monitoring & Management, 16, 100546. https://doi.org/10.1016/j.enmm.2021.100546. DOI: https://doi.org/10.1016/j.enmm.2021.100546

Verma, V., Al-Dossari, M., Singh, J., Rawat, M., Kordy, M. G. M., & Shaban, M. (2022). A review on green synthesis of TiO₂ NPs: Photocatalysis and antimicrobial applications. Polymers, 14(7), 1444. https://doi.org/10.3390/polym14071444. DOI: https://doi.org/10.3390/polym14071444

Zhou, J., Liu, W., Zhang, Y., et al. (2023). Recent progress in TiO₂/bentonite composites for environmental remediation. Journal of Hazardous Materials, 446, 130713. https://doi.org/10.1016/j.jhazmat.2022.130713. DOI: https://doi.org/10.1016/j.jhazmat.2022.130713

Published

2025-09-02

How to Cite

Yahaya, K. M., Sumaila, A., Yahaya, R. A., Abdulsalam, S., Jimoh, I., Abdulkarim, I., Sumaila, A. O., & Yusuf, R. O. (2025). Biosynthesis and Comprehensive Structural Characterization of TiO₂-Loaded Bentonite Nanocomposites using Orange Peel Extract. Journal of Science Research and Reviews, 2(3), 129-136. https://doi.org/10.70882/josrar.2025.v2i3.100

How to Cite

Yahaya, K. M., Sumaila, A., Yahaya, R. A., Abdulsalam, S., Jimoh, I., Abdulkarim, I., Sumaila, A. O., & Yusuf, R. O. (2025). Biosynthesis and Comprehensive Structural Characterization of TiO₂-Loaded Bentonite Nanocomposites using Orange Peel Extract. Journal of Science Research and Reviews, 2(3), 129-136. https://doi.org/10.70882/josrar.2025.v2i3.100

Similar Articles

You may also start an advanced similarity search for this article.