Investigating Malaria Spread and Optimal Control Measures with Prompt and Delayed Treatments

Authors

  • Damilola B. Opaginni
    University of Abuja
  • Folakemi M. Okafor
    National Mathematical Centre, Abuja
  • Mary O. Durojaye
    University of Abuja

Keywords:

Center manifold analysis, Dynamic stability, Intervention strategies, Malaria, Mosquito management, Optimal control, Timely treatment

Abstract

Malaria, transmitted by Anopheles mosquitoes carrying Plasmodium parasites, poses a significant health burden, especially in tropical regions. This study employs a mathematical framework to explore malaria dynamics, emphasizing system stability and effective interventions that incorporate immediate (IEh) and delayed (ILh)treatment strategies. Using center manifold analysis, we investigate stability at the critical threshold R0=1, identifying a forward bifurcation (a<0, b>0), indicating that maintaining R0 below 1 halts disease persistence. By applying Pontryagin’s principle and numerical optimization techniques, we formulate control strategies integrating rapid treatment, mosquito population management, and reduction of untreated infections, achieving a controlled reproduction number of Rc0=0.1964, compared to an uncontrolled R0=2.2356. These findings underscore the efficacy of combined interventions and provide actionable insights for malaria control in resource-limited settings.

Dimensions

Anjorin, E. T., Olulaja, O. N., Osoba, M. E., Oyadiran, O. T., Ogunsanya, A. O., Akinade, O. N., & Inuojo, J. M. (2023). Overtreatment of malaria in the Nigerian healthcare setting: Prescription practice, rationale and consequences. Pan African Medical Journal, 45(111), 1–12. https://www.panafrican-med-journal.com/content/article/45/111/full https://doi.org/10.11604/pamj.2023.45.111.31780

Castillo-Chavez, C., & Song, B. (2004). Dynamical models of tuberculosis and their applications. Mathematical Biosciences and Engineering, 1(2), 361–404. https://doi.org/10.3934/mbe.2004.1.361

Challenger, J. D., Bradley, J., Gonçalves, B. P., Bruxvoort, K., Tiono, A. B., Drakeley, C., ... Okell, L. C. (2019). How delayed and non-adherent treatment contribute to the onward transmission of malaria: A modelling study. BMJ Global Health, 4(6), e001856. https://doi.org/10.1136/bmjgh-2019-001856

Chitnis, N., Cushing, J. M., & Hyman, J. M. (2006). Bifurcation analysis of a mathematical model for malaria transmission. SIAM Journal on Applied Mathematics, 67(1), 24–45. https://doi.org/10.1137/050638941

Collins, C. R., & Duffy, P. E. (2022). Drug resistance in malaria: Challenges and opportunities. Annual Review of Microbiology, 76, 677–696. https://doi.org/10.1146/annurev-micro-041621-114755

Fleming, W. H., & Rishel, R. W. (2012). Deterministic and stochastic optimal control (Vol. 1). Springer Science+Business Media. https://doi.org/10.1007/978-1-4612-6380-7

Isah, N., Ibrahim, M. O., Isah, B. Y., & Magaji, B. A. (2024). Bifurcation analysis of an age-structured malaria model. International Journal of Mathematical Sciences and Optimization: Theory and Applications, 10(3), 106–132. https://ijmso.unilag.edu.ng/article/view/2200

Joshi, H., Maity, S. N., & Prajapati, S. K. (2006). Optimal control of malaria transmission using vaccination and drug treatment. Journal of Biological Systems, 14(3), 441–454. https://doi.org/10.1142/S0218339006001920

Lenhart, S., & Workman, J. T. (2007). Optimal control applied to biological models. Chapman and Hall/CRC. https://doi.org/10.1201/9781420011418

Mousa, A., Al-Taiar, A., Anstey, N. M., Badaut, C., Barber, B. E., von Seidlein, L., & White, N. J. (2020). The impact of delayed treatment of uncomplicated Plasmodium falciparum malaria on progression to severe malaria: A systematic review and meta-analysis. PLOS Medicine, 17(10), e1003359. https://doi.org/10.1371/journal.pmed.1003359

Okosun, K. O., & Makinde, O. D. (2013). Optimal control of malaria transmission with medicare and vaccination. Applied Mathematical Modelling, 37(14–15), 8969–8984. https://doi.org/10.1016/j.apm.2013.04.011

Opaginni, D. B., & Durojaye, M. O. (2025). Mathematical modelling and analysis of malaria transmission dynamics with early and late treatment interventions. Asian Research Journal of Mathematics, 21(7), 78–98. https://doi.org/10.9734/arjom/2025/v21i7959

Usman , A. ., Doguwa, S. I. ., Sadiq, I. A. ., & Akor, A. (2025). Exploring Accelerated Failure Time Models for Tuberculosis Survival: Loglogistic and Weibull Survival Regression Model. Journal of Science Research and Reviews, 2(1), 27-36. https://doi.org/10.70882/josrar.2025.v2il.27

Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1–2), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6

World Health Organization. (2023). World malaria report 2023. World Health Organization. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023

Published

2025-08-19

How to Cite

Opaginni, D. B., Okafor, F. M., & Durojaye, M. O. (2025). Investigating Malaria Spread and Optimal Control Measures with Prompt and Delayed Treatments. Journal of Science Research and Reviews, 2(3), 103-110. https://doi.org/10.70882/josrar.2025.v2i3.89

How to Cite

Opaginni, D. B., Okafor, F. M., & Durojaye, M. O. (2025). Investigating Malaria Spread and Optimal Control Measures with Prompt and Delayed Treatments. Journal of Science Research and Reviews, 2(3), 103-110. https://doi.org/10.70882/josrar.2025.v2i3.89