Green Synthesis, Characterization and In Vitro Antioxidant Activity of Silver Nanoparticles from Aqueous Candle Bush (Senna alata) Leaf Extract
DOI:
https://doi.org/10.70882/josrar.2025.v2i1.55Keywords:
Green synthesis, AgNPs, Characterization, TEM, SEM, XRDAbstract
Green synthesis of AgNPs has become a preferred method over chemical and physical approaches because it is eco-friendly, cost-effective, and avoids the use of toxic chemicals. Senna alata, commonly known as Candle Bush, is a medicinal plant widely used in traditional medicine for treating skin infections, diabetes, and inflammatory diseases. This study assesses the phytochemical content and antioxidant activity of Senna alata leaf extract, which is used in the environmentally friendly manufacture of silver nanoparticles. Both qualitative and quantitative phytochemical screening revealed a high concentration of bioactive chemicals, with the main ingredients being flavonoids (638.88 ± 4.45 mg/100 g), tannins (665.45 ± 10.29 mg/100 g), and phenols (941.32 ± 10.56 mg/100 g). The biosynthesized AgNPs have been characterized by various analytical techniques such as TGA/DTA, TEM, SEM, and EDS. TEM analysis revealed spherical nanoparticles within the size range of 2.70–6.37 nm. TGA confirmed good thermal stability up to a temperature of 400°C. SEM showed the structures to be of irregular porosity with sizes varying between 100 nm and 9 μm, whereas EDS showed silver as the major constituent (50.58 wt %). Antioxidant activity was evaluated by DPPH and ABTS assays. The nanoparticles demonstrated higher DPPH radical scavenging activity (IC50: 0.129 mg/mL) than that of the crude extract (IC50: 0.134 mg/mL), while showing similar ABTS radical scavenging activities (IC50: 0.943 and 0.954 mg/mL, respectively). These results indicated that S. alata-mediated synthesis of AgNPs is a very promising eco-friendly approach toward developing nanoparticles with improved antioxidant properties that can be useful in pharmaceutical and biomedical applications.
References
Adebayo-Tayo, B. C., Borode, S. O., Olaniyi, O. A. (2020). "Phytosynthesis of zinc oxide nanoparticles using methanol extract of Senna alata leaf: Characterization, optimization, antimicrobial properties, and its application in cold cream formulation", Polimers in Medicine, 50(1), pp. 5–19. https://doi.org/10.17219/pim/122901
Ahmad, A., Haneef, M., Ahmad, N., Kamal, A., Jaswani, S., & Khan, F. (2024). Biological synthesis of silver nanoparticles and their medical applications. World Academy of Sciences Journal, 6(3), 22.
Ali, M. H., Azad, M. A. K., Khan, K. A., Rahman, M. O., Chakma, U., &Kumer, A. (2023). Analysis of crystallographic structures and properties of silver nanoparticles synthesized using PKL extract and nanoscale characterization techniques. ACS omega, 8(31), 28133-28142.
Bittner Fialová, S., Rendeková, K., Mučaji, P., Nagy, M., &Slobodníková, L. (2021). Antibacterial activity of medicinal plants and their constituents in the context of skin and wound infections, considering European legislation and folk medicine—a review. International Journal of Molecular Sciences, 22(19), 10746.
Boateng, J. (Ed.). (2020). Therapeutic dressings and wound healing applications. John Wiley & Sons.
Brunner, G. (1984). Mass transfer from solid material in gas extraction. Berichte der Bunsengesellschaft für physikalische Chemie, 88(9), 887-891.
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3).
Chua, L. Y. W., Chua, B. L., Figiel, A., Chong, C. H., Wojdyło, A., Szumny, A., & Lech, K. (2019). Characterisation of the convective hot-air drying and vacuum microwave drying of Cassia alata: Antioxidant activity, essential oil volatile composition and quality studies. Molecules, 24(8), 1625.
Dubey, R. K., Shukla, S., &Hussain, Z. (2023). Green Synthesis of Silver Nanoparticles; A Sustainable Approach with Diverse Applications. Chinese Journal of Applied Physiology, e20230007.
Fatmawati, S., Yuliana, P. A., & Abu Bakar, M. F. (2020). Chemical constituents, usage and pharmacological activity of Cassia alata. Heliyon; 6 (7): e04396.
Fouda, A., Hassan, S.E.D., Abdo, A.M., El-Gamal, M.S., (2020). Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp. Biological Trace Element Research, 195(2), pp.707-724.
Gantner, M., & Kostyra, E. (2023). Special Issue on the Latest Research on Flavor Components and Sensory Properties of Food during Processing and Storage. Foods, 12(20), 3761.
Ghorai, N., Chakraborty, S., Gucchait, S., Saha, S. K., and Biswas, S. (2012). Estimation of total Terpenoids concentration in plant tissues using a monoterpene, Linalool as standard reagent. Journal of pharmacognosy and phytochemistry
Guan, R., Van Le, Q., Yang, H., Zhang, D., Gu, H., Yang, Y., ...&Peng, W. (2021). A review of dietary phytochemicals and their relation to oxidative stress and human diseases. Chemosphere, 271, 129499.
Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248.
Gunjal, A., Patwardhan, R., Jedhe, A., &Choudhary, V. (2022). Plasmid-Curing, Antimicrobial, Antioxidant Properties and Phytochemical Analysis of Medicinal Plants from North East India.(2021). Int. J. Life Sci. Pharma Res, 11(1), P100-109.
Gupta, V. K., Simlai, A., Tiwari, M., Bhattacharya, K., & Roy, A. (2014). Phytochemical contents, antimicrobial and antioxidative activities of Solanumsisymbriifolium. Journal of Applied Pharmaceutical Science, 4(3), 075-080.
Herrero-Calvillo R, Landeros-Páramo L, Santos-Ramos I, Rosas G. (2022). AgNPs/AgCl cube-shaped particles synthesized by a green method and their catalytic application. Journal of Cluster Science.8:1–9.
Ibrahim, M. R., Hamouda, R. A., Tayel, A. A., & Al-Saman, M. A. (2021). Anti-cholesterol and antioxidant activities of independent and combined microalgae aqueous extracts in vitro. Waste and Biomass Valorization, 12, 4845-4857.
Jain, A. S., Pawar, P. S., Sarkar, A., Junnuthula, V., & Dyawanapelly, S. (2021). Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications. International Journal of Molecular Sciences, 22(21), 11993.
Kang, S., Kim, Y., Lee, Y., & Kwon, O. (2023). Diverse and Synergistic Actions of Phytochemicals in a Plant-Based Multivitamin/Mineral Supplement against Oxidative Stress and Inflammation in Healthy Individuals: A Systems Biology Approach Based on a Randomized Clinical Trial. Antioxidants, 13(1), 36.
Kędziora, A., Wieczorek, R., Speruda, M., Matolínová, I., Goszczyński, T. M., Litwin, I., ...&Bugla-Płoskońska, G. (2021). Comparison of antibacterial mode of action of silver ions and silver nanoformulations with different physico-chemical properties: Experimental and computational studies. Frontiers in Microbiology, 12, 659614.
Khan, Y., Sadia, H., Ali Shah, S. Z., Khan, M. N., Shah, A. A., Ullah, N., ... & Khan, M. I. (2022). Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts, 12(11), 1386.
Kumar, S., Saini, R., Suthar, P., Kumar, V., & Sharma, R. (2022). Plant secondary metabolites: Their food and therapeutic importance. In Plant secondary metabolites: Physico-chemical properties and therapeutic applications (pp. 371-413). Singapore: Springer Nature Singapore.
Lalegani, Z., &Ebrahimi, S. S. (2020). Optimization of synthesis for shape and size controlled silver nanoparticles using response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 595, 124647.
Larayetan, R. A., Okoh, O. O., Sadimenko, A., & Okoh, A. I. (2017). Terpene constituents of the aerial parts, phenolic content, antibacterial potential, free radical scavenging and antioxidant activity of Callistemon citrinus (Curtis) Skeels (Myrtaceae) from Eastern Cape Province of South Africa. BMC complementary and alternative medicine, 17, 1-9.
Larayetan, R., Ojemaye, M. O., Okoh, O. O., & Okoh, A. I. (2019). Silver nanoparticles mediated by Callistemon citrinus extracts and their antimalaria, antitrypanosoma and antibacterial efficacy. Journal of Molecular Liquids, 273, 615-625.
Loganathan, S., Selvam, K., Padmavathi, G., Shivakumar, M. S., Senthil-Nathan, S., Sumathi, A. G., ...& Almutairi, S. M. (2022). Biological synthesis and characterization of Passiflorasubpeltata Ortega aqueous leaf extract in silver nanoparticles and their evaluation of antibacterial, antioxidant, anti-cancer and larvicidal activities. Journal of King Saud University-Science, 34(3), 101846.
Muflihah, Y. M., Gollavelli, G., & Ling, Y. C. (2021). Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxidants, 10(10), 1530.
Naganthran, A., Verasoundarapandian, G., Khalid, F. E., Masarudin, M. J., Zulkharnain, A., Nawawi, N. M., ...& Ahmad, S. A. (2022). Synthesis, characterization and biomedical application of silver nanoparticles. Materials, 15(2), 427.
Nantitanon, W., Chowwanapoonpohn, S., & Okonogi, S. (2007). Antioxidant and antimicrobial activities of Hyptis suaveolens essential oil. Scientia Pharmaceutica, 75(1), 35-54.
Okeke, E. S., Anosike, C. A., & Nwankwo, J. O. (2017). Spectrophotometric determination of total steroid content in medicinal plant extracts. Journal of Phytochemical Research, 5(2), 45-52.
Oršolić, N. (2022). Allergic inflammation: Effect of propolis and its flavonoids. Molecules, 27(19), 6694.
Osunga, S., Amuka, O., Machocho, A. K., &Getabu, A. (2023). Ethnobotany of some members of the genus Cassia (Senna). Int J Novel Res Life Sci, 10(5), 1-14.
Rai, M. K., Deshmukh, S. D., Ingle, A. P., & Gade, A. K. (2012). Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. Journal of applied microbiology, 112(5), 841-852.
Rai, S., Acharya-Siwakoti, E., Kafle, A., Devkota, H. P., & Bhattarai, A. (2021). Plant-derived saponins: a review of their surfactant properties and applications. Sci, 3(4), 44.
Rajivgandhi, G., Ramachandran, G., Chackaravarthi, G., Chelliah, C. K., Maruthupandy, M., Quero, F., et al. (2022). Preparation of antibacterial Zn and Ni substituted cobalt ferrite nanoparticles for efficient biofilm eradication. Anal. Biochem. 653:114787. https://doi.org/10.1016/j.ab.2022.114787
Ravi, G., VenkataDasu, V., & Pakshirajan, K. (2024). A comparative evaluation of batch and fed-batch cultures for enhanced lipid, carotenoid, and β-carotene production by Rhodotorulamucilaginosa. Preparative Biochemistry & Biotechnology, 1-14.
Sabbatino, F., Conti, V., Liguori, L., Polcaro, G., Corbi, G., Manzo, V., ...&Pepe, S. (2021). Molecules and mechanisms to overcome oxidative stress inducing cardiovascular disease in cancer patients. Life, 11(2), 105.
Sharma, M., Nayak, P. S., Asthana, S., Mahapatra, D., Arakha, M., and Jha, S. (2018). Biofabrication of silver nanoparticles using bacteria from mangrove swamp. IET Nanobiotechnol. 12, 626–632. doi: 10.1049/iet-nbt.2017.0205
Sheikh, Z. N., Sharma, V., Raina, S., Bakshi, P., Zari, A., Zari, T. A., & Hakeem, K. R. (2024). Phytochemical screening, HPLC fingerprinting and in vitro assessment of therapeutic potentials of different apricot cultivars against diabetes, Alzheimer's disease and cancer. Heliyon, 10(19).
Sheng, Z., Jiang, Y., Liu, J., & Yang, B. (2021). UHPLC–MS/MS analysis on flavonoids composition in Astragalusmembranaceus and their antioxidant activity. Antioxidants, 10(11), 1852.
Shi, L., Zhao, W., Yang, Z., Subbiah, V., &Suleria, H. A. R. (2022). Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environmental Science and Pollution Research, 29(54), 81112-81129.
Shirinova, H. A., Surkhayli, A. E., Pashayev, B. G., Mammadov, H. M., Jafarov, M. A., &Gahramanli, L. R. (2024). Preparation, characterization and thermal properties of the PS+ Si based polymer nanocomposites. Journal of Thermoplastic Composite Materials, 08927057241288195.
Singh, H., Desimone, M. F., Pandya, S., Jasani, S., George, N., Adnan, M., &Alderhami, S. A. (2023). Revisiting the green synthesis of nanoparticles: uncovering influences of plant extracts as reducing agents for enhanced synthesis efficiency and its biomedical applications. International Journal of Nanomedicine, 4727-4750.
Sivasubramanian, P., Kumar, M., Kirankumar, V. S., Samuel, M. S., Dong, C. D., & Chang, J. H. (2023). Capacitive deionization and electrosorption techniques with different electrodes for wastewater treatment applications. Desalination, 559, 116652.
Souza, R. R., Gonçalves, I. M., Rodrigues, R. O., Minas, G., Miranda, J. M., Moreira, A. L., ...&Moita, A. S. (2022). Recent advances on the thermal properties and applications of nanofluids: From nanomedicine to renewable energies. Applied Thermal Engineering, 201, 117725.
Vazifeh, S., Kananpour, P., Khalilpour, M., Eisalou, S. V., & Hamblin, M. R. (2022). Anti‐inflammatory and Immunomodulatory Properties of Lepidiumsativum. BioMed Research International, 2022(1), 3645038.
Veeraraghavan, V. P., Periadurai, N. D., Karunakaran, T., Hussain, S., Surapaneni, K. M., & Jiao, X. (2021). Green synthesis of silver nanoparticles from aqueous extract of Scutellariabarbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929). Saudi journal of biological sciences, 28(7), 3633-3640.
Waterhouse, A. L. (2002). Determination of total phenolics. Current protocols in food analytical chemistry, 6(1), I1-1.
White, B. L., Howard, L. R., & Prior, R. L. (2010). Polyphenolic composition and antioxidant capacity of extruded cranberry pomace. Journal of agricultural and food chemistry, 58(7), 4037-4042.
Wulandari, I. O., Pebriatin, B. E., Valiana, V., Hadisaputra, S., Ananto, A. D., &Sabarudin, A. (2022). Green synthesis of silver nanoparticles coated by water soluble chitosan and its potency as non-alcoholic hand sanitizer formulation. Materials, 15(13), 4641.
Yadav, S., Nadar, T., Lakkakula, J., &Wagh, N. S. (2024). Biogenic Synthesis of Nanomaterials: Bioactive Compounds as Reducing, and Capping Agents. In Biogenic Nanomaterials for Environmental Sustainability: Principles, Practices, and Opportunities (pp. 147-188). Cham: Springer International Publishing.
Yuan, G., Chen, Y., Li, F., Zhou, R., Li, Q., Lin, W., et al. (2017a). Isolation of an antibacterial substance from Mahoniafortunei and its biological activity against Xanthomonasoryzaepv. oryzicola. J Phytopathol. 65, 289–296. https://doi.org/10.1111/jph.12561
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ceasar Williams Onojah, Rotimi A. Larayetan, Kingsley Makoji Omatola, Amanabo Monday Adegbe, Sunday Abah, Arome Abu, Gloria Nwamaka Aningo, Oluranti Olagoke Ogunmola (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.