Numerical Solution of Fractional order Hepatitis B Model Via the Generalized Fractional Adams-Bashforth-Moulton Approach

Authors

  • Anibe Alexander Ojonimi
    Prince Abubakar Audu University, Anyigba
  • Jeremiah Amos
    Prince Abubakar Audu University, Anyigba
  • William Atokolo
    Prince Abubakar Audu University, Anyigba
  • David Omale
    Prince Abubakar Audu University, Anyigba
  • Lemmy Micheal Emmanuel
    Prince Abubakar Audu University, Anyigba
  • Emmanuel Abah
    Prince Abubakar Audu University, Anyigba
  • Godwin Onuche Acheneje
    Prince Abubakar Audu University, Anyigba
  • Bolarinwa Bolaji
    Prince Abubakar Audu University, Anyigba

Keywords:

Hepatitis B, Fractional, Adam-Bashforth-Moulton, Transmission, Control, Strategies

Abstract

In this paper we examine the epidemiological properties of Hepatitis B virus (HBV) infection based on the equation of a fractional-order mathematical model based on the Caputo derivative. The model uses interventions such as treatment and vaccination as control measures to examine the effect that they have on disease dynamics. We define the presence and uniqueness of solutions in the framework of the fractional order and test the stability of the endemic equilibrium point based on the theory of Lyapunov functions. The model is numerically solved with the help of the fractional Adams-Bashforth-Moulton method to indicate changes in the model parameters and their respective fractional orders into how each one of the above parameters affects the progress of the disease. The use of simulation shows that higher treatment and vaccination rates decreases the prevalence of Hepatitis B and shows the high level of flexibility and realism of the fractional-order models in contrast to the classical integer order equations. In the paper, the importance of fractional modeling in the representation of the effects of memory and nonlocal interaction among the biological systems is highlighted, which enhances the understanding and control of infectious diseases. The model however assumes that the population is homogeneous mixed, and hypothetical values of the parameters thus restrains empirical validation. To make the model more predictive and relevant in practical use in formulating effective control measures on Hepatitis B, future studies need to include spatial heterogeneity, stochastic effects.

Dimensions

Abah E., Bolaji B., Atokolo W., Amos J., Acheneje G.O., Omede B.I, Amos J., Omeje D. (2024), Fractional mathematical model for the Transmission Dynamics and control of Diphtheria, International Journal of mathematical Analysis and Modelling, Vol.7, ISSN:2682-5694.

Ahmed I., . Goufo E. F. D,Yusuf A., Kumam .P., Chaipanya P., and Nonlaopon K. ( 2021), “An epidemic prediction from analysis of a combined HIV-COVID-19 co-infection model via ABC fractional operator,” Alexandria Engineering Journal, vol. 60, no. 3, pp. 2979–2995.

Ali.Z., Zada.A.,Shah. K., (2017) Existence and stability analysis of three-point boundary value problem, Int. J. Appl. Comput. Math.3 651–664, http://dx.doi. org/10.1007/s40819-017-0375-8.

Amos J., Omale D., Atokolo W., Abah E., Omede B.I., Acheneje G.O., Bolaji B. (2024), Fractional mathematical model for the Transmission Dynamics and control of Hepatitis C,FUDMA Journal of Sciences,Vol.8,No.5,pp.451-463, DOI: https://doi.org/10.33003/fjs-2024-0805-2883.

Atokolo W a, RemigiusAja .O. , Omale .D., Paul .R. V. ,Amos . J.,Ocha S. O., (2023) Mathematical modeling of the spread of vector borne diseases with influence of vertical transmission and preventive strategies FUDMA Journal of sciences: Vol. 7 No. 6, December (Special Issue), pp 75 -91 DOI: https://doi.org/10.33003/fjs-2023-0706-2174.

Atokolo W a, RemigiusAja .O. ,Omale .D., Ahman .Q. O.,Acheneje G. O., Fractional mathematical model for the transmission dynamics and control of Lassa fever Journal of journal homepage: www.elsevier. 2773-1863/© 2024com/locate/fraopehttps:// doi.org/10.1016/j.fraope.2024.100110.

Atokolo, W., Aja, R. O., Aniaku, S. E., Onah, I. S., &Mbah, G. C. (2022). Approximate solution of the fractional order sterile insect technology model via the Laplace– Adomian Decomposition Method for the spread of Zika virus disease.International Journal of Mathematics and Mathematical Sciences, 2022(1), 2297630.

Baskonus. H.M., Bulut H., (2015) On the numerical solutions of some fractional ordinary differential equations by fractional Adams Bashforth-Moulton Method, Open Math. 13 1.

Bonyah. E., Zarin, R. Fatmawati, (2020), Mathematical modeling of Cancer and Hepatitis co-dynamics with non-local and nonsingular kernal, 2052–2541.https://doi.org/10.28919/ cmbn/5029.

Boukanjime.B., Fatini. M.E. (2019); A stochastic hepatitis B epidemic model driven by Lvy noise. 447. Phys A. 521 pp.796-806.

Boukanjime.B., Fatini. M.E.; A stochastic hepatitis B epidemic model driven by Lvy noise. 447. Phys A. 521 (2019), pp.796-806.

Chang.I .M.H. Hepatitis virus infection. Semen Fetal Neonatal Med, 12(2007), pp.160-167.

Chuanqing Xu , YuWang , Kedeng Cheng , Xin Yang , Xiaojing Wang , Songbai Guo , Maoxing Liu and Xiaoling Liu (2023) A Mathematical Model to Study the Potential Hepatitis B Virus Infections and Effects of Vaccination Strategies in China, Vaccines 11, 1530. https://doi.org/10.3390/vaccines11101530.

Das, R., Patel, S., & Kumar, A. (2024), "Mathematical modeling of hepatitis C and COVID-19 coinfection in low- and middle-income countries: challenges and opportunities," BMC Public Health, 24(1), pp. 587.

Ghanbari .B., Nisar.K. S., (2020), Some effective numerical techniques for chaotic systems involving fractal-fractional derivatives with different laws, Front. Phys., 8 192. https://doi.org/10.3389/fphy.2020.00192.

Granas.A., Dugundji .J., Fixed point theory, Springer: New York, 2003. https://doi.org/10.1007/978-0-387-21593-8.

Jalija, E., Amos, J., Atokolo, W., Omale, D., Abah, E., Alih, U., & Bolaji, B. (2025).Numerical investigations on Dengue fever model through singular and non-singular fractional operators. International Journal of Mathematical Analysis and Modelling.

Jalija, E., Amos, J., Atokolo, W., Omale, D., Abah, E., Alih, U., & Bolaji, B. (2025). Numerical Solution of fractional order Typhoid Fever and HIV/AIDS co-infection Model Via TheGeneralized Fractional Adams-Bashforth-Moulton Approach. GPH-International Journal of Mathematics, 8(5), 01-31. https://doi.org/10.5281/zenodo.15623363.

Khan.T., Ullah.Z., Ali.N., Zaman.G. Modeling and control of the hepatitis B virus spreading using an epidemic model. Chaos, Solitions Fractals, 124 (2019), pp.1-9.

Lavanchy.D. Hepatitis B virus epidemiology, disease burden, treatment and current and emerging prevention and control measuresJ Viral Hepat, 11 (2004), pp. 97-107.

Liu .S.Q. , Wang .S.K. , Wang .L. Global dynamics of delay epidemic models with nonlinear incidence rate and relapse. Nonl Anal RWA,12(2011), pp.119-127.

Liu .W.M. , Hethcote .H.W. , Levin .S.A. Dynamical behavior of epidemiological mod- els with nonlinear incidence rates. J Math Bio,25 (1987), pp.359-580.

Mann.J., Roberts.M. Modelling the epidemiology of hepatitis B in New Zealand. J Theor Biol.269 (2011), pp.266-272.

Mc Mahon.B.J. Epidemiology and natural history of hepatitis B.Semin Liver Dis, 25 (Suppl 1) (2005), pp. 3-8.h.

Milici C., G. Draganescu, J.T. Machado,( 2018) Introduction to Fractional Differential Equations, Springer,

Nyarko .C. C., Nsowa-Nuamah .N., Nicodemus .N., Nyarko .P. K., Wiah .E. N., Buabeng .A. (2021), Modelling Chlamydia trachomatis infection among Young women in Ghana: A case study at Tarkwa NsuaemMunicipalityAm. J. Appl. Math., 9 (3) pp. 75-85

Odionyenma U.B., Omame A., Ukanwoke N.O. (2022),, NometaI.Optimal control of Chlamydia model with vaccinationInt. J. Dyn. Control, 10 (1) pp. 332-348.

Omede.B. I, Israel. M.,Mustapha .M. K. , Amos J. ,Atokolo .W. , and Oguntolu .F. A. (2024) Approximate solution to the fractional soil transmitted Helminth infection model using Laplace Adomian Decomposition Method.Journal of mathematics. (2024) Int. J. Mathematics. 07(04), 16-40.

Onoja.T.U., Amos J., Atokolo. W., Abah .E. , Omale .D., Acheneje .G. O. & Bolaji B. (2025) Numerical Solution of Fractional order COVID-19 Model Via the Generalized Fractional Adams-Bashforth-Moulton Approach. International Journal of Mathematical Analysis and Modelling.

Philip J., Omale D., Atokolo W., Amos J., Acheneje G.O., Bolaji B. (2024), Fractional mathematical model for the Transmission Dynamics and control of HIV/AIDs,FUDMA Journal of Sciences,Vol.8,No.6,pp.451-463, DOI: https://doi.org/10.33003/fjs-2024-0805-2883.

Ren.J., Yang.X., Zhu.Q., Yang. L.Z., Zhang.C.; A novel computer virus model and its dynamics. Nonl Anal RWA,13(2012), pp.376-384.

Samanta G.P., Sharma S., (2014),Analysis of a delayed Chlamydia epidemic model with pulse vaccination Appl. Math. Comput., 230 pp. 555-569.

Sharma .S., Samanta. G.P. (2014), Analysis of a Chlamydia epidemic modelJ. Biol. Syst., 22 (04) pp. 713-744.

Smith, J., Johnson, A.B., & Lee, C. (2023), "Modeling the coinfection dynamics of hepatitis C and COVID-19: A systematic review," Journal of Epidemiology and Infection, 151(7), pp. 1350–1365.

Thornley.S., Bullen.C., Roberts.M., Hepatitis B in a high prevalence new zea land population a mathematical model applied to infection control policy J Theor Biol.254 (2008),pp.599-603.

Ullah. A.Z. T. Abdeljawad, Z. Hammouch, K. Shah, (2020) A hybrid method for solving fuzzy Volterra integral equations of separable type kernels, J. King Saud Univ. - Sci. 33 http://dx.doi.org/10.1016/j.jksus.2020.101246.

Yunus. A.O, M.O. Olayiwola, M.A. Omolaye, A.O. Oladapo, (2023) A fractional order model of lassa fever disease using the Laplace-Adomian decomposition method, Health Care Anal. 3 100167, www.elsevier.com/locate/health.Health care Analytics.

Zhang.R.F.,Li. M.-C.,Gan. J.Y., Li.Q., Lan.Z.-Z., (2022). Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method, Chaos Solitons Fractals 154 (C). Results in Physics, vol. 37, article 105498.

Hepatitis B Model Flow Chart

Published

2025-11-14

How to Cite

Ojonimi, A. A., Amos, J., Atokolo, W., Omale, D., Emmanuel, L. M., Abah, E., Acheneje, G. O., & Bolaji, B. (2025). Numerical Solution of Fractional order Hepatitis B Model Via the Generalized Fractional Adams-Bashforth-Moulton Approach. Journal of Science Research and Reviews, 2(5), 33-48. https://doi.org/10.70882/josrar.2025.v2i5.119

How to Cite

Ojonimi, A. A., Amos, J., Atokolo, W., Omale, D., Emmanuel, L. M., Abah, E., Acheneje, G. O., & Bolaji, B. (2025). Numerical Solution of Fractional order Hepatitis B Model Via the Generalized Fractional Adams-Bashforth-Moulton Approach. Journal of Science Research and Reviews, 2(5), 33-48. https://doi.org/10.70882/josrar.2025.v2i5.119