Methanol Extract of Citrullus Lanatus Rind and Silymarin Modulates Liver Function, Haematological Profile, and Liver Antioxidant Status in Thioacetamide-Treated Male Wistar Rats
DOI:
https://doi.org/10.70882/josrar.2024.v1i1.15Keywords:
Antioxidant status, Haematology, Hepatoprotective, Liver function indices, Thioacetamide (TAA)Abstract
Thioacetamide (TAA) is known to induce hepatotoxicity and oxidative stress, disrupting liver function and body weight in experimental animals. This study evaluated the hepatoprotective and antioxidant potential of methanolic Citrullus lanatus (watermelon) rind extract at 250 mg/kg and 500 mg/kg, as well as silymarin (50 mg/kg), in male Wistar rats treated with TAA (300 mg/kg). Body weight, liver weight, liver function markers, hematological parameters, and antioxidant enzyme activities were assessed. Results showed that TAA significantly decreased body weight and increased liver weight (p < 0.05), indicating hepatotoxicity. However, both doses of C. lanatus and silymarin significantly mitigated these effects, with the 500 mg/kg dose showing the strongest protective action. Alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total bilirubin, albumin, total protein, and oxidative stress markers (Malondialdehyde, Reduced Glutathione, Superoxide Dismutase, Catalase, Glutathione Peroxidase) were significantly altered in the TAA group but were restored to near-normal levels in rats treated with C. lanatus and silymarin. Additionally, hematological indices (Red Blood Cells, Haemoglobin, Packed Cell Volume, Mean Corpuscular Volume, Mean Corpuscular Haemoglobin, Mean Corpuscular Haemoglobin Concentration, White Blood Cells, and Platelets) were significantly improved by the treatments, with the 500 mg/kg extract and silymarin exhibiting comparable efficacy. These findings suggest that C. lanatus rind extract possesses potent antioxidant and hepatoprotective properties, making it a promising therapeutic agent for managing TAA-induced liver damage. Further studies are recommended to explore its long-term safety and clinical applications.
References
El-Hameed, S. A., Ibrahim, I., Awadin, W., & El-Shaieb, A. (2023). Thioacetamide: Definition, exposure, hepatic and renal toxicity. Mansoura Veterinary Medical Journal, 24(4), Article 3. https://doi.org/10.35943/2682-2512.1217
Ezhilarasan, D. (2023). Molecular mechanisms in thioacetamide-induced acute and chronic liver injury models. Environmental Toxicology and Pharmacology, 99, 104093. https://doi.org/10.1016/j.etap.2023.104093
Yang, H. Y., Kim, K. S., Lee, Y. H., Park, J. H., Kim, J. H., Lee, S. Y., Kim, Y. M., Kim, I. S., Kacew, S., Lee, B. M., Kwak, J. H., Yoon, K., & Kim, H. S. (2019). Dendropanax morbifera ameliorates thioacetamide-induced hepatic fibrosis via TGF-β1/Smads pathways. International Journal of Biological Sciences, 15(4), 800–811. https://doi.org/10.7150/ijbs.30356
Bashandy, S. A. E., El Awdan, S. A., Mohamed, S. M., & Omara, E. A. A. (2020). Allium porrum and Bauhinia variegata mitigate acute liver failure and nephrotoxicity induced by thioacetamide in male rats. Indian Journal of Clinical Biochemistry, 35(2), 147–157. https://doi.org/10.1007/s12291-018-0803-5
Shawon, S. I., Reyda, R. N., & Qais, N. (2024). Medicinal herbs and their metabolites with biological potential to protect and combat liver toxicity and its disorders: A review. Heliyon, 10(3), e25340. https://doi.org/10.1016/j.heliyon.2024.e25340
Paris, H. S. (2015). Origin and emergence of the sweet dessert watermelon, Citrullus lanatus. Annals of Botany, 116(2), 133-148. https://doi.org/10.1093/aob/mcv077
Perkins-Veazie, P., Davis, A., & Collins, J. K. (2012). Watermelon: From dessert to functional food. Israel Journal of Plant Sciences, 60, 395–402.
Leskovar, D. I., Bang, H., Crosby, K. M., Maness, N., Franco, J. A., & Perkins-Veazie, P. (2004). Lycopene, carbohydrates, ascorbic acid, and yield components of diploid and triploid watermelon cultivars are affected by deficit irrigation. Journal of Horticultural Science & Biotechnology, 79, 75–81.
Reetu, & Tomar, M. (2017). Watermelon: A valuable horticultural crop with nutritional benefits. Popular Kheti, 5(2).
Zamuz, S., Munekata, P. E. S., Gullón, B., Rocchetti, G., Montesano, D., & Lorenzo, J. M. (2021). Citrullus lanatus as a source of bioactive components: An up-to-date review. Trends in Food Science & Technology, 111, 208–222. https://doi.org/10.1016/j.tifs.2021.03.002
Smeets, E. T. H. C., Mensink, R. P., & Joris, P. J. (2021). Effects of L-citrulline supplementation and watermelon consumption on longer-term and postprandial vascular function and cardiometabolic risk markers: A meta-analysis of randomized controlled trials in adults. The British journal of nutrition, 128(9), 1–34. Advance online publication. https://doi.org/10.1017/S0007114521004803
Volino-Souza, M., Oliveira, G. V., Conte-Junior, C. A., Figueroa, A., & Alvares, T. S. (2022). Current Evidence of Watermelon (Citrullus lanatus) Ingestion on Vascular Health: A Food Science and Technology Perspective. Nutrients, 14(14), 2913. https://doi.org/10.3390/nu14142913
Aderiye, B. I., David, O. M., Fagbohun, E. D., Faleye, J., & Olajide, O. M. (2020). Immunomodulatory and phytomedicinal properties of watermelon juice and pulp (Citrullus lanatus Linn): A review. GSC Biological and Pharmaceutical Sciences, 11, 153–165.
Manivannan, A., Lee, E. S., Han, K., Lee, H. E., & Kim, D. S. (2020). Versatile Nutraceutical Potentials of Watermelon-A Modest Fruit Loaded with Pharmaceutically Valuable Phytochemicals. Molecules (Basel, Switzerland), 25(22), 5258. https://doi.org/10.3390/molecules25225258
Nkoana, D. K., Mashilo, J., Shimelis, H., & Ngwepe, R. M. (2022). Nutritional, phytochemical compositions and natural therapeutic values of citron watermelon (Citrullus lanatus var. citroides): A review. South African Journal of Botany, 145, 65–77.
Nadeem, M., Navida, M., Ameer, K., Iqbal, A., Malik, F., Nadeem, M. A., Fatima, H., Ahmed, A., & Din, A. (2022). A comprehensive review on the watermelon phytochemical profile and their bioactive and therapeutic effects. Korean Journal of Food Preservation, 29(4), 546–576.
Biswas, R., Ghosal, S., Chattopadhyay, A., & Datta, S. (2017). A comprehensive review on watermelon seed oil: An underutilized product. IOSR Journal of Pharmacy, 7, 1–7.
Poduri, A., Rateri, D. L., Saha, S. K., Saha, S., & Daugherty, A. (2013). Citrullus lanatus 'sentinel' (watermelon) extract reduces atherosclerosis in LDL receptor-deficient mice. The Journal of nutritional biochemistry, 24(5), 882–886. https://doi.org/10.1016/j.jnutbio.2012.05.011
Soleimani, V., Delghandi, P. S., Moallem, S. A., & Karimi, G. (2019). Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytotherapy Research, 33(6), 1627–1638.
Gillessen, A., & Schmidt, H. H. (2020). Silymarin as supportive treatment in liver diseases: A narrative review. Advances in Therapy, 37(4), 1279-1301.
Mihailović, V., Srećković, N., & Popović-Djordjević, J. B. (2023). Silybin and silymarin: Phytochemistry, bioactivity, and pharmacology. In J. Xiao (Ed.), Handbook of Dietary Flavonoids (pp. 1-45). Springer, Cham.
Abdel-Moneim, A. M., Al-Kahtani, M. A., El-Kersh, M. A., & Al-Omair, M. A. (2015). Free radical-scavenging, anti-inflammatory/anti-fibrotic and hepatoprotective actions of taurine and silymarin against CCl4 induced rat liver damage. PloS One, 10(12), e0144509.
Kim, S. H., Choo, G. S., Yoo, E. S., Woo, J. S., Han, S. H., Lee, J. H., & Jung, J. Y. (2019). Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells. Oncology Reports, 42(5), 1904–1914.
Adelina, J. A. M. (2022). Clinical studies of silymarin as a protective agent against liver damage caused by anti-TB drugs, methotrexate, and in cases of chronic hepatitis C and diabetes mellitus. Pharmacognosy Journal, 14(2), 358–368.
Iqbal, J., Andleeb, A., Ashraf, H., Meer, B., Mehmood, A., Jan, H., Zaman, G., Nadeem, M., Drouet, S., Fazal, H., Giglioli-Guivarc'h, N., Hano, C., & Abbasi, B. H. (2022). Potential antimicrobial, antidiabetic, catalytic, antioxidant and ROS/RNS inhibitory activities of Silybum marianum mediated biosynthesized copper oxide nanoparticles. RSC Advances, 12(22), 14069–14083.
Shavandi, M., Yazdani, Y., Asar, S., Mohammadi, A., Mohammadi-Noori, E., & Kiani, A. (2022). The effect of oral administration of silymarin on serum levels of tumor necrosis factor-α and interleukin-1ß in patients with rheumatoid arthritis. Iranian Journal of Immunology, 19(4), 427–435.
Wadhwa, K., Pahwa, R., Kumar, M., Kumar, S., Sharma, P. C., Singh, G., Verma, R., Mittal, V., Singh, I., Kaushik, D., & Jeandet, P. (2022). Mechanistic insights into the pharmacological significance of silymarin. Molecules, 27(16), 5327.
National Institutes of Health, Office of Laboratory Animal Welfare. (2002). Public Health Service policy on the humane care and use of laboratory animals. Bethesda, MD: NIH.
Lorke, D. (1983). A new approach to practical acute toxicity testing. Archives of Toxicology, 54(4), 275–287.
Arunachalam, K., & Sasidharan, S. P. (2021). General considerations and collection of animal blood. In Bioassays in Experimental and Preclinical Pharmacology (pp. 51–55). Humana, New York.
Laposata, M., & McCaffrey, P. (2022). Methods in clinical hematology. In M. Laposata & P. McCaffrey (Eds.), Clinical Laboratory Methods: Atlas of Commonly Performed Tests. McGraw Hill/Medical.
Cohen, G., Dembiec, D., & Marcus, J. (1970). Measurement of catalase activity in tissue extracts. Analytical Biochemistry, 34(1), 30-38.
Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the auto oxidation of epinephrine and simple assay for superoxide dismutase. Journal of Biological Chemistry, 247(10), 3170-3175.
Tietze, F. (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Analytical Biochemistry, 27(3), 502-522.
Flohé, L., & Günzler, W. A. (1984). Assays of glutathione peroxidase. Methods in Enzymology, 105, 114-121.
Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358.
Abood, W. N., Bradosty, S. W., Shaikh, F. K., Salehen, N. A., Farghadani, R., Shakir, N. F. S. A., Agha, M. H. A., Kamil, T. D. A., Agha, A. S., & Abdulla, M. A. (2020). Garcinia mangostana peel extracts exhibit hepatoprotective activity against thioacetamide-induced liver fibrosis in rats. European Journal of Pharmacology, 887, 173553. https://doi.org/10.1016/j.ejphar.2020.173553
Gratte, F. D., Pasic, S., Bakar, N. D. B. A., Gogoi-Tiwari, J., Liu, X., Carlessi, R., Kisseleva, T., Brenner, D. A., Ramm, G. A., & Olynyk, J. K. (2021). Previous liver regeneration induces fibro-protective mechanisms during thioacetamide-induced chronic liver injury. International Journal of Biochemistry & Cell Biology, 134, 105933. https://doi.org/10.1016/j.biocel.2021.105933
Organisation for Economic Co-operation and Development. Guidance Document on Acute Oral Toxicity Testing, OECD Environment, Health and Safety Publications, 2008. Series zon Testing and Assessment 29 (Online), Available from: https://ntp.ni ehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd-gd129.pdf
Ebhohon, S. O., Ibeh, R. C., Ejiofor, U. E., Abu, O. D., & Osegenna, S. C. (2019). Hepato- and nephro-protective effects of methanol extract of Citrullus lanatus rind in Wistar rats fed with used motor engine oil contaminated feed. FUDMA Journal of Science, 3(4), 246–250.
Belemkar, S., & Shendge, P. N. (2021). Toxicity profiling of the ethanolic extract of Citrullus lanatus seed in rats: behavioral, biochemical and histopathological aspects. Bioscience reports, 41(1), BSR20202345. https://doi.org/10.1042/BSR20202345
Katayama K. (2020). Zinc and protein metabolism in chronic liver diseases. Nutrition research (New York, N.Y.), 74, 1–9. https://doi.org/10.1016/j.nutres.2019.11.009
Espina, S., Casas-Deza, D., Bernal-Monterde, V., Domper-Arnal, M. J., García-Mateo, S., & Lué, A. (2023). Evaluation and Management of Nutritional Consequences of Chronic Liver Diseases. Nutrients, 15(15), 3487. https://doi.org/10.3390/nu15153487
Zhang, H., & Xu, J. (2024). Unveiling thioacetamide-induced toxicity: Multi-organ damage and omitted bone toxicity. Human & Experimental Toxicology, 43. https://doi.org/10.1177/09603271241241807
Mushtaq, M., Sultana, B., Bhatti, H. N., & Asgher, M. (2015). RSM-based optimized enzyme-assisted extraction of antioxidant phenolics from underutilized watermelon (Citrullus lanatus Thunb.) rind. Journal of Food Science and Technology, 52(9), 5048–5056. https://doi.org/10.1007/s13197-014-1562-9
Ferraz, A. C., Almeida, L. T., da Silva Caetano, C. C., da Silva Menegatto, M. B., Souza Lima, R. L., de Senna, J. P. N., de Oliveira Cardoso, J. M., Perucci, L. O., Talvani, A., Geraldo de Lima, W., de Mello Silva, B., Barbosa Reis, A., de Magalhães, J. C., & Lopes de Brito Magalhães, C. (2021). Hepatoprotective, antioxidant, anti-inflammatory, and antiviral activities of silymarin against mayaro virus infection. Antiviral research, 194, 105168. https://doi.org/10.1016/j.antiviral.2021.105168
Chinnala, K. M., Jayagar, P. P., Motta, G., Adusumilli, R. C., & Elsani, M. M. (2018). Evaluation of hepatoprotective activity of Allium sativum ethanolic extract in thioacetamide-induced hepatotoxicity in albino Wistar rats. American Journal of Research in Medical Sciences, 3(2), 48–53. https://doi.org/10.5455/ajrms.20180107060815
El-Deberky, D., Rizk, M., Elsayd, F., Amin, A., & El-Mahmoudy, A. (2021). Protective potential of Cynara scolymus extract in thioacetamide model of hepatic injury in rats. Revista Bionatura, 6(2). http://www.revistabionatura.com
Shareef, H. S., Ibrahim, I. A., Alzahrani, A. R., Al-Medhtiy, M. H., & Abdulla, M. A. (2022). Hepatoprotective effects of methanolic extract of green tea against thioacetamide-induced liver injury in Sprague Dawley rats. Saudi Journal of Biological Sciences, 29(1), 564-573. https://doi.org/10.1016/j.sjbs.2021.09.023
Abdelghfar, E. A. R., El Nashar, H. A. S., Fayez, S., Obaid, W. A., & Eldahshan, O. A. (2022). Ameliorative effect of oregano (Origanum vulgare) versus silymarin in experimentally induced hepatic encephalopathy. Scientific Reports, 12, 17854. https://doi.org/10.1038/s41598-022-20412-3
Alamri, Z. Z. (2024). Protective and therapeutic effects of apigenin on thioacetamide-induced hepatotoxicity in male rats: A physiological and morphological study. Egyptian Liver Journal, 14(1), 15. https://doi.org/10.1186/s43066-024-00318-7
Li, S., Tan, H. Y., Wang, N., Zhang, Z. J., Lao, L., Wong, C. W., & Feng, Y. (2015). The Role of Oxidative Stress and Antioxidants in Liver Diseases. International journal of molecular sciences, 16(11), 26087–26124. https://doi.org/10.3390/ijms161125942
Arriazu, E., Ruiz de Galarreta, M., Cubero, F. J., Varela-Rey, M., Pérez de Obanos, M. P., Leung, T. M., Lopategi, A., Benedicto, A., Abraham-Enachescu, I., & Nieto, N. (2014). Extracellular matrix and liver disease. Antioxidants & redox signaling, 21(7), 1078–1097. https://doi.org/10.1089/ars.2013.5697
Saha, P., Talukdar, A. D., Nath, R., Sarker, S. D., Nahar, L., Sahu, J., & Choudhury, M. D. (2019). Role of Natural Phenolics in Hepatoprotection: A Mechanistic Review and Analysis of Regulatory Network of Associated Genes. Frontiers in pharmacology, 10, 509. https://doi.org/10.3389/fphar.2019.00509
Jaffar, H. M., Al-Asmari, F., Khan, F. A., Rahim, M. A., & Zongo, E. (2024). Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases-A comprehensive narrative review. Food science & nutrition, 12(5), 3097–3111. https://doi.org/10.1002/fsn3.4010
Lala, V., Zubair, M., & Minter, D. A. (2024). Liver function tests. In StatPearls. StatPearls Publishing. Available from https://www.ncbi.nlm.nih.gov/books/NBK482489/
Lowe, D., Sanvictores, T., Zubair, M., & et al. (2024). Alkaline phosphatase. In StatPearls. StatPearls Publishing. Available from https://www.ncbi.nlm.nih.gov/books/NBK459201/
Guerra Ruiz, A. R., Crespo, J., López Martínez, R. M., Iruzubieta, P., Casals Mercadal, G., Lalana Garcés, M., Lavin, B., & Morales Ruiz, M. (2021). Measurement and clinical usefulness of bilirubin in liver disease. Advances in laboratory medicine, 2(3), 352–372. https://doi.org/10.1515/almed-2021-0047
Kalakonda, A., Jenkins, B. A., & John, S. (2024). Physiology, bilirubin. In StatPearls. StatPearls Publishing. Available from https://www.ncbi.nlm.nih.gov/books/NBK470290/
Soeters, P. B., Wolfe, R. R., & Shenkin, A. (2019). Hypoalbuminemia: Pathogenesis and Clinical Significance. JPEN. Journal of parenteral and enteral nutrition, 43(2), 181–193. https://doi.org/10.1002/jpen.1451
Busher, J. T. (1990). Serum albumin and globulin. In H. K. Walker, W. D. Hall, & J. W. Hurst (Eds.), Clinical methods: The history, physical, and laboratory examinations (3rd ed., Ch. 101). Butterworths. Available from https://www.ncbi.nlm.nih.gov/books/NBK204/
Belinskaia, D. A., Voronina, P. A., Shmurak, V. I., Jenkins, R. O., & Goncharov, N. V. (2021). Serum albumin in health and disease: Esterase, antioxidant, transporting and signaling properties. International Journal of Molecular Sciences, 22(19), 10318. https://doi.org/10.3390/ijms221910318
Masruk, A., Rahman Khan, T., Sakib, K., Ray, M. C., Mandal, S. K., Rahman, T., Tonny, T. S., Rahmat, S., Proma, A. Y., & Rafat, T. (2023). An assessment of hepatoprotective activity of Citrullus lanatus in CCl₄-induced hepatotoxicity in rats with safety profile analysis. Asian Journal of Medical Principles and Clinical Practice, 6(2), 246–252.
Allameh, A., Niayesh-Mehr, R., Aliarab, A., Sebastiani, G., & Pantopoulos, K. (2023). Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants (Basel, Switzerland), 12(9), 1653. https://doi.org/10.3390/antiox12091653
Pollock, G., & Minuk, G. Y. (2017). Diagnostic considerations for cholestatic liver disease. Journal of gastroenterology and hepatology, 32(7), 1303–1309. https://doi.org/10.1111/jgh.13738
Zargar, S., Wani, T. A., Alamro, A. A., & Ganaie, M. A. (2017). Amelioration of thioacetamide-induced liver toxicity in Wistar rats by rutin. International journal of immunopathology and pharmacology, 30(3), 207–214. https://doi.org/10.1177/0394632017714175
Aghemo, A., Alekseeva, O. P., Angelico, F., Bakulin, I. G., Bakulina, N. V., Bordin, D., Bueverov, A. O., Drapkina, O. M., Gillessen, A., Kagarmanova, E. M., Korochanskaya, N. V., Kucheryavii, U. A., Lazebnik, L. B., Livzan, M. A., Maev, I. V., Martynov, A. I., Osipenko, M. F., Sas, E. I., Starodubova, A., Uspensky, Y. P., … Yakovlev, A. A. (2022). Role of silymarin as antioxidant in clinical management of chronic liver diseases: a narrative review. Annals of medicine, 54(1), 1548–1560. https://doi.org/10.1080/07853890.2022.2069854
Calderon Martinez, E., Herrera, D., Mogan, S., Hameed, Z., Jangda, A. A., Khan, T. J., Mroke, P., Sajid, S., Shah, Y. R., & Baig, I. (2023). Impact of Silymarin Supplements on Liver Enzyme Levels: A Systematic Review. Cureus, 15(10), e47608. https://doi.org/10.7759/cureus.47608
Karimi, G., Vahabzadeh, M., Lari, P., Rashedinia, M., & Moshiri, M. (2011). "Silymarin", a promising pharmacological agent for treatment of diseases. Iranian journal of basic medical sciences, 14(4), 308–317.
Al-Attar A. M. (2022). Hematological and biochemical investigations on the effect of curcumin and Thymo
quinone in male mice exposed to Thioacetamide. Saudi journal of biological sciences, 29(1), 660–665. https://doi.org/10.1016/j.sjbs.2021.10.037
Fried, W. (1972). The liver as a source of extrarenal erythropoietin production. Blood, 40(5), 671-677. https://doi.org/10.1182/blood.V40.5.671.671
Yasuoka, Y., Fukuyama, T., Izumi, Y., Nakayama, Y., Inoue, H., Yanagita, K., Oshima, T., Yamazaki, T., Uematsu, T., Kobayashi, N., Shimada, Y., Nagaba, Y., Mukoyama, M., Yamashita, T., Sato, Y., Sands, J. M., Kawahara, K., & Nonoguchi, H. (2020). Erythropoietin production by the kidney and the liver in response to severe hypoxia evaluated by Western blotting with deglycosylation. Physiological reports, 8(12), e14485. https://doi.org/10.14814/phy2.14485
Bhoopalan, S. V., Huang, L. J. S., & Weiss, M. J. (2020). Erythropoietin regulation of red blood cell production: From bench to bedside and back [version 1; peer review: 4 approved]. F1000Research, 9(Faculty Rev), 1153. https://doi.org/10.12688/f1000research.26648.1
Türkmen, N. B., Yüce, H., Taşlıdere, A., Şahin, Y., & Çiftçi, O. (2022). The Ameliorate Effects of Nerolidol on Thioacetamide-induced Oxidative Damage in Heart and Kidney Tissue. Turkish journal of pharmaceutical sciences, 19(1), 1–8. https://doi.org/10.4274/tjps.galenos.2021.30806
Ho, T. L., Hoang, N. T., Lee, J., Park, J. H., & Kim, B. K. (2018). Determining mean corpuscular volume and red blood cell count using electrochemical collision events. Biosensors and Bioelectronics, 110, 155-159.
Yang, J., Yan, B., Yang, L., Li, H., Fan, Y., Zhu, F., Zheng, J., & Ma, X. (2018). Macrocytic anemia is associated with the severity of liver impairment in patients with hepatitis B virus-related decompensated cirrhosis: A retrospective cross-sectional study. BMC Gastroenterology, 18(1), 161.
Koury, M. J., & Ponka, P. (2004). New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annual review of nutrition, 24, 105–131. https://doi.org/10.1146/annurev.nutr.24.012003.132306
Foy, B. H., Sundt, T., Carlson, J. C. T., Aguirre, A. D., & Higgins, J. M. (2021). White Blood Cell and Platelet Dynamics Define Human Inflammatory Recovery. medRxiv: the preprint server for health sciences, 2021.06.19.21259181. https://doi.org/10.1101/2021.06.19.21259181
Ebhohon, S. O., Asoya, E. V., Iyare, H. E., Akerele, O. R., & Ezedimbu, M. C. (2023). Effect of aqueous leaf extract of Justicia carnea on hematological parameters of male Wistar rats exposed to thioacetamide. Tropical Journal of Phytochemistry and Pharmaceutical Sciences, 2(2).
Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants—Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287-293. https://doi.org/10.1016/j.ajme.2017.09.001
Vairetti, M., Di Pasqua, L. G., Cagna, M., Richelmi, P., Ferrigno, A., & Berardo, C. (2021). Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants (Basel, Switzerland), 10(3), 364. https://doi.org/10.3390/antiox10030364
Mas-Bargues, C., Escrivá, C., Dromant, M., Borrás, C., & Viña, J. (2021). Lipid peroxidation as measured by chromatographic determination of malondialdehyde: Human plasma reference values in health and disease. Archives of Biochemistry and Biophysics, 709, 108941. https://doi.org/10.1016/j.abb.2021.108941
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Shirley O. Ebhohon, J. O. Ojowu, W. P. Adarki, U. I. Edward (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.