Biosynthesis and Comprehensive Structural Characterization of TiO₂-Loaded Bentonite Nanocomposites using Orange Peel Extract
DOI:
https://doi.org/10.70882/josrar.2025.v2i3.101Keywords:
Biosynthesis, Bentonite, Titanium Dioxide, Nanocomposites, Orange Peel ExtractAbstract
Increasing contamination of water resources by industrial effluents has necessitated the development of low-cost, eco-friendly, and efficient materials for wastewater treatment. Among such materials, titanium dioxide (TiO₂) is recognized for its excellent photocatalytic activity, while bentonite clay provides high surface area and strong adsorption capacity. This study reports a green biosynthesis route for TiO₂-loaded bentonite nanocomposites (BTNCs) using orange peel extract as a natural reducing and stabilizing agent to integrate the photocatalytic and adsorptive properties of TiO₂ and bentonite respectively. Characterization of the synthesized nanocomposites was carried out using a suite of analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. Characterization via XRD, SEM, and Raman spectroscopy confirmed the successful incorporation of anatase TiO₂ nanoparticles (~17.5 nm) uniformly dispersed within the bentonite matrix, with evidence of Ti–O–Si bond formation indicating strong interaction between TiO₂ and bentonite. The eco-friendly synthesis method discourages the use of toxic reagents and offers multifunctional nanomaterials with promising applications in photocatalytic wastewater treatment.
References
Ali, S., Ahmed, S., Naz, R., Khan, T., & Jamal, A. (2022). Green synthesis of TiO₂ nanoparticles using citrus fruit extracts: A review of applications and environmental implications. Journal of Environmental Chemical Engineering, 10(3), 107524. https://doi.org/10.1016/j.jece.2022.107524.
Aljeboree, A. M., &Alkaim, A. F. (2024). Studying removal of anionic dye by prepared highly adsorbent surface hydrogel nanocomposite as an applicable for aqueous solution. Scientific Reports, 14(1), 9102. https://doi.org/10.1038/s41598-024-59545-y.
Alshangiti, D. M., El-Damhougy, T. K., Zaher, A., Madani, M., &Mohamady Ghobashy, M. (2023). Revolutionizing biomedicine: Advancements, applications, and prospects of nanocomposite macromolecular carbohydrate-based hydrogel biomaterials: A review. RSC Advances, 13(50), 35251–35291. https://doi.org/10.1039/d3ra07391b.
Antunes Filho, S., Dos Santos, M. S., Dos Santos, O. A. L., Backx, B. P., Soran, M. L., Opriş, O., Lung, I., Stegarescu, A., &Bououdina, M. (2023). Biosynthesis of nanoparticles using plant extracts and essential oils. Molecules, 28(7), 3060. https://doi.org/10.3390/molecules28073060.
Bharath, G., Rambabu, K., Banat, F., & Show, P. L. (2022). A circular economy approach for synthesis of functional nanomaterials from fruit waste for environmental remediation: Recent advancements. Bioresource Technology, 360, 127643. https://doi.org/10.1016/j.biortech.2022.127643.
Cao, Y., Yuan, Q., Liu, J., Wang, X., & Hu, C. (2020). Green synthesis of reusable multifunctional γ-Fe₂O₃/bentonite modified by doped TiO₂ hollow spherical nanocomposite for removal of BPA. Science of the Total Environment, 708, 134669. https://doi.org/10.1016/j.scitotenv.2019.134669.
Chakraborty, S., Das, P., & Paul, R. (2022). Structural and surface characterization of TiO₂–clay nanocomposites synthesized using green protocols. Materials Today: Proceedings, 62, 2572–2577. https://doi.org/10.1016/j.matpr.2022.03.154.
Cuevas, J., Cabrera, M. Á., Fernández, C., Mota-Heredia, C., Fernández, R., Torres, E., Turrero, M. J., & Ruiz, A. I. (2022). Bentonite powder XRD quantitative analysis using Rietveld refinement: Revisiting and updating bulk semiquantitative mineralogical compositions. Minerals, 12(6), 772. https://doi.org/10.3390/min12060772.
Ganguly, P., Bhattacharya, T., & Saha, S. (2023). A review on the bentonite-supported photocatalysts for water purification. Journal of Environmental Management, 328, 116993. https://doi.org/10.1016/j.jenvman.2023.116993.
Hayat, J., Akodad, M., Moumen, A., Baghour, M., Skalli, A., Ezrari, S., &Belmalha, S. (2020). Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from two different localities of Northeast Morocco. Heliyon, 6(11), e05609. https://doi.org/10.1016/j.heliyon.2020.e05609.
Jacob, A. G., Alisi, I. O., &Surajo, J. M. (2025). Kaolinite clay as green and sustainable raw material for zeolites production: A review. FUDMA Journal of Sciences, 9, 18–35. https://doi.org/10.33003/fjs-2025-09(AHBSI)-3496.
Kgabi, D. P., &Ambushe, A. A. (2023). Characterization of South African bentonite and kaolin clays. Sustainability, 15(17), 12679. https://doi.org/10.3390/su151712679.
Khansili, N., Sharma, N., & Singh, H. (2022). Curcumin functionalized TiO₂ modified bentonite clay for aflatoxin B1 determination. Materials Today: Proceedings, 62, 1453–1460. https://doi.org/10.1016/j.matpr.2022.03.154.
Krishnan, B., & Mahalingam, S. (2017). Ag/TiO₂/bentonite nanocomposite for biological applications: Synthesis, characterization, antibacterial and cytotoxic investigations. Advanced Powder Technology, 28(9), 2265–2280. https://doi.org/10.1016/j.apt.2017.06.007
Krishnan, B., Kumar, R., & Pillai, V. (2017). Ag/TiO₂/bentonite nanocomposite: Green synthesis, antibacterial and cytotoxic investigations. Applied Clay Science, 146, 516–525. https://doi.org/10.1016/j.clay.2017.06.009.
Kumar, S., Singh, J., & Meena, R. (2023). Recent advances in TiO₂ nanocomposites: Synthesis, properties, and environmental applications. Applied Surface Science Advances, 14, 100387. https://doi.org/10.1016/j.apsadv.2023.100387.
Lawal, H., Saeed, S. I., Gaddafi, M. S., & Kamaruzzaman, N. F. (2025). Green nanotechnology: Naturally sourced nanoparticles as antibiofilm and antivirulence agents against infectious diseases. International Journal of Microbiology, 2025, 8746754. https://doi.org/10.1155/ijm/8746754.
Liu, Y., Li, J., Yang, J., & Wang, Y. (2021). Enhanced photocatalytic activity of mixed-phase TiO₂: Synergistic effect of anatase and rutile. Applied Surface Science, 545, 149009. https://doi.org/10.1016/j.apsusc.2020.149009.
Luma, H. A. (2025). Preparation of TiO₂ nanoparticles using microwave and techniques of pulsed laser ablation and their properties. International Journal of Research and Review, 12(4), 316–326. https://doi.org/10.52403/ijrr.20250439.
Maged, A., Kharbish, S., Ismael, I. S., & Bhatnagar, A. (2020). Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution. Environmental Science and Pollution Research, 27(26), 32980–32997. https://doi.org/10.1007/s11356-020-09267-1.
Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Shuaib, D. T., Mohammed, A. K., & Sumaila, A. (2020). Application of TiO₂ and ZnO nanoparticles immobilized on clay in wastewater treatment: A review. Applied Water Science, 10, 206. https://doi.org/10.1007/s13201-020-01239-y.
Patra, J. K., & Baek, K. H. (2020). Green nanobiotechnology: Factors affecting synthesis and characterization techniques. Journal of Nanobiotechnology, 18, 1–24. https://doi.org/10.1186/s12951-020-00635-4.
Rahman, A., Alam, M. N., & Mahbub, K. R. (2023). Green synthesis of TiO₂ nanoparticles using citrus peel extracts and evaluation of their structural and antibacterial properties. Journal of Environmental Chemical Engineering, 11(2), 110204. https://doi.org/10.1016/j.jece.2023.110204.
Ramesh, M., Chidambaram, R., & Sundararajan, V. (2023). Eco-friendly synthesis of metal oxide nanocomposites using plant extracts and their applications in environmental and biomedical fields: A review. Environmental Research, 225, 115466. https://doi.org/10.1016/j.envres.2023.115466.
Saeidi, H., Ghaedi, M., &Daneshfar, A. (2021). Functionalized bentonite clay as a novel support for photocatalytic and adsorption processes: A review. Environmental Nanotechnology, Monitoring & Management, 15, 100450. https://doi.org/10.1016/j.enmm.2021.100450.
Saheed, M., Jimoh Oladejo, T., Rabi, E., Muhammed Binin, E., Azeezah Taiwo, A., Damola Taye, S., Abdulmumuni, S., Adekunle Jelili, O., Hassana Ladio, A., Saka Abdulkareem, A., & Muhammed Muhammed, N. (2023). Photocatalytic degradation and defluorination of per- and poly-fluoroalkyl substances (PFASs) using biosynthesized TiO₂ nanoparticles under UV–visible light. Engineering Proceedings, 37(1), 114. https://doi.org/10.3390/ECP2023-14630.
Sarkar, S., Kumar, A., & Mandal, S. (2022). Heavy metal pollution and its control in cement industry wastewater: A review. Environmental Science and Pollution Research, 29, 21845–21860. https://doi.org/10.1007/s11356-021-17010-2.
Singh, S., Kumar, V., & Chauhan, R. (2022). Removal of toxic metals from wastewater using nanocomposite adsorbents: A review. Environmental Nanotechnology, Monitoring & Management, 18, 100724. https://doi.org/10.1016/j.enmm.2022.100724.
Taudul, B., Tielens, F., & Calatayud, M. (2023). On the origin of Raman activity in anatase TiO₂ (nano)materials: An ab initio investigation of surface and size effects. Nanomaterials, 13, 1856. https://doi.org/10.3390/nano13121856.
Ulhaq, I., Aziz, A., & Hussain, M. (2021). Engineering TiO₂ supported CTAB-modified bentonite for simultaneous photocatalysis and adsorption of hydrocarbons in refinery wastewater. Environmental Nanotechnology, Monitoring & Management, 16, 100546. https://doi.org/10.1016/j.enmm.2021.100546.
Verma, V., Al-Dossari, M., Singh, J., Rawat, M., Kordy, M. G. M., & Shaban, M. (2022). A review on green synthesis of TiO₂ NPs: Photocatalysis and antimicrobial applications. Polymers, 14(7), 1444. https://doi.org/10.3390/polym14071444.
Zhou, J., Liu, W., Zhang, Y., et al. (2023). Recent progress in TiO₂/bentonite composites for environmental remediation. Journal of Hazardous Materials, 446, 130713. https://doi.org/10.1016/j.jhazmat.2022.130713.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Science Research and Reviews

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.