Effect of a Spring-Bocked Membrane on a Falling Film over a Slippery Tilted Plane

Authors

  • Suleiman Abbey Bello
    Federal University Dutse
  • Muhammad Sani
    Federal University Dutse
  • Iliyasu Bello
    Modibbo Adama University of Technology
  • Bamanga Ibn Dawuda
    Federal University Dutse
  • Kabiru Garba Ibrahim
    Federal University Dutse
  • Naziru Nura
    Federal University Dutse
  • Oladele Yusuf Olatunji
    Federal University Dutse
  • Mamuda Alhaji Mamuda
    Federal University Dutse

Keywords:

Stability analysis, Spring-bocked membrane, Film flow, Slippery plane, Reynolds number, Orr-Sommerfeld analysis, Wave number, Spectral method, Free Surface instabilities

Abstract

This research work investigates the influence of a spring-blocked membrane on a perturbed gravity-driven viscous fluid flow down a slippery inclined plane. The spring-bocked membrane on a falling film flow over a slippery plane can affect the flow dynamics and stability of the film. The instability of such a flow can be controlled either by modifying the behavior of the lower wall, altering the surface waves at the free surface using structures, or both, as done here by incorporating a spring-backed membrane at the top of the liquid layer and a slippery substrate. A linear stability analysis is performed utilizing the normal mode approach, with the free surface modified by a spring-blocked membrane and the lower boundary modeled as a slippery substrate. The associated Orr-Sommerfeld system is solved numerically using the spectral collocation method. The results reveal that velocity slip at the lower wall has a non-trivial impact on flow stability: it destabilizes at the onset of instability, then stabilizes at higher Reynolds numbers. Membrane tension is modeled as a stress jump at the free surface, and the mass of the membrane is also taken into account. The findings demonstrate that increasing the dimensionless spring-blocked membrane tension  reduces the growth rate of the most unstable mode, thereby enhancing flow stability. Thus, combination of a spring-blocked membrane at the free surface and a slippery base exerts a significant passive control on flow stability. The study provides an insight into how such configurations can be utilized to either suppress or amplify interfacial instabilities in gravity-driven flows.

Dimensions

Anjalaiah, Usha R., and Séverine M. (2013). Thin film flow down a porous substrate in the presence of an insoluble surfactant: Stability analysis. Physics of Fluids, 25(2):022-101

Arka, D., Avinash K., and Chirodeep B. (2024). Interplay of fluid rheology and micro-patterning toward modulating draining characteristics on an inclined substrate. Physics of Fluids, 36(2).

Bhat, F. A. and Samanta A.(2018). Linear stability of a contaminated fluid flow down a slippery inclined plane. Physical Review E, 98(3):033-108.

Benney, D. J. (1966). Long waves on liquid films. Journal of mathematics and physics, 45(1-4):150–155.

Blyth, M. G. and Pozrikidis C. (2004). Effect of surfactant on the stability of film flow down an inclined plane. Journal of Fluid Mechanics, 521:241–250.

Camporeale, C., Canuto C., and Luca R. (2012). A spectral approach for the stability analysis of turbulent open-channel flows over granular beds. Theoretical and Computational Fluid Dynamics 26.1: 51-80.

Chang, H.H., Demekhin, E.A. (2002). Complex Wave Dynamics on Thin Films, Elsevier, Amsterdam.

Chicheng, M., Jianlin L., Shilin X., and Yongqi L. (2020). Contact line instability of gravity driven thin films flowing down an inclined plane with wall slippage. Chemical Engineering Science, 214:115-418.

Chin, R., Abernath, F., Bertschy, J. (1986). Gravity and shear wave stability of free surface flows. Part 1. numerical calculations. J. Fluid Mech. 168, 501–513.

Choudhury, A., and Samanta A. (2022). Linear stability of a falling film over a heated slippery plane. Physical Review E, 105(6):065-112.

Criminale, W.O., Thomas L., Jackson, and Ronald D. J. (2003). Theory and computation of hydrodynamic stability. Cambridge University Press.

Dholey, S. and Gorai S. (2021). Hydrodynamic instabilities of a viscous liquid film flowing down an inclined or vertical plane. Physics of Fluids, 33(10), 2021.

Ding, Z. and Wong, T. N. (2015). Falling liquid films on a slippery substrate with marangoni effects. International Journal of Heat and Mass Transfer, 90:689–701.

Kandel, H. N. and Pascal J.P. (2013). Inclined fluid-film flow with bottom filtration. Physical Review E, 88(5):052-405.

Karmakar, D. and Sahoo, T. (2008), Gravity wave interaction with floating membrane due to abrupt change in water depth. Ocean Engineering, 35(7):598–615.

Kao T. W. (1965), Role of the interface in the stability of stratified flow down an inclined plane. The Physics of Fluids, 8(12):2190–2194.

Kao T. W. (1968). Role of viscosity stratification in the stability of two-layer flow down an incline. Journal of Fluid Mechanics, 33(3):561–572.

Khan, M., Sani, M., Ghosh, S., & Behera, H. (2021). Poiseuille–Rayleigh–Bénard instability of a channel flow with uniform cross-flow and thermal slip. Physics of Fluids, 33(5).

Li, C., Liu, C., Zhou, J., & Ye, X. (2023). Hydrodynamics and instabilities of a falling liquid film with an insoluble surfactant. Physics of Fluids 35(6).

Li, X., Pozrikidis, C. (1997). The effect of surfactants on drop deformation and on the rheology of dilute emulsions in stokes flow. J. Fluid Mech. 341, 165–194.

Liu, R. and Liu Q. (2009). Instabilities of a liquid film flowing down an inclined porous plane. Physical Review E, 80(3):036316.

Newman, J. N. (2018). Marine Hydrodynamics. MIT press.

O’Connor, J., and Benedict D. R. (2021). "A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU." Journal of Fluids and Structures 104: 103-312.

Oron, A., Davis, S. H., Bankoff, S. G. (1997). Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 9-31.

Otis D. R. Jr, M. Johnson, Pedley, T. J., and Kamm R. D. (1993). Role of pulmonary surfactant in airway closure: a computational study. Journal of Applied Physiology, 75(3):1323–1333.

Pascal J. P. (1999). Linear stability of fluid flow down a porous inclined plane. Journal of Physics D: Applied Physics, 32(4):417.

Pascal J. P. (2006). Instability of power-law fluid flow down a porous incline. Journal of non- Newtonian fluid mechanics, 133(2-3):109–120.

Pascal J. P. and D’Alessio S. J. (2010), Instability in gravity-driven flow over uneven permeable sur- faces. International journal of multiphase flow, 36(6):449–459.

Samaha M. A. and Mohamed G. Hak (2021). Slippery surfaces: A decade of progress. Physics of Fluids, 33(7).

Samanta, A. (2014). Shear-imposed falling film. Journal of fluid mechanics, 753:131-149.

Samanta, A. (2025). Effect of soluble surfactant on thermocapillary instability in falling film. Physical Review Fluids 10.6: 064001.

Samanta, A. (2023). Modal analysis of a fluid flowing over a porous substrate." Theoretical and Computational Fluid Dynamics 37(2): 241-260.

Samanta, A., Christian R., and Benoit G., (2011). A falling film down a slippery inclined plane. Journal of Fluid Mechanics, 684:353–383.

Sani M., Behera H., and Ghosh S. (2018). Stability analysis of a film flow down an incline in the presence of a floating flexible membrane. International Conference on Mathematical Modelling and Scientific Computation. Singapore: Springer Singapore.

Sani M., Behera H., and Ghosh S. (2020). Stability analysis of a film flow down an incline in the presence of a floating flexible membrane. In Mathematical Modelling and Scientific Computing with Applications: ICMMSC 2018, Indore, India, Springer July 19–21, 253–263.

Sani, M., Selvan, S. A., Ghosh, S., and Behera, H. (2020). Effect of imposed shear on the dynamics of a contaminated two-layer film flow down a slippery incline. Physics of Fluids, 32(10).

Sani, M., Sukhendu G., and Behera H. (2021). Effect of a floating elastic membrane for stabilizing the film flow down a porous inclined plane. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 101(2): e201900246.

Subham P. and Samanta A. (2021). Linear stability of a contaminated shear-imposed vis- coelastic liquid flowing down an inclined plane. Physics of Fluids, 33(12).

Thiele U., Andrew J. A., and Mathis P. (2012). Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration. Physics of Fluids, 24(10).

Tripathi D., Prauteeto R., Ajay Vikram S., Vimal K., and Swarn L. S. (2023). Durability of slippery liquid-infused surfaces: challenges and advances. Coatings, 13(6):10-95.

Usha R., Millet S., Ben H., and François R. (2011). Shear-thinning film on a porous sub- strate: stability analysis of a one-sided model. Chemical engineering science, 66(22):5614–5627.

Vallentine, H. R. (2013). Applied Hydrodynamics Springer.

Wang C.Y. (1984). Thin film flowing down a curved surface. Zeitschrift für angewandte Mathematik und Physik ZAMP, 35(4):532–544.

Yih, C. (1963). Stability of liquid flow down an inclined plane. The physics of Fluids, 6(3):3.

Schematic diagram for a single-layer thin film flow down an inclined slippery wall with a spring-bocked membrane at the free surface

Published

2025-11-14

How to Cite

Bello, S. A., Sani, M., Bello, I., Dawuda, B. I., Ibrahim, K. G., Nura, N., Olatunji, O. Y., & Mamuda, M. A. (2025). Effect of a Spring-Bocked Membrane on a Falling Film over a Slippery Tilted Plane. Journal of Science Research and Reviews, 2(5), 49-56. https://doi.org/10.70882/josrar.2025.v2i5.120

How to Cite

Bello, S. A., Sani, M., Bello, I., Dawuda, B. I., Ibrahim, K. G., Nura, N., Olatunji, O. Y., & Mamuda, M. A. (2025). Effect of a Spring-Bocked Membrane on a Falling Film over a Slippery Tilted Plane. Journal of Science Research and Reviews, 2(5), 49-56. https://doi.org/10.70882/josrar.2025.v2i5.120