Sustainable Protein Alternatives: Exploring The Viability of Edible Insects in Crisis Settings

Authors

  • Ibrahim Bature
    Federal University Dutsin-Ma
  • Hadiza K. Bako
    Bayero University Kano
  • Safwan I. Aliyu
    Bayero University Kano

Keywords:

Edible insects, Sustainable Protein, Crisis settings, Nutrition challenges

Abstract

Edible insects are garnering attention as sustainable protein alternatives to address the nutritional challenges in crises. These scenarios, characterized by severe food insecurity and malnutrition, are frequently exacerbated by conflicts, natural disasters, and the COVID-19 pandemic, affecting vulnerable populations. This analysis examines the potential of edible insects, which are rich in protein, essential amino acids, and micronutrients, to address these issues. More than 2,000 insect species are considered edible, with the most frequently consumed being beetles, caterpillars, bees, wasps, ants, grasshoppers, locusts, and crickets. In East Africa, insect farming is expanding, with a focus on crickets, black soldier flies, and other species. However, the industry faces challenges related to feed expenses, pathogen and pest risks, and insufficient research. Enhancing the acceptability and nutritional quality of these foods can be achieved through value addition via processing techniques and incorporation into various food products. High-quality insect protein isolates for food applications can be obtained through protein extraction methods such as alkaline extraction and enzymatic hydrolysis. Promising avenues for increasing edible insect consumption include developing insect-based meat alternatives and fortifying baked goods with insect flour. Nevertheless, consumer acceptance remains a significant obstacle, necessitating additional research on the sensory properties and safety of insect-based foods. Overcoming these challenges requires increased funding, capacity building, and stakeholder coordination to expand the production and utilization of edible insects as a sustainable solution to nutrition challenges in crisis settings.

Dimensions

Adams, K. P., Gyimah, E. A., Jungjohann, S. M., Hems, J. L., Mofu, M. J., Anjorin, O. M., Yourkavitch, J., Alayón, S., Danton, H., Weiss, I., Dary, O., & Woldt, M. B. (2025). Informing the Design of Large-Scale Food Fortification Programs with Secondary Data: Pilot Results from Nigeria and Zambia. Current Developments in Nutrition, 9(2), 104522. https://doi.org/10.1016/j.cdnut.2024.104522

Ajdini, B., Biancarosa, I., Cardinaletti, G., Illuminati, S., Annibaldi, A., Girolametti, F., Fanelli, M., Tulli, F., Pinto, T., & Truzzi, C. (2025). Modulating the nutritional value of Acheta domesticus (house cricket) through the eco-sustainable Ascophyllum nodosum dietary supplementation. Journal of Food Composition and Analysis, 140, 107263. https://doi.org/10.1016/j.jfca.2025.107263

Akerele, D., Fadare, O., Ogunniyi, A., Adeyemi, O., & Rufai, M. (2024). Effects of food price changes on child undernutrition among agricultural households in Nigeria. World Development Sustainability, 4, 100158. https://doi.org/10.1016/j.wds.2024.100158

Akinbule, O. O., Onabanjo, O. O., Sanni, S. A., Adegunwa, M. O., & Akinbule, A. S. (2022). Micronutrient composition, antioxidant properties, and mineral safety index of selected Nigerian cooked foods. Food Chemistry, 373, 131386. https://doi.org/10.1016/j.foodchem.2021.131386

Amarender, R.V.; Bhargava, K.; Dossey, A.T.; Gamagedara, S. Lipid and protein extraction from edible insects—Crickets (Gryllidae). LWT 2020, 125, 109222. https://doi.org/10.1016/j.lwt.2020.109222

An, L., Gu, Y., Zhang, Y., Yang, D., Liu, S., Sun, L., Li,, J., & Cui, Z. (2025). Protein Requirements and Nutritional Metabolic Characteristics of Yak Calves on the Qinghai-Tibetan Plateau. Journal of Dairy Science. https://doi.org/10.3168/jds.2024-25648

Ardoin R, Prinyawiwatkul W: Consumer perceptions of insect consumption: a review of western research since 2015. Int J Food Sci Technol 2021, 56:4942-4958. https://doi.org/10.1111/ijfs.15167

Azagoh, C.; Ducept, F.; Garcia, R.; Rakotozafy, L.; Cuvelier, M.E.; Keller, S.; Lewandowski, R.; Mezdour, S. Extraction and physicochemical characterization of Tenebrio molitor proteins. Food Res. Int. 2016, 88, 24–31. Bakuła, T.; Gałe˛cki, R. Strategia Wykorzystania Alternatywnych Z´ ródeł Białka w Z˙ ywieniu Zwierza˛t oraz Moz˙liwos´ci Rozwoju Jego Produkcji na Terytorium Rzeczpospolitej Polski; ERZET: Olsztyn, Poland, 2021; ISBN 978-83-961897-1-4. https://doi.org/10.1016/j.foodres.2016.06.010

Bao, Helen X. H., and Yuna Song. 2022. “Improving Food Security through Entomophagy: Can Behavioural Interventions Influence Consumer Preference for Edible Insects?” Sustainability 14(7):3875. https://doi.org/10.3390/su14073875

Benítez-González, A. M., Aguilera-Velázquez, J. R., Bautista Palomas, J., & Meléndez-Martínez, A. J. (2024). Evaluation of carrot and agroindustrial residues for obtaining Tenebrio molitor (yellow mealworm) powder enriched in bioaccessible provitamin A and colourless carotenoids. LWT, 214, 117011. https://doi.org/10.1016/j.lwt.2024.117011

Brogan, E.N.; Park, Y.-L.; Matak, K.E.; Jaczynski, J. Characterization of protein in cricket (Acheta domesticus), locust (Locusta migratoria), and silk worm pupae (Bombyx mori) insect powders. LWT 2021, 152, 112314. https://doi.org/10.1016/j.lwt.2021.112314

Bussler, S.; Rumpold, B.A.; Jander, E.; Rawel, H.M.; Schluter, O.K. Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon 2016, 2, e00218. : https://10.1016/j.heliyon.2016.e00218

Çabuk B, Yılmaz B (2020). Fortification of traditional egg pasta (erişte) with edible insects: nutritional quality, cooking properties, and sensory characteristics evaluation. J Food Sci Technol 57(7):2750–2757. https://doi.org/10.1007/s13197-020-04315-7

Çabuk B: Influence of grasshopper (Locusta Migratoria) and mealworm (Tenebrio molitor) powders on the quality characteristics of protein rich muffins: nutritional, physicochemical, textural and sensory aspects. J Food Meas Charact 2021, 15:3862-3872. https://link.springer.com/article/10.1007/s11694-021-00967-x

Cadinu, L.A.; Barra, P.; Torre, F.; Delogu, F.; Madau, F.A. Insect Rearing: Potential, Challenges, and Circularity. Sustainability 2020, 12, 4567. https://doi.org/10.3390/su12114567

Chia, S. Y., Tanga, C. M., Osuga, I. M., Alaru, A. O., Mwangi, D. M., Githinji, M., ... & van Loon, J. J. A. (2019). Black soldier fly larval meal in feed enhances growth performance, carcass yield, and meat quality of broiler chickens. Journal of Insects as Food and Feed, 5(4), 301–310.

DOI: 10.3920/JIFF2018.0047

Cheseto X, Baleba SBS, Tanga CM, Kelemu S, Torto B: Chemistry and sensory characterization of a bakery product prepared with oils from African edible insects. Foods 2020, 9:800 http://dx.doi.org/10.3390/foods9060800

Chia SY, Macharia J, Diiro GM, Kassie M, Ekesi S, van Loon JJA, Dicke M, Tanga CM: Smallholder farmers’ knowledge and willingness to pay for insect-based feeds in Kenya. PLoS One 2020, 15:e0230552 http://dx.doi.org/10.1371/journal. pone.0230552

Chia SY, Tanga CM, van Loon JJ, Dicke M: Insects for sustainable animal feed: inclusive business models involving smallholder farmers. Curr Opin Environ Sustain 2019, 41:23-30. https://doi.org/10.1016/j.cosust.2019.09.003

Cho SY, Ryu GH: Effects of mealworm larva composition and selected process parameters on the physicochemical properties of extruded meat analog. Food Sci Nutr 2021, 9:4408-4419. https://doi.org/10.1002/fsn3.2414

Choi YS, Kim TK, Choi HD, Park JD, Sung JM, Jeon KH, Paik HD, Kim YB: Optimization of replacing pork meat with yellow worm (Tenebrio molitor L.) for frankfurters. Korean J Food Sci Anim Resour 2017, 37:617-625. https://doi.org/10.5851/kosfa.2017.37.5.617

Deleu, L.J.; Lambrecht, M.A.; Van de Vondel, J.; Delcour, J.A. The impact of alkaline conditions on storage proteins of cereals and pseudo-cereals. Curr. Opin. Food Sci. 2019, 25, 98–103. https://doi.org/10.1016/j.cofs.2019.02.017

Derrien C, Boccuni A: Current status of the insect producing industry in Europe. Edible Insects in Sustainable Food Systems. Berlin/Heidelberg, Germany: Springer; 2018, 471-479

Dhakal, M., Kemsawasd, V., Whanmek, K., Chathiran, W., Intawong, S., Srichamnong, W., Suttisansanee, U., & Kittibunchakul, S. (2025). Physicochemical characteristics, volatile components and bioactivities of fermented seasoning sauce produced from cricket (Acheta domesticus) meal. Future Foods, 11, 100505. https://doi.org/10.1016/j.fufo.2024.100505

Doi, H.; Gał˛ecki, R.; Mulia, R.N. The merits of entomophagy in the post COVID-19 world. Trends Food Sci. Technol. 2021, 110,849–854. https://doi.org/10.1016/j.tifs.2021.01.067

Dopelt, Keren, Pnina Radon, and Nadav Davidovitch. 2019. “Environmental Effects of the Livestock Industry: The Relationship between Knowledge, Attitudes, and Behavior among Students in Israel.” International Journal of Environmental Research and Public Health 16(8):1359. https://doi.org/10.3390/ijerph16081359

Dossey, A.T.; Morales-Ramos, J.A.; Rojas, M.G. (Eds.) Insects as Sustainable Food Ingredients: Production, Processing and Food Applications; Academic Press: Cambridge, MA, USA, 2016. https://www.sciencedirect.com/book/9780128028568/insects-as-sustainable-food-ingredients

Drummond, R.O.; Bram, R.A.; Konnerup, N. Animal Pests and World Food Production. In World Food, Pest Losses, and the Environment; CRC Press: Boca Raton, FL, USA, 2019; pp. 63–93. https://www.taylorfrancis.com/chapters/edit/10.1201/9780429268076-5/animal-pests-world-food-production-roger-drummond-ralph-bram-nels-konnerup

Ebenebe CI, Ibitoye OS, Amobi IM, Okpoko VO (2020) African Edible Insect Consumption Market. In: Adam Mariod A. (eds) African Edible Insects As Alternative Source of Food, Oil, Protein and Bioactive Components.Springer Cham. https://doi.org/10.1007/978-3-030-32952-5_2

Ebenebe CI, Okpoko VO, Ufele AN, Amobi MI (2017) Survivability, growth performance, and nutrient composition of the African Palm Weevil (Rhyncophorus phoenicis Fabricius) reared on Four different substrates. Journal of Bioscience and Biotechnology Discovery 2(1): 1-9. https://doi.org/10.31248/JBBD2016.018

EFSA NDA Panel, Turck D, Castenmiller J, De Henauw S, Hirsch- Ernst KI, Kearney J, Maciuk A, Mangelsdorf IM H.J., Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda FFT, Heinonen M, Marchelli R, Neuh€auser-Berthold M, Poulsen M, Prieto Maradona M, Schlatter JRV, Loveren HVE, KH: Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2021,:1-29. https://doi.org/10.2903/j.efsa.2024.8961

Egonyu JP, Miti MM, Tanga MC, Leonard A, Subramanian S: Cannibalism, oviposition, and egg development in the edible long-horned grasshopper, Ruspolia differens (Orthoptera: Tettigoniidae) under laboratory conditions. J Insects Food Feed 2020, 7:89-97 http://dx.doi.org/10.3920/JIFF2020.0018

Elhassan M, Wendin K, Olsson V, Langton (2019) Quality Aspects of Insects as Food—Nutritional, Sensory, and Related Concepts. Food, 8 (95): 1-14. https://doi.org/10.3390/foods8030095

FAO. (2013). Edible insects: Future prospects for food and feed security. Food and Agriculture Organization of the United Nations. http://www.fao.org/3/i3253e/i3253e.pdf

Fraqueza, M.J.R.; da Silva Coutinho Patarata, L.A. Constraints of HACCP Application on Edible Insect for Food and Feed. In Future Food; Intech: London, UK, 2017. https://www.intechopen.com/chapters/55766

Gałecki, R.; Sokół, R. A parasitological evaluation of edible insects and their role in the transmission of parasitic diseases to humans and animals. PLoS ONE 2019, 14, e0219303. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219303

Gałecki, R.; Zielonka, Ł.; Zas˛epa, M.; Goł˛ebiowska, J.; Bakuła, T. Potential Utilization of Edible Insects as an Alternative Source of Protein in Animal Diets in Poland. Front. Sustain. Food Syst. 2021, 5, 675796. https://doi.org/10.3389/fsufs.2021.675796

Gałęcki, R., Obremski, K., Smetana, S., Figiel, S., & Gołaszewski, J. Edible Insect Farming in the Context of the EU Regulations and Marketing—An Overview. Insects, 13(5), 446. https://doi.org/10.3390/insects13050446

Ghafuri, D. L., Abdullahi, S. U., Galadanci, N. A., Jibir, B., Gambo, S., Bello-Manga, H., Haliru, L., Bulama, K., Gambo, A., Aliyu, M., Covert, B., Kassim, A. A., Rodeghier, M., & DeBaun, M. R. (2017). High Prevalence of Severe Acute Malnutrition in Children with Sickle Cell Anemia over 5 Years of Age in Northern Nigeria. Blood, 130, 127. https://doi.org/10.1182/blood.V130.Suppl_1.127.127

Gerard Delvare, Copeland Robert S, Tanga CM: Description of Eniacomorpha hermetiae Delvare sp. n. (Hymenoptera, Chalcidoidea, Chalcididae) a pupal parasitoid of Hermetia illucens (L.) (Diptera, Stratiomyidae), and a potential threat to mass production of the fly as a feed supplement for domestic animals. Zootaxa 2019, 4638:237-254.

Govorushko S: Global status of insects as food and feed source: a review. Trends Food Sci Technol 2019, 91:436-445. https://doi.org/10.1016/j.tifs.2019.07.032

Gravel, A.; Doyen, A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov. Food Sci. Emerg. Technol. 2020, 59, 102272. https://doi.org/10.1016/j.ifset.2019.102272

Grenda, T.; Kwiatek, K.; Goldsztejn, M.; Sapała, M.; Kozieł, N.; Domaradzki, P. Clostridia in Insect Processed Animal Proteins—Is an Epidemiological Problem Possible? Agriculture 2021, 11, 270. https://doi.org/10.3390/agriculture11030270

Gurdian CE, Torrico DD, Li B, Prinyawiwatkul W: Effects of tasting and ingredient information statement on acceptability, elicited emotions, and willingness to purchase: a case of pita chips containing edible cricket protein. Foods 2022, 11:1-24. https://doi.org/10.3390/foods11030337

Gurdian CE, Torrico DD, Li B, Tuuri G, Prinyawiwatkul W: Effect of disclosed information on product liking, emotional profile, and purchase intent: a case of chocolate brownies containing edible-cricket protein. Foods 2021, 10:1-24 1769. https://doi.org/10.3390/foods10081769

Hadley, K., Wheat, S., Rogers, H. H., Balakumar, A., Gonzales-Pacheco, D., Davis, S. S., Linstadt, H., Cushing, T., Ziska, L. H., Piper, C., & Sorensen, C. (2023). Mechanisms underlying food insecurity in the aftermath of climate-related shocks: A systematic review. The Lancet Planetary Health, 7(3), e242-e250. https://doi.org/10.1016/S2542-5196(23)00003-7

Hassan, S. A., Altemimi, A. B., Hashmi, A. A., Shahzadi, S., Mujahid, W., Ali, A., Bhat, Z. F., Naz, S., Nawaz, A., Abdi, G., & Aadil, R. M. (2024). Edible crickets as a possible way to curb protein-energy malnutrition: Nutritional status, food applications, and safety concerns. Food Chemistry: X, 23, 101533. https://doi.org/10.1016/j.fochx.2024.101533

Higgins, V.; Bryant, M.; Hernandez-Jover, M.; Rast, L.; McShane, C. Devolved Responsibility and On-Farm Biosecurity: Practices of Biosecure Farming Care in Livestock Production. Sociol. Rural. 2018, 58, 20–39. https://doi.org/10.1111/soru.12155

Hodjo, M., Dalton, T. J., & Nakelse, T. (2024). Welfare effects from food price shocks and land constraints in Niger. Journal of Agriculture and Food Research, 15, 100976. https://doi.org/10.1016/j.jafr.2024.100976

Halloran, A., Flore, R., Vantomme, P., & Roos, N. (2018). Edible insects in sustainable food systems. Springer. https://doi.org/10.1007/978-3-319-74011-9

Huis, Arnold van, and Dennis G. A. B. Oonincx. 2017. “The Environmental Sustainability of Insects as Food and Feed. A Review.” Agronomy for Sustainable Development 37(5):43.

Ibitoye, O., Ayeni, O., Ayanniyi, O. et al. Advancing urban insect farming: integrating automation, vertical farming, and sustainable waste management systems. Discov Agric 3, 37 (2025). https://doi.org/10.1007/s44279-025-00194-8

Imathiu, Samuel. 2020. “Benefits and Food Safety Concerns Associated with Consumption of Edible Insects.” NFS Journal 18:1-11. https://doi.org/10.1016/j.nfs.2019.11.002

Janssen, R.H.; Vincken, J.P.; van den Broek, L.A.; Fogliano, V.; Lakemond, C.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. https://doi.org/10.1021/acs.jafc.7b00471

Jha, R., Zhang, K., He, Y., Mendler-Drienyovszki, N., Magyar-Tábori, K., Quinet, M., Germ, M., Kreft, I., Meglič, V., Ikeda, K., Chapman, M. A., Janovská, D., Podolska, G., Woo, S., Bruno, S., Georgiev, M. I., Chrungoo, N., Betekhtin, A., & Zhou, M. (2024). Global nutritional challenges and opportunities: Buckwheat, a potential bridge between nutrient deficiency and food security. Trends in Food Science & Technology, 145, 104365. https://doi.org/10.1016/j.tifs.2024.104365

Jiang, Y.; Zhu, Y.; Zheng, Y.; Liu, Z.; Zhong, Y.; Deng, Y.; Zhao, Y. Effects of salting-in/out-assisted extractions on structural, physicochemical and functional properties of Tenebrio molitor larvae protein isolates. Food Chem. 2021, 338, 128158. https://doi.org/10.1016/j.foodchem.2020.128158

Jonas-Levi, A.; Martinez, J.-J.I. The high level of protein content reported in insects for food and feed is overestimated. J. Food Compos. Anal. 2017, 62, 184–188. https://doi.org/10.1016/j.jfca.2017.06.004

Khamis FM, Ombura FLO, Akutse KS, Subramanian S, Mohamed SA, Fiaboe KKM, Saijuntha W, Van Loon JJA, Dicke M, Dubois T et al.: Insights in the global genetics and gut microbiome of black soldier fly, Hermetia illucens: implications for animal feed safety control. Front Microbiol 2020, 11:1538 http://dx.doi.org/10.3389/fmicb.2020.01538.

Khatun H, Van Der BM, Akhtaruzzaman M, Claes J: Rheological characterization of chapatti (roti) enriched with flour or paste of house crickets (Acheta domesticus). Foods 2021, 10:2750. https://doi.org/10.3390/foods10112750

Kiiru SM, Kinyuru JN, Kiage BN, Martin A, Marel AK, Osen R: Extrusion texturization of cricket flour and soy protein isolate: influence of insect content, extrusion temperature, and moisture-level variation on textural properties. Food Sci Nutr 2020, 8:4112-4120. https://doi.org/10.1002/fsn3.1700

Kim HW, Setyabrata D, Lee YJ, Jones OG, Kim YHB: Effect of house cricket (Acheta domesticus) flour addition on physicochemical and textural properties of meat emulsion under various formulations. J Food Sci 2017, 82:2787-279. https://doi.org/10.1111/1750-3841.13960

Kim HW, Setyabrata D, Lee YJ, Jones OG, Kim YHB: Pre-treated mealworm larvae and silkworm pupae as a novel protein ingredient in emulsion sausages. Innov Food Sci Emerg Technol 2016, 38:116-123. https://doi.org/10.1016/j.ifset.2016.09.023

Kim T, Yong HI, Jang HW, Kim Y, Choi Y: Edible insect larvae and their interaction. Foods 2020, 9:1-11. https://doi.org/10.3390/foods9050591

Kim TK, Yong HI, Cha JY, Park SY, Jung S, Choi YS: Drying- induced restructured jerky analog developed using a combination of edible insect protein and textured vegetable protein. Food Chem 2022, 373:131519. https://doi.org/10.1016/j.foodchem.2021.131519

King, S., Marshak, A., D’Mello-Guyett, L., Yakowenko, E., Chabi, S. M., Samake, S., Bunkembo, M., Diarra, S., Mohamud, F. A., Sheikh Omar, M., Lamwaka, N. G., Gose, M., Ayoub, K., Hersi Olad, A., Bagayoko, A., Trehan, I., Cumming, O., & Stobaugh, H. (2024). Rates and risk factors for relapse among children recovered from severe acute malnutrition in Mali, South Sudan, and Somalia: A prospective cohort study. The Lancet Global Health, 13(1), e98-e111. https://doi.org/10.1016/S2214-109X(24)00415-7

Kinyuru J, Kipkoech C, Imathiu S, Konyole S, Roos N: Acceptability of cereal-cricket porridge compared to cereal and cereal milk-porridges among caregivers and nursery school children in Uasin Gishu, Kenya. Int J Trop Insect Sci 2021, 41:2007-2013 http://dx.doi.org/10.1007/s42690- 020- 00388-1.

Kok, R. Preliminary project design for insect production: Part 4—Facility considerations. J. Insects Food Feed 2021, 7, 541–551. https://brill.com/view/journals/jiff/7/5/article-p541_5.xml

Kowalski S, Mikulec A, Mickowska B, Skotnicka M, Mazurek A: Wheat bread supplementation with various edible insect flours. Influence of chemical composition on nutritional and technological aspects. LWT Food Sci Technol 2022, 159:113220. https://doi.org/10.1016/j.lwt.2022.113220

Krystyna Z.G.; Remigiusz G.; Kazimierz O.; Sergiy S.; Szczepan F.; Janusz G. Edible Insect Farming in the Context of the EU Regulations and Marketing 2022, 13, 446.

Kudan, Z. B., Owolabi, O. A., Bala, S. M., & Mohammed, A. (2023). Treatment outcomes and predictors of recovery from severe acute malnutrition among children. Clinical Nutrition Open Science, 52, 58-67. https://doi.org/10.1016/j.nutos.2023.10.005

Kumar, M.; Tomar, M.; Potkule, J.; Verma, R.; Punia, S.; Mahapatra, A.; Belwal, T.; Dahuja, A.; Joshi, S.; Berwal, M.K.; et al. Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocoll. 2021, 115, 106595. https://doi.org/10.1016/j.foodhyd.2021.106595

Lecocq A, Joosten L, Schmitt E, Eilenberg J, Jensen AB: Hermetia illucens adults are susceptible to infection by the fungus Beauveria bassiana in laboratory experiments. J Insects Food Feed 2021, 7:63-68 http://dx.doi.org/10.3920/JIFF2020.0042 ISBN 2352-4588.

Liceaga AM: Processing insects for use in the food and feed industry. Curr Opin Insect Sci 2021, 48:32-36. https://doi.org/10.1016/j.cois.2021.08.002

Liceaga, A. M. (2021). Processing insects for use in the food and feed industry. Current opinion in insect science, 48, 32-36. https://doi.org/10.1016/j.cois.2021.08.002

Lisboa, H. M., Nascimento, A., Arruda, A., Sarinho, A., Lima, J., Batista, L., Dantas, M. F., & Andrade, R. Unlocking the Potential of Insect-Based Proteins: Sustainable Solutions for Global Food Security and Nutrition. Foods, 13(12), 1846. https://doi.org/10.3390/foods13121846

Liu, P., Zhang, Z., Wu, D., Li, W., Chen, W., & Yang, Y. (2025). The prospect of mushroom as an alterative protein: From acquisition routes to nutritional quality, biological activity, application and beyond. Food Chemistry, 469, 142600. https://doi.org/10.1016/j.foodchem.2024.142600

Luna GC, Martin-Gonzalez FS, Mauer LJ, Liceaga AM: Liceaga AM: cricket (Acheta domesticus ) protein hydrolysates’ impact on the physicochemical, structural and sensory properties of tortillas and tortilla chips. J Insects Food Feed 2021, 7:109-120. https://brill.com/view/journals/jiff/7/1/article-p109_11.xml

Maciel-Vergara G, Jensen AB, Lecocq A, Eilenberg J: Diseases in edible insect rearing systems. J Insects Food Feed 2021, 7:621- 638 http://dx.doi.org/10.3920/JIFF2021.0024 ISBN 2352-4588 . https://brill.com/view/journals/jiff/7/5/article-p621_11.xml

Maciel-Vergara G, Ros VID: Viruses of insects reared for food and feed. J Invertebr Pathol 2017, 147:60-75 http://dx.doi.org/ 10.1016/j.jip.2017.01.013

Madau Fabio A, Arru Brunella, Furesi Roberto, Pulina Pietro: Insect farming for feed and food production from a circular business model perspective. Sustainability 2020, 12:5418 http:// dx.doi.org/10.3390/su12135418

Madau Fabio A, Arru Brunella, Furesi Roberto, Pulina Pietro: Insect farming for feed and food production from a circular business model perspective. Sustainability 2020, 12:5418 http:// dx.doi.org/10.3390/su12135418

Mafu, A., Ketnawa, S., Phongthai, S., Schönlechner, R., & Rawdkuen, S. (2022). Whole Wheat Bread Enriched with Cricket Powder as an Alternative Protein. Foods, 11(14), Article 14.

Magara HJO, Niassy S, Ayieko MA, Mukundamago M, Egonyu JP, Tanga MC, Kimathi EK, Ongere JO, Fiaboe KKM, Hugel S et al.: Edible crickets (Orthoptera) in the world: their distribution, nutritional value and other benefits. A review. Front Nutr 2021, 7:537915 http://dx.doi.org/10.3389/fnut.2020.537915.

Magara HJO, Niassy S, Ayieko MA, Mukundamago M, Egonyu JP, Tanga MC, Kimathi EK, Ongere JO, Fiaboe KKM, Hugel S et al.: Edible crickets (Orthoptera) in the world: their distribution, nutritional value and other benefits. A review. Front Nutr 2021, 7:537915 http://dx.doi.org/10.3389/fnut.2020.537915.

Mancini S, Sogari G, Espinosa Diaz S, Menozzi D, Paci G, Moruzzo R: Exploring the future of edible insects in Europe. Foods 2022, 11:1-12 455. https://doi.org/10.3390/foods11030455

Mary Mutisya M, Mawufe Agbodzavu K, Kinyuru John N, Tanga CM, Gicheha Mathew, Hailu Girma, Salifu Daisy, Khan Zeyaur, Niassy Saliou: Can black soldier fly larvae- Desmodium intortum based diets enhance the performance of Cobb500J broiler chickens and smallholder farmers’ profit in Kenya? Poult Sci 2020, 100 http://dx.doi.org/10.1016/j. psj.2020.11.021.

Meijer, N., Safitri, R., Tao, W., & Hoek-Van den Hil, E. (2025). Review: European Union legislation and regulatory framework for edible insect production – Safety issues. Animal, 101468. https://doi.org/10.1016/j.animal.2025.101468

Megido R, Poelaert C, Ernens M, Liotta M, Blecker C, Danthine S, Tyteca E, Haubruge E, Alabi T, Bindelle J, Francis F: Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Res Int 2018, 106:503-508. https://doi.org/10.1016/j.foodres.2018.01.002

Megido RC, Gierts C, Blecker C, Brostaux Y, Haubruge É, Alabi T, Francis F: Consumer acceptance of insect-based alternative meat products in Western countries. Food Qual Prefer 2016, 52:237-243. https://doi.org/10.1016/j.foodqual.2016.05.004

Mintah, B.K.; He, R.; Agyekum, A.A.; Dabbour, M.; Golly, M.K.; Ma, H. Edible insect protein for food applications: Extraction, composition, and functional properties. J. Food Process. Eng. 2020, 43, e13362. https://doi.org/10.1111/jfpe.13362

Mishyna, M.; Martinez, J.I.; Chen, J.; Benjamin, O. Extraction, characterization and functional properties of soluble proteins from edible grasshopper (Schistocerca gregaria) and honey bee (Apis mellifera). Food Res. Int. 2019, 116, 697–706. https://doi.org/10.1016/j.foodres.2018.08.098

Mmari MW, Kinyuru JN, Laswai HS, Okoth JK: Traditions, beliefs and indigenous technologies in connection with the edible longhorn grasshopper Ruspolia differens (Serville 1838) in Tanzania. J Ethnobiol Ethnomedicine 2017, 13:60 http://dx.doi.org/10.1186/s13002-017-0191-6.

Munke-Svendsen, C., Roos, N., & van Huis, A. (2020). The potential of insects as food and feed in humanitarian settings. Global Food Security, 26, 100397. DOI: 10.1016/j.gfs.2020.100397

Munoz-Almagro, N.; Morales-Soriano, E.; Villamiel, M.; Condezo-Hoyos, L. Hybrid high-intensity ultrasound and microwave treatment: A review on its effect on quality and bioactivity of foods. Ultrason. Sonochem. 2021, 80, 105835. https://doi.org/10.1016/j.ultsonch.2021.105835

Muse, A. I., Osman, M. O., & Ibrahim, A. M. (2025). Determinants of acute malnutrition among 6 to 59-months children in public health facilities. Clinical Nutrition Open Science, 59, 56-67. https://doi.org/10.1016/j.nutos.2024.12.004

Naseem, Rimsha, Waqar Majeed, Naureen Rana, Elmo Borges de Azevedo Koch, and Muhammad Rehan Naseem. 2021. “Entomophagy: An Innovative Nutritional and Economic Navigational Tool in Race of Food Security.” International Journal of Tropical Insect Science 41(3):2211-21. https://doi.org/10.1007/s42690-020-00284-8

Niemira, B. A. (2024). Edible insects as an alternative food: Nutrition, safety, and sustainability. Innovative Food Packaging and Processing Technologies, 281-292. https://doi.org/10.1016/B978-0-323-91742-1.00019-2

Okoro, U. K., Asinobi, C. O., & Oly-Alawuba, N. M. (2024). Seasonality induced nutritional status in Nigeria Internally Displaced Persons (IDP) camps: CORDEX-Africa projected scenarios. International Journal of Disaster Risk Reduction, 116, 105101. https://doi.org/10.1016/j.ijdrr.2024.105101

Oloo JA, Halloran A, Nyongesah MJ: Socio-economic characteristics of cricket farmers in Lake Victoria region of Kenya. Int J Trop Insect Sci 2021, 41:2165-2173 http://dx.doi.org/ 10.1007/s42690-020-00413-3.

Oonincx, D. G. A. B., van Itterbeeck, J., Heetkamp, M. J. W., van den Brand, H., van Loon, J. J. A., & van Huis, A. (2015). An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLOS ONE, 10(12), e0144601. DOI: 10.1371/journal.pone.0144601

Palcu, J., Schreier, M., Janiszewski, C., Kleber, J., & Salerno, A. (2025). Fixing the bug in insect consumption. Food Quality and Preference, 105472. https://doi.org/10.1016/j.foodqual.2025.105472

Pastrana-Pastrana, Á. J., Rodríguez-Herrera, R., Solanilla-Duque, J. F., & Flores-Gallegos, A. C. (2025). Plant proteins, insects, edible mushrooms and algae: More sustainable alternatives to conventional animal protein. Journal of Future Foods, 5(3), 248-256. https://doi.org/10.1016/j.jfutfo.2024.07.004

Park YS, Choi YS, Hwang KE, Kim TK, Lee CW, Shin DM, Han SG: Physicochemical properties of meat batter added with edible silkworm pupae (Bombyx mori) and transglutaminase. Korean J Food Sci Anim Resour 2017, 37:351-359. doi: 10.5851/kosfa.2017.37.3.351

Pelletier, A., Kaewkitipong, L., & Guitton, M. J. (2024). Using technology to study refugee, conflict-affected, and hard-to-reach populations: Methodological and ethical considerations. Computers in Human Behavior, 152, 108053. https://doi.org/10.1016/j.chb.2023.108053

Psarianos, M.; Dimopoulos, G.; Ojha, S.; Cavini, A.C.M.; Bußler, S.; Taoukis, P.; Schlüter, O.K. Effect of pulsed electric fields on cricket (Acheta domesticus) flour: Extraction yield (protein, fat and chitin) and techno-functional properties. Innov. Food Sci. Emerg. 2022, 76, 102908. https://doi.org/10.1016/j.ifset.2021.102908

Psarianos, M., Aghababaei, F., & Schlüter, O. K. (2025). Bioactive compounds in edible insects: Aspects of cultivation, processing and nutrition. Food Research International, 203, 115802. https://doi.org/10.1016/j.foodres.2025.115802

Ramírez‐Rivera EJ, Hernández‐Santos B, Juárez‐Barrientos JM, Torruco‐Uco JG, Ramírez‐Figueroa E, Rodríguez‐Miranda J: Effects of formulation and process conditions on chemical composition, color parameters, and acceptability of extruded insect‐rich snack. J Food Process Preserv 2021, 45:1-13. https://doi.org/10.1111/jfpp.15499

Sakadevan, K., and M. L. Nguyen. 2017. “Chapter Four - Livestock Production and Its Impact on Nutrient Pollution and Greenhouse Gas Emissions.” Pp. 147–84 in Advances in Agronomy. Vol. 141, edited by D. L. Sparks. Academic Press. https://doi.org/10.1016/bs.agron.2016.10.002

Savary, S.;Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. https://www.nature.com/articles/s41559-018-0793-y

Scholliers J, Steen L, Fraeye I: Partial replacement of meat by superworm (Zophobas morio larvae) in cooked sausages: effect of heating temperature and insect:Meat ratio on structure and physical stability. Innov Food Sci Emerg Technol 2020, 66:102535. https://doi.org/10.1016/j.ifset.2020.102535

Scholliers J, Steen L, Glorieux S, Van de Walle D, Dewettinck K, Fraeye I: The effect of temperature on structure formation in three insect batters. Food Res Int 2019, 122:411-418. https://doi.org/10.1016/j.foodres.2019.04.033

Segatto, M.L.; Stahl, A.M.; Zanotti, K.; Zuin, V.G. Green and sustainable extraction of proteins from agro-industrial waste: An overview and a closer look to Latin America. Curr. Opin. Green Sustain. Chem. 2022, 37, 100661. https://doi.org/10.1016/j.cogsc.2022.100661

Skendi A, Papageorgiou M, Varzakas T: High protein substitutes for gluten in gluten-free bread. Foods 2021, 10:1-16 1997. https://doi.org/10.3390/foods10091997

Smarzyński K, Sarbak P, Kowalczewski PŁ, Różańska MB, Rybicka I, Polanowska K, Fedko M, Kmiecik D, Masewicz Ł, Nowicki M, et al.: Low-field NMR study of shortcake biscuits with cricket powder, and their nutritional and physical characteristics. Molecules 2021, 26:1-18 5417. https://doi.org/10.3390/molecules26175417

Smetana S, Ashtari Larki N, Pernutz C, Franke K, Bindrich U, Toepfl S, Heinz V: Structure design of insect-based meat analogs with high-moisture extrusion. J Food Eng 2018, 229:83-85. https://doi.org/10.1016/j.jfoodeng.2017.06.035

Soares Araújo RR, dos Santos Benfica TAR, Ferraz VP, Moreira, Santos E: Nutritional composition of insects Gryllus assimilis and Zophobas morio: potential foods harvested in Brazil. J Food Compos Anal 2019, 76:22-26. https://doi.org/10.1016/j.jfca.2018.11.005

Sokame, B. M., Runyu, J. C., & Tonnang, H. E. (2024). Integrating edible insect into circular agriculture for sustainable production. Sustainable Production and Consumption, 52, 80-94. https://doi.org/10.1016/j.spc.2024.10.015

Specht, K.; Zoll, F.; Schümann, H.; Bela, J.; Kachel, J.; Robischon, M. HowWillWe Eat and Produce in the Cities of the Future? From Edible Insects to Vertical Farming—A Study on the Perception and Acceptability of New Approaches. Sustainability 2019, 11, 4315. https://doi.org/10.3390/su11164315

Sumbule EK, Ambula MK, Osuga IM, Changeh JG, Mwangi DM, Subramanian S, Salifu D, Alaru PAO, Githinji M, van Loon JJA et al.: Cost-effectiveness of black soldier fly larvae meal as substitute of fishmeal in diets for layer chicks and growers. Sustainability 2021, 13:6074 http://dx.doi.org/10.3390/su13116074

Tanga CM, Waweru JW, Tola YH, Onyoni AA, Khamis FM, Ekesi S, Paredes JC: Organic waste substrates induce important shifts in gut microbiota of black soldier fly (Hermetia illucens L.): coexistence of conserved, variable, and potential pathogenic microbes. Front Microbiol 2021, 12:635881 http://dx.doi.org/10.3389/fmicb.2021.635881

Tao, J., & Li, Y. O. (2018). Edible insects as a means to address global malnutrition and food insecurity issues. Food Quality and Safety, 2(1), 17-26. https://doi.org/10.1093/fqsafe/fyy001

Tigistu, S., & Hegena, B. (2022). Determinants of food insecurity in food aid receiving communities in Ethiopia. Journal of Agriculture and Food Research, 10, 100391. https://doi.org/10.1016/j.jafr.2022.100391

Tofu, D. A., & Wolka, K. (2023). Evaluating adaptation efforts of food-aid-reliant smallholder farmers in the drought-prone area. Environmental and Sustainability Indicators, 19, 100276. https://doi.org/10.1016/j.indic.2023.100276

United Nations (2021) World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. https://www.un.org/development/desa/en/news/population/world population-prospects-2017.html (Accessed 10 March 2021)

van Huis, A. (2020). Insects as food and feed, a new emerging agricultural sector: A review. Journal of Insects as Food and Feed, 6(1), 27–44. https://doi.org/10.3920/JIFF2019.0017

Van Huis, A., & Rumpold, B. (2023). Strategies to convince consumers to eat insects? A review. Food Quality and Preference, 110, 104927. https://doi.org/10.1016/j.foodqual.2023.104927

van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: Future prospects for food and feed security. FAO Forestry Paper 171. http://www.fao.org/3/i3253e/i3253e.pdf

Villaseñor VM, Enriquez-Vara JN, Urías-Silva JE, Mojica L: Edible insects: techno-functional properties food and feed applications and biological potential. Food Rev Int 2021,1-27, https://doi.org/10.1080/87559129.2021.1890116.

Vogel H, Mu¨ ller A, Heckel DG, Gutzeit H, Vilcinskas A: Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens. Dev Comp Immunol 2018, 78:141-148. https://doi.org/10.1016/j.dci.2017.09.008

Vos, R., Glauber, J., Hebebrand, C., & Rice, B. (2025). Global shocks to fertilizer markets: Impacts on prices, demand and farm profitability. Food Policy, 133, 102790. https://doi.org/10.1016/j.foodpol.2024.102790

Yazici GN, Ozer MS: Using edible insects in production of cookies, biscuits, and crackers. Biol Life Sci Forum 2021 (80) 2021, 6:1-6, https://doi.org/10.3390/xxxxx

Yusoff, I.M.; Mat Taher, Z.; Rahmat, Z.; Chua, L.S. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res. Int. 2022, 157, 111268. https://doi.org/10.1016/j.foodres.2022.111268

Wang, Q., Chen, H., Gu, W., Wang, S., & Li, Y. (2024). Biodegradation of aged polyethylene (PE) and polystyrene (PS) microplastics by yellow mealworms (Tenebrio molitor larvae). Science of The Total Environment, 927, 172243. https://doi.org/10.1016/j.scitotenv.2024.172243

Zaman, S., Sammonds, P., Ahmed, B., & Rahman, T. (2020). Disaster risk reduction in conflict contexts: Lessons learned from the lived experiences of Rohingya refugees in Cox's Bazar, Bangladesh. International Journal of Disaster Risk Reduction, 50, 101694. https://doi.org/10.1016/j.ijdrr.2020.101694

Zeng, Q.-L.; Zhang, N.; Zhang, Y.-Y.; Xin, X.-D.; Attaribo, T.; Shao, Y.; Tang, L.-M.; Zhang, R.; Lee, K.S.; Jin, B.R.; et al. Ionic liquid extraction of silkworm pupa protein and its biological characteristics. J. Asia Pac. Entomol. 2021, 24, 363–368. https://doi.org/10.1016/j.aspen.2021.01.014

Zewdu Abro, Kassie M, Tanga CM, Beesigamukama D, Diiro G: Socio-economic and environmental implications of replacing conventional poultry feed with insect-based feed in Kenya. J Clean Prod 2020, 265:121871. https://doi.org/10.1016/j.jclepro.2020.121871

Zhang, W.; Yang, S.; Ren, B.; Lu, X.; Jia, C. Study on ionic liquids based novel method for separation and purification of silkworm pupa protein. Chin. Chem Lett. 2022, in press. https://doi.org/10.1016/j.cclet.2022.04.072

Zielińska E, Pankiewicz U, Sujka M: Nutritional, physiochemical, and biological value of muffins enriched with edible insects flour. Antioxidants 2021, 10:1-17 1122. https://doi.org/10.3390/antiox10071122

Published

2025-08-20

How to Cite

Bature, I., Bako, H. K., & Aliyu, S. I. (2025). Sustainable Protein Alternatives: Exploring The Viability of Edible Insects in Crisis Settings. Journal of Science Research and Reviews, 2(3), 111-128. https://doi.org/10.70882/josrar.2025.v2i3.97

How to Cite

Bature, I., Bako, H. K., & Aliyu, S. I. (2025). Sustainable Protein Alternatives: Exploring The Viability of Edible Insects in Crisis Settings. Journal of Science Research and Reviews, 2(3), 111-128. https://doi.org/10.70882/josrar.2025.v2i3.97

Most read articles by the same author(s)