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A B S T R A C T  
Anthrax is a zoonotic infectious disease caused by the bacterium 
Bacillus anthracis. In this study, we develop and analyze a 
deterministic compartmental model, formulated using ordinary 
differential equations, to explore the transmission dynamics of 
anthrax between humans and animals. Fundamental properties of 
the model, such as positivity, boundedness, and the existence of 
equilibrium points are established, confirming that the model is 
mathematically and biologically well-posed. The basic reproduction 
number, 𝑅0, is derived using the next-generation matrix approach. 
Stability analysis shows that the disease-free equilibrium is both 
locally and globally asymptotically stable when 𝑅0 < 1. Additionally, 
the model possesses a unique endemic equilibrium when 𝑅0 > 1, 
which is also globally stable when 𝑅0 < 1. Numerical simulations are 
conducted to validate and illustrate the theoretical results. 

 
INTRODUCTION 
Bacterium Bacillus anthracis is the cause of the infectious 
disease called anthrax. It usually affects both domestic 
and wild animals and is found naturally in soil (Samad, 
2013). The sole obligatory aerobic pathogen in the genus 
Bacillus is the gram-positive, rod-shaped, non-motile 
bacterium known as Bacillus anthracis. The bacterium can 
exist as a long-lasting, extremely resistant spore form or as 
a vegetative form. In the host’s low-oxygen environment, 
the bacteria only survive in the vegetative state (Ahmed, et 
al., 2010). In difficult conditions, the anthrax Bacillus 
develops spores to protect itself. The thick outer layer of 
spores protects the bacteria from harsh environments 
(Decker, 2003).  
Although anthrax seldom affects birds, it can infect cats 
and dogs who eat meat contaminated with the disease; 
these animals frequently recover from anthrax without 
medical intervention (Decker, 2003; Stoltenow, 2021). It is 

important to remember that not every animal with anthrax 
dies. An animal’s innate immunity and the amount of 
infections it has been exposed to are likely to determine 
whether it survives or not (Decker, 2003).  
Once inside its host, an anthrax spore germinates, 
becomes a vegetative cell, and multiplies quickly. 
Following their entry into the bloodstream, the reproduced 
vegetative cells cause septicemia, which ultimately 
results in the host’s abrupt death (Dragon et al., 1995). The 
extended half-life of anthrax spores allows them to survive 
for decades in the environment before they find a new host. 
Spores are typically seen in areas where corpses infected 
with anthrax have been decomposing for a long time. It has 
been documented that spores can re-infect animals more 
than 70 years after disturbed burial sites containing 
anthrax-infected animals (Awoonor-Williams, 2016).  
Humans can contract anthrax from contaminated animal 
products or from diseased animals themselves. The way 
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anthrax enters the body determines the kind of disease 
that a person gets. Anthrax usually enters the body by the 
gastrointestinal tract, lungs, or skin. If left untreated, 
anthrax of any kind has the potential to gradually spread 
throughout the body and result in death (Nigeria Center for 
Disease Control NCDC, 2023). Numerous factors, such as 
the source of infection, affect the likelihood that humans 
may get anthrax. The source of anthrax infection includes 
cutaneous, gastrointestinal and inhalation anthrax 
(Fasanella et al., 2014). 
Scientists and epidemiologists have found that using 
mathematical models to investigate the transmission and 
management of infectious diseases is a valuable resource 
(Hethcote, 2000). This research seeks to use 
mathematical models to study the trans mission dynamics 
of anthrax in animal and human population by modifying 
the model due to Baloba and Seidu (2022) by incorporate 
vaccination and exposure as compartments in the animal 
population and also educated, un educated and 
individuals under treatment as compartments in the 
human population. 
Mathematical modeling has played a crucial role in 
improving the understanding and control of infectious 
diseases like anthrax. These analytical tools have been 
valuable in forecasting disease trends and guiding 
healthcare professionals in developing effective 
management strategies. A wide range of mathematical 
models has been formulated and examined to explore the 
transmission dynamics of anthrax in human and animal 
populations (Suma, et al., 2018; Yedata et al., 2020; Elijah 
et al., 2020). These studies have highlighted key factors 
influencing the spread of the disease and have proposed 
various control strategies.  
Mushayabasa (2015) added a set time delay and 
environmental decontamination to Hahn and Furniss’s 
(1983) model on the eradication of anthrax illness. Using 
the reproduction number, they investigated how well 
environmental decontamination eradicated the anthrax 
pathogen. The concept of Mushayabasa (2015) was 
expanded by Sinkie and Murthy (2016), who postulated 
that certain infectious animals may exhibit clinical 
symptoms of the illness and be treated to recover. Their 
research demonstrated that when the rate of cure is 
accelerated through therapy, the pathogen level dropped 
and the number of vulnerable animals rose.  
Shaibu, Oluwole and David (2018) developed a 
mathematical model for the disease’s patterns of 
transmission. The mathematical model was used to 
formulate ordinary differential equations. They carried out 
the model’s quantitative and qualitative study to explain 
the anthrax disease’s patterns of transmission. They 
examined and ascertained the steady state solutions for 
the model. The anthrax model’s disease-free equilibrium 7 
was examined for locally asymptotic stability and the 
corresponding epidemic basic reproduction number. 

When the basic reproductive number is smaller than unity, 
the model’s disease-free equilibrium has been 
demonstrated to be locally asymptotically stable. 
Additionally, population lowers the environmental 
pathogen level. the broader public’s shift in behavior. The 
model looks at anthrax in both human and animal 
populations, and the findings indicated that an increase in 
the basic reproduction number would result from a 
decrease in the animal recovery rate. Furthermore, it 
would raise the fundamental reproduction number by 
raising the pace of human recruitment. Furthermore, a 
decline in the rates of human recruitment, animal 
recruitment, livestock transmission, and human 
transmission would result in a reduction of the basic 
reproduction number. There would be an increase in the 
basic reproduction number if the rates of human 
recruitment, animal recruitment, livestock transmission, 
and human transmission all increased.  
Efraim et al., (2018) proposed a deterministic model for 
anthrax transmission dynamics in humans and animals, 
analyzing and determining which parameters drive the 
disease transmission dynamics. The basic reproduction 
number was calculated, and a sensitivity index for each 
parameter in the basic reproduction number was 
determined. The findings indicate that animal recruitment 
and infection rates are more vulnerable to disease 
transmission. Anthrax infection grows when more animals 
are recruited, and reduces as animals die naturally. Their 
findings are supported by numerical simulations 
employing the Runge-Kutta method, which suggest that 
animals influence the dynamics of anthrax. To remove the 
disease, the study offers control techniques such as 
animal immunization, fumigation, and carcass 
decomposition.  
Osman et al., (2018) developed a mathematical model of 
anthrax in both human and animal populations, building 
on Friedman and Yakubu’s (2013) model. The model was 
expanded to optimal control, taking into account 
preventive strategies for susceptible humans, animal 
vaccination, and treatment for infected humans and 
animals. Both qualitative and quantitative analyses were 
explored. The findings indicated that animal immunization 
and human prevention are the most effective strategies for 
pre venting anthrax epidemics. 
Motivated by aforementioned studies, this work aims to 
modify the model presented in Baloba and Seidu (2022) 
vaccine for susceptible animals, public health campaign 
(education) and treatment for susceptible humans as 
control measures in the face of exposure to the bacteria for 
both humans and animals. The structure of this paper is as 
follows: Section 2 presents the model formulation, 
including the underlying assumptions, the flow diagram, 
model equations, and their basic properties. Section 3 
provides the analytical results, covering the equilibrium 
points, the basic reproduction number, 𝑅0, and the 
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stability analysis of the equilibria. In Section 4, we outline 
the parameter values used to compute the basic 
reproduction number, and display related numerical 
simulations. Finally, Section 5 discusses the findings and 
concludes the study. 
 
MATERIALS AND METHODS 
Model formulation 
Two populations coexisting in the same environment make 
up the modified model: human and animal. At any time 𝑡, 
The total human population denoted by 𝑁𝐻(𝑡) is split into 
six subpopulations of susceptible educated, 𝑆𝑒(𝑡), 
susceptible uneducated 𝑆𝑢(𝑡), exposed humans 𝐸ℎ(𝑡), 
infected humans 𝐼ℎ(𝑡)), treated humans, 𝑇ℎ(𝑡) and 
recovered humans 𝑅ℎ(𝑡), so that: 
𝑁ℎ(𝑡) = 𝑆𝑒(𝑡) + 𝑆𝑢(𝑡) + 𝐸ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑇ℎ(𝑡) + 𝑅ℎ(𝑡)
      (1) 
At each given time 𝑡, the animal population denoted by 
𝑁𝑎(𝑡) is divided into five sub-populations that are 
susceptible animals 𝑆𝑎(𝑡), exposed animals 𝐸𝑎(𝑡), 
infected animals 𝐼𝑎(𝑡), recovered animals 𝑅𝑎(𝑡), and 
vaccinated animals 𝑉𝑎(𝑡). Hence, the total number of 
animal population is given by 
𝑁𝑎(𝑡) = 𝑆𝑎(𝑡) + 𝐸𝑎(𝑡) + 𝐼𝑎(𝑡) + 𝑅𝑎(𝑡) + 𝑉𝑎(𝑡) (2) 
The susceptible educated human population 𝑆𝑒(𝑡) is 
increase by public health enlightenment of humans at a 
rate𝜃ℎ, and the population of humans who recovered from 
anthrax after losing infection acquired immunity at a rate 
𝜋ℎ  . This population is de creased by natural death 𝜇ℎ, and 
force of infection at a rate (1 − 𝜏)𝜆ℎ where 𝜏 measure the 
efficacy of the public health education and 𝜆ℎ =

𝛽ℎ(𝑃+𝐼𝑎)

1+𝜅ℎ𝐼ℎ
, 

where 𝛽ℎ is the human transmission rate, such that 
𝑑𝑆𝑒

𝑑𝑡
= 𝜃ℎ𝑆𝑢 + 𝜋ℎ𝑅ℎ − (𝜇ℎ + (1 − 𝜏)𝜆ℎ)𝑆𝑒   (3) 

Also recruitment into susceptible uneducated human 
population 𝑆𝑢(𝑡) is by birth at a rate Λℎ  and the population 
is decreased by natural deaths, public health 
enlightenment of human, and force of infection at a rate 
𝜇ℎ, 𝜃ℎ and 𝜆ℎ, respectively. so that 
𝑑𝑆𝑢

𝑑𝑡
= Λℎ − (𝜆ℎ + 𝜇ℎ + 𝜃ℎ)𝑆𝑢   (4) 

The exposed human population 𝐸ℎ(𝑡) is increased by the 
force of infection from both educated and un-educated 
class at a rate (1 − 𝜏)𝜆ℎ𝑆𝑒  and 𝜆ℎ𝑆𝑢  respectively, it is 
decreased by 𝜇ℎ and 𝜀ℎ where 𝜇ℎ  is rate of natural death 
and 𝜀ℎ is the rate at which the latent human progresses to 
the infected class. Such that 
𝑑𝐸ℎ

𝑑𝑡
= (1 − 𝜏)𝜆ℎ𝑆𝑒 + 𝜆ℎ𝑆𝑢 − (𝜇ℎ + 𝜀ℎ)𝐸ℎ   (5) 

The infected humans population 𝐼ℎ(𝑡) is increased by the 
rate at which the latent human progresses to the infected 
class at a rate 𝜀ℎ, and decreased by natural death, rate at 
which infected humans move to treatment class and death 
due to anthrax disease at a rate 𝜇ℎ , 𝜙ℎ and 𝐶ℎ respectively. 
so that 
𝑑𝐼ℎ

𝑑𝑡
= 𝜀ℎ𝐸ℎ − (𝜇ℎ + 𝜙ℎ + 𝐶ℎ)𝐼ℎ    (6) 

The infected humans under treatment population 𝑇ℎ(𝑡) is 
increased by treatment at a rate 𝜙ℎ, and decreased by 
natural death a rate 𝜇ℎ and the rate at which humans 
recover from anthrax at the rate of 𝛿ℎ respectively. so that 
𝑑𝑇ℎ

𝑑𝑡
= 𝜙ℎ𝐼ℎ − (𝜇ℎ + 𝛿ℎ)𝑇ℎ    (7) 

The Recovered humans population 𝑅ℎ(𝑡) is increased by 
recovery rate due to treatment at a rate 𝛿ℎ. The class is 
decreased by natural death rate and the rate at which 
recovered humans from anthrax revert to susceptible 
educated human at a rate 𝜇ℎ and 𝜋ℎ  and πh respectively. 
so that 
𝑑𝑅ℎ

𝑑𝑡
= 𝛿ℎ𝑇ℎ − (𝜇ℎ + 𝜋ℎ)𝑅ℎ   (8) 

The compartment 𝑃 is increased by infected animals shed 
anthrax pathogens into the environment at a rate 𝜉𝑎  and 
reduced due to environmental hygiene at rate 𝑝 and by 
natural phenomenon at rate 𝜂 respectively. So that 
𝑑𝑃

𝑑𝑡
= 𝜉𝑎𝐼𝑎 − (𝑝 + 𝜂)𝑃    (9) 

Similarly, susceptible animal population 𝑆𝑎(𝑡) is increased 
by animal annual birth rate Λ𝑎, waning of vaccination 
acquired immunity in animals at a rate 𝛼𝑎 and the 
population of animal that recovered from anthrax after 
losing infection acquired immunity at a rate 𝜋𝑎, the 
population is decreased by administering vaccination in 
animals, natural death, and force of infection at a rate 
γ𝛾𝑎, 𝜇𝑎 and 𝜆𝑎 =

𝛽𝑎𝑃

1+𝜅𝑎𝐼𝑎
 respectively. so that 

𝑑𝑆𝑎

𝑑𝑡
= Λ𝑎 + 𝜋𝑎𝑅𝑎 + 𝛼𝑎𝑉𝑎 − (𝜆𝑎 + 𝜇𝑎)𝑆𝑎 − 𝛾𝑎𝑆𝑎 (10) 

The exposed animal population 𝐸𝑎(𝑡) is increased by the 
force of infection at a rate 𝜆𝑎𝑆𝑎, and is decreased by 
natural death and the rate at which the exposed animal 
joint the infected class at a rate 𝜇𝑎 and 𝜀𝑎 respectively. so 
that 
𝑑𝐸𝑎

𝑑𝑡
= 𝜆𝑎𝑆𝑎 − (𝜇𝑎 + 𝜀𝑎)𝐸𝑎    (11) 

The infected animal population 𝐼𝑎(𝑡) is increased by the 
progression of exposed animal to infected class at the rate 
𝜀𝑎, and is decreased by natural death, the progression of 
infected animal to the recovered class and the death due 
to anthrax disease at the rate 𝜇𝑎, 𝛿𝑎 and 𝐶𝑎 respectively. so 
that 
𝑑𝐼𝑎

𝑑𝑡
= 𝜀𝑎𝐸𝑎 − (𝜇𝑎 + 𝐶𝑎 + 𝛿𝑎)𝐼𝑎    (12) 

The Recovered animals population 𝑅𝑎(𝑡) is increased by 
recovery rate due to treatment at a rate 𝛿𝑎. The class is 
further decreased by natural death and rate at which 
recovered animal from anthrax revert to susceptible 
animals at the rate 𝜇𝑎 and 𝜋𝑎  respectively. so that 
𝑑𝑅𝑎

𝑑𝑡
= 𝛿𝑎𝐼𝑎 − (𝜇𝑎 + 𝜋𝑎)𝑅𝑎   (13) 

The vaccinated animals population 𝑉𝑎(𝑡) is increased by 
vaccine administered to susceptible animals at a rate 𝛾𝑎, it 
is decreased by natural death and waning of vaccination in 
animals at a rate 𝜇𝑎 and 𝛼𝑎 respectively. so that 
𝑑𝑉𝑎

𝑑𝑡
= 𝛾𝑎𝑆𝑎 − (𝛼𝑎 + 𝜇𝑎)𝑉𝑎     (14) 
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The above model was formulated based on the following 
assumptions: 

1. All newly born individuals are recruited into an un 
educated susceptible class.  

2. Recovered individuals are allowed to move into 
educated susceptible class.  

3. Newly born and other susceptible animals are 
vaccinated.  

4. There is an incubation period for both animals and 
humans after infection.  

5. There is failure in vaccinations in animal population 
so that vaccinated populations revert to susceptible.  

6. The parameter 𝜏 ∈ [0,1] is considered to quantify the 
success of the public health campaign (education) in 
reducing the population’s anthrax infection. If 𝜏 = 0, 
the public health campaign (education) has no effect 
on the behavior of susceptible individuals. However, 
if 𝜏 = 1, the public health campaign (education) is 
100% effective in improving the behavior of 
susceptible individuals towards taking protective 
measures against anthrax disease. 

 
Figure 1: Schematic Diagram of the Model 

 
Below is the system of equations defining the dynamics of anthrax 
𝑑𝑆𝑒

𝑑𝑡
= 𝜃ℎ𝑆𝑢 + 𝜋ℎ𝑅ℎ − (𝜇𝐻 + (1 − 𝜏)𝜆ℎ)𝑆𝑒

𝑑𝑆𝑢

𝑑𝑡
= Λℎ − (𝜆ℎ + 𝜇𝐻 + 𝜃ℎ)𝑆𝑢

𝑑𝐸ℎ

𝑑𝑡
= (1 − 𝜏)𝜆ℎ𝑆𝑒 + 𝜆ℎ𝑆𝑢 − (𝜇ℎ + 𝜀ℎ)𝐸ℎ

𝑑𝐼ℎ

𝑑𝑡
= 𝜀ℎ𝐸ℎ − (𝜇𝐻 + 𝜙ℎ + 𝐶ℎ)𝐼ℎ

𝑑𝑇ℎ

𝑑𝑡
= 𝜙ℎ𝐼ℎ − (𝜇ℎ + 𝛿ℎ)𝑇ℎ

𝑑𝑅ℎ

𝑑𝑡
= 𝛿ℎ𝑇ℎ − (𝜇ℎ + 𝜋ℎ)𝑅ℎ

𝑑𝑃

𝑑𝑡
= 𝜉𝑎𝐼𝑎 − (𝑝 + 𝜂)𝑃

𝑑𝑆𝑎

𝑑𝑡
= Λ𝑎 + 𝜋𝑎𝑅𝑎 + 𝛼𝑎𝑉𝑎 − (𝜆𝑎 + 𝜇𝑎)𝑆𝑎 − 𝛾𝑎𝑆𝑎

𝑑𝐸𝑎

𝑑𝑡
= 𝜆𝑎𝑆𝑎 − (𝜇𝑎 + 𝜀𝑎)𝐸𝑎

𝑑𝐼𝑎

𝑑𝑡
= 𝜀𝑎𝐸𝑎 − (𝜇𝑎 + 𝐶𝑎 + 𝛿𝑎)𝐼𝑎

𝑑𝑅𝑎

𝑑𝑡
= 𝛿𝑎𝐼𝑎 − (𝜇𝑎 + 𝜋𝑎)𝑅𝑎

𝑑𝑉𝑎

𝑑𝑡
= 𝛾𝑎𝑆𝑎 − (𝛼𝑎 + 𝜇𝑎)𝑉𝑎 }

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 (15) 

With the force of infection being 𝜆ℎ =
𝛽ℎ(𝑃+𝐼𝑎)

1+𝜅ℎ𝐼ℎ
 and 𝜆𝑎 =

𝛽𝑎𝑃

1+𝜅𝑎𝐼𝑎
   respectively. 
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Table 1: State variables of the model 
State Variable Description 
𝑆𝑒  Susceptible educated human population at time 𝑡 
𝑆𝑢  Susceptible un-educated human population at time 𝑡 
𝐸ℎ  Exposed human population at time 𝑡 
𝐼ℎ  Infected human population at time 𝑡 
𝑇ℎ  Treated human population at time 𝑡 
𝑅ℎ  Recovered human population at time 𝑡 
𝑃 Environmental reservoir contaminated with anthrax pathogens at time 𝑡 
𝑆𝑎  Susceptible animal population at time 𝑡 
𝐸𝑎  Exposed animal population at time 𝑡 
𝐼𝑎  Infected animal population at time 𝑡 
𝑅𝑎 Recovered human population at time 𝑡 
𝑉𝑎  Vaccinated human population at time 𝑡 

 
Table 2: Parameter description of the model 

Parameter Description 
Λℎ/Λ𝑎 Human recruitment rate/inflow rate of animals 
𝜇ℎ , 𝜇𝑎 Natural death rate of humans/animals  
𝛽ℎ , 𝛽𝑎  Transmission rate in humans/animals  
𝜆ℎ/𝜆𝑎  Force of infection in humans/animals 
𝐶ℎ/𝐶𝑎 Disease induced death rate in humans/animals 
𝜏 Public health education efficacy 
𝜃ℎ  Rate at which uneducated susceptibles receive public health education 
𝜀ℎ  Rate of progression from exposed to infected humans 
𝜀𝑎 Rate of progression from exposed to infected animals 
𝛼𝑎 Rate of waning of vaccine in animals 
𝜉𝑎  Pathogen shedding rate 
𝜂 Rate of environmental pathogens’ natural degradation 
𝜅𝑎 The population saturation effect of animals 
𝜅ℎ  Rate of behavioural change 
𝑝 Rate of decay due to environmental hygiene 
𝛾𝑎 Rate at which animals are vaccinated 
𝜙ℎ  Treatment rate of humans 
𝛿𝑎 Recovery rate of infected animals 
𝛿ℎ  Human recovery rate after treatment 
𝜋𝑎  Rate at which animals that have recovered return to susceptibles 
𝜋ℎ  Rate at which recovered humans revert to susceptibles 

 
Basic properties of the model 
In this section, both the qualitative and quantitative 
outcomes of the model is presented. We proved that the 
model solution exists and is unique, as well as that it is 
positive and bounded. Since the model system (1) 
monitors human and dog populations, all its associated 
parameters are non-negative. Further, the following non-
negativity result holds: 
 
Theorem 1 
The variables of the model system (1) are non-negative for 
all time 𝑡 > 0. In other words, the solution of the model 
system (1) with positive initial data will remain positive for 
all time 𝑡 > 0. 
Proof: Let  

𝑡1 = 𝑠𝑢𝑝{𝑡 > 0: 𝑆𝑒 > 0, 𝑆𝑢 > 0, 𝐸ℎ ≥ 0, 𝐼ℎ ≥ 0, 𝑇ℎ ≥ 0, 𝑅ℎ ≥
0, 𝑃 ≥ 0, 𝑆𝑎 > 0, 𝐸𝑎 ≥ 0, 𝐼𝑎 ≥ 0, 𝑅𝑎 ≥ 0, 𝑉𝑎 ≥ 0}.  
Thus, 𝑡1 > 0. It follows from the first equation of model 
system (2.1) that: 
𝑑𝑆𝑒

𝑑𝑡
= 𝜃ℎ𝑆𝑢 + 𝜋ℎ𝑅ℎ − (𝜇ℎ + (1 − 𝜏)𝜆ℎ)𝑆𝑒 ≥ −(𝜇ℎ + (1 −

𝜏)𝜆ℎ)𝑆𝑒 ,  
So that 
𝑑𝑆𝑒

𝑑𝑡
+ (𝜇ℎ + (1 − 𝜏)𝜆ℎ)𝑆𝑒 ≥ 0   (16) 

Multiplying the inequality (2) by the integrating factor, 

𝜌(𝑡) = 𝑒𝑥𝑝 [𝜇ℎ𝑡 + ∫ (1 − 𝜏)𝜆ℎ(𝑢)𝑑𝑢
𝑡

0
] gives; 

𝜌(𝑡) [
𝑑𝑆𝑒

𝑑𝑡
+ (𝜇ℎ + (1 − 𝜏)𝜆ℎ)𝑆𝑒] =

𝑑(𝑆𝜌)

𝑑𝑡
≥ 0 (17) 

from (17) it follows that 𝑆𝑒(𝑡) ≥ 0 for all 𝑡 ≥ 0. Using the 
positivity of 𝑆𝑒(𝑡), it can, similarly, be shown that the 
remaining state variables of the model (1) are non-negative 
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(for all non-negative initial conditions) for 𝑡 ≥ 0. 
Consequently, all the solutions of the model (1), with non-
negative initial conditions, remain non-negative for all time 
𝑡 ≥ 0. 
We claim the following result. 
 
Theorem 2 
Let (𝑆𝑒 , 𝑆𝑢 , 𝐸ℎ , 𝐼ℎ , 𝑇ℎ , 𝑅ℎ, 𝑃, 𝑆𝑎 , 𝑉𝑎 , 𝐸𝑎 , 𝐼𝑎 , 𝑅𝑎) be the solution 
of the model system (1) with non-negative initial 
conditions. The closed set  

Ω = {𝑋 = ℝ+
12 |𝑁ℎ ≤

Λℎ
𝜇ℎ
, 𝑁𝑎 ≤

Λ𝑎
𝜇𝑎
, 𝑃 ≤

𝜉𝑎Λ𝑎
𝜇𝑎(𝑝+𝜂)

} (18) 

is bounded and positively invariant and attracting with 
respect to the model (1) where  
ℝ+
12 = [𝑆𝑢 , 𝑆𝑒 , 𝐸ℎ , 𝐼ℎ , 𝑇ℎ , 𝑅ℎ, 𝑃, 𝑆𝑎 , 𝑉𝑎 , 𝐸𝑎 , 𝐼𝑎 , 𝑅𝑎]  

Proof: From the Equations of the total populations 
𝑁ℎ(𝑡), 𝑁𝑎(𝑡) and 𝑃 we have the following: 
𝑑𝑁ℎ

𝑑𝑡
≤ Λℎ − 𝜇ℎ𝑁ℎ  

𝑑𝑁𝑎

𝑑𝑡
≤ Λ𝑎 − 𝜇𝑎𝑁𝑎      (19) 

We construct the proof by applying the theorem on 
differential inequality to equation (19) gives  
𝑁ℎ ≤

Λℎ
𝜇ℎ
[1 − 𝑒−𝜇ℎ𝑡] + 𝑁ℎ(0)𝑒

−𝜇ℎ𝑡   (20) 

and  
𝑁𝑎 ≤

Λ𝑎
𝜇𝑎
[1 − 𝑒−𝜇𝑎𝑡] + 𝑁𝑎(0)𝑒

−𝜇𝑎𝑡   (21) 

Thus, the size of the human population 𝑁ℎ →
Λℎ

𝜇ℎ
 as 𝑡 → ∞, 

and the size of animal population 𝑁𝑎 →
Λ𝑎

𝜇𝑎
 as 𝑡 → ∞ . 

Hence, all solutions of model system (15) are contained in 
the region Ω. Thus, Ω is bounded. 
 
Model Analysis 
Existence and stability of anthrax-free equilibrium 
The anthrax-free equilibrium point is a steady-state 
solution in which no disease spreads throughout the 
population. The disease-free equilibrium point of the 
system is achieved when all variables and parameters 
linked to anthrax infection are zero. Thus, 

0, 0, 0, 0,h h hE I R P= = = = 𝐸𝑎 = 0, 𝑅𝑎 = 0, and 𝐼𝑎 = 0. 

Therefore, the anthrax-free equilibrium point denoted by  
𝐸0 is given as: 
Γ0 = [𝑆𝑒0, 𝑆𝑢0, 0,0,0,0, 𝑆𝑎0 , 0,0,0, 𝑉𝑎0]  (22) 
where: 
𝑆𝑒0 =

Λℎ𝜃ℎ
𝜇ℎ(𝜇ℎ+𝜃ℎ)

, 𝑆𝑢0 =
Λℎ

𝜇ℎ+𝜃ℎ
,  

𝑆𝑎0 =
Λ𝑎(𝛼𝑎+𝜇𝑎)

𝜇𝑎(𝛼𝑎+𝜇𝑎+𝛾𝑎)
, 𝑉𝑎0 =

Λ𝑎𝛾𝑎
𝜇𝑎(𝛼𝑎+𝜇𝑎+𝛾𝑎)

  

Using the next-generation matrix method, the disease-free 
equilibrium of model (15) given in (22) is locally 
asymptotically stable if the spectral radius of matrix 𝐹𝑉−1 
is less than one. Let 𝑋 = (𝐸ℎ, 𝐼ℎ , 𝑇ℎ , 𝑃, 𝐸𝑎 , 𝐼𝑎) which can be 
written in the form of 𝑑𝑋

𝑑𝑡
= 𝐹𝑖(𝑥) − 𝑉𝑖(𝑥), where 

𝐹𝑖 =

[
 
 
 
 
 
 (1 − 𝜏)

𝛽ℎ(𝑃+𝐼𝑎)

1+𝜅ℎ𝐼ℎ
𝑆𝑒 +

𝛽ℎ(𝑃+𝐼𝑎)

1+𝜅ℎ𝐼ℎ
𝑆𝑢

0
0
0
𝛽𝑎𝑃

1+𝜅𝑎𝐼𝑎

0 ]
 
 
 
 
 
 

,   and   

𝑉𝑖 =

[
 
 
 
 
 

(𝜇ℎ + 𝜀ℎ)𝐸ℎ
−𝜀ℎ𝐸ℎ + (𝜇ℎ + 𝜙ℎ + 𝐶ℎ)𝐼ℎ
−𝜙ℎ𝐼ℎ + (𝜇ℎ + 𝛿ℎ)𝑇ℎ
−𝜉𝑎𝐼𝑎 + (𝑝 + 𝜂)𝑃

(𝜇𝑎 + 𝜀𝑎)𝐸𝑎
−𝜀𝑎𝐸𝑎 + (𝜇𝑎 + 𝐶𝑎 + 𝛿𝑎)𝐼𝑎 ]

 
 
 
 
 

  

we define the reproduction number of the model as: 

𝑅0 = 𝜌(𝐹𝑉
−1) =

𝛽ℎ𝜀ℎΛℎ(𝜇ℎ+𝜃ℎ(1−𝜏))

𝜇ℎ(𝜇ℎ+𝜃ℎ)(𝜇ℎ+𝜀ℎ)(𝐶ℎ+𝜇ℎ+𝜙ℎ)
 (23) 

The basic reproduction number, denoted by 𝑅0, for model 
(15) represents the average number of new anthrax 
infections (in either humans or animals) generated by a 
single infectious animal introduced into a population 
where both humans and animals are entirely susceptible. 
We claim the following result. 
 
Theorem 3 
The disease-free equilibrium (DFE) of model (15) is locally 
asymptotically stable whenever 𝑅0 < 1, indicating that 
anthrax cannot invade the population. Conversely, the DFE 
is unstable if 𝑅0 > 1, meaning the infection can spread in 
the population. 
 
Epidemiological Implication of Theorem 3 
Theorem 3 implies that if the basic reproduction number 
𝑅0 < 1, the introduction of a small number of infected 
animals into a well-mixed human-animal population will 
not result in a significant anthrax outbreak, provided the 
initial number of infected humans or animals remains low. 
This suggests that under such conditions, the disease will 
eventually die out without causing widespread 
transmission. 
 
Global stability of anthrax-free equilibrium point 
We investigate the global stability of Anthrax free 
equilibrium for the model equation (15) using the 
conditions of Castillo-Chavez and Song (2004). First, 
equation (15) must be written in the form 
𝑑𝑌

𝑑𝑡
= 𝐹(𝑌, 𝑍)  

𝑑𝑍

𝑑𝑡
= 𝐺(𝑌, 𝑍); 𝐺(𝑌, 𝑍) = 0    (24) 

where 𝑌 = (𝑆𝑒 , 𝑆𝑢 , 𝑅ℎ, 𝑆𝑎 , 𝑉𝑎 , 𝑅𝑎) which denotes the 
number of uninfected compartments with components 
𝑌 ∈ ℝ6 and 𝑍 = (𝐸ℎ , 𝐼ℎ , 𝑇ℎ, 𝑃, 𝐸𝑎 , 𝐼𝑎) denotes the number of 
infected compartments with components 𝑍 ∈ ℝ6 with 𝐸0 
given in (22). The two conditions to be met for global 
asymptotic stability are: 

1. 𝑑𝑌
𝑑𝑡
= 𝐹(𝑌, 0), 𝐸0 is globally asymptotically stable 

(GAS). 
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2. 𝐺̂(𝑌, 𝑍) = 𝐴𝑍 − 𝐺(𝑌, 𝑍) ≥ 0 for (𝑋, 𝑍) ∈ Ω 
𝐴 = 𝐷𝑗𝐺(𝑌, 0) is an M-Matrix (the off diagonal elements of 
𝐴 are all non-negative) and Ω is a feasible region. 
 
Condition 1 
From model equations (1), we have 

𝐹(𝑌, 𝑍) =

[
 
 
 
 
 
 
 
 𝜃ℎ𝑆𝑢 + 𝜋ℎ𝑅ℎ − (𝜇ℎ + (1 − 𝜏)

𝛽ℎ(𝑃+𝐼𝑎)

1+𝜅ℎ𝐼ℎ
) 𝑆𝑒

Λℎ − (
𝛽ℎ(𝑃+𝐼𝑎)

1+𝜅ℎ𝐼ℎ
+ 𝜇ℎ + 𝜃ℎ) 𝑆𝑢

𝛿ℎ𝑇ℎ − (𝜇ℎ + 𝜋ℎ)𝑅ℎ

Λ𝑎 + 𝜋𝑎𝑅𝑎 + 𝛼𝑎𝑉𝑎 − (
𝛽𝑎𝑃

1+𝜅𝑎𝐼𝑎
+ 𝜇𝑎 + 𝛾𝑎) 𝑆𝑎

𝛾𝑎𝑆𝑎 − (𝛼𝑎 + 𝜇𝑎)𝑉𝑎
𝛿𝑎𝐼𝑎 − (𝜇𝑎 + 𝜋𝑎)𝑅𝑎 ]

 
 
 
 
 
 
 
 

 

      (25) 
Evaluating (25) at 𝐸0, we have 

𝐹(𝑌, 0) =

[
 
 
 
 
 

𝜃ℎ𝑆𝑢
0 − 𝜇ℎ𝑆𝑒

0

Λℎ − (𝜇ℎ + 𝜃ℎ)𝑆𝑢0

0
Λ𝑎 + 𝛼𝑎𝑉𝑎0 − (𝜇𝑎 + 𝛾𝑎)𝑆𝑎0

𝛾𝑎𝑆𝑎
0 − (𝛼𝑎 + 𝜇𝑎)𝑉𝑎

0

0 ]
 
 
 
 
 

  (26) 

Therefore 𝐸0 is globally asymptotically stable. 
 
Condition 2 
𝐺̂(𝑌, 𝑍) = 𝐴𝑍 − 𝐺(𝑌, 𝑍), 𝐺(𝑌, 𝑍) ≥ 0 for (𝑌, 𝑍) ∈ Ω, now 

𝐺(𝑌, 𝑍) =

[
 
 
 
 
 
 
 (1 − 𝜏)

𝛽ℎ(𝑃+𝐼𝑎)

1+𝜅ℎ𝐼ℎ
𝑆𝑒 +

𝛽ℎ(𝑃+𝐼𝑎)

1+𝜅ℎ𝐼ℎ
𝑆𝑢 − (𝜇ℎ + 𝜀ℎ)𝐸ℎ

𝜀ℎ𝐸ℎ − (𝜇ℎ + 𝜙ℎ + 𝐶ℎ)𝐼ℎ
𝜙ℎ𝐼ℎ − (𝜇ℎ + 𝛿ℎ)𝑇ℎ
𝜉𝑎𝐼𝑎 − (𝑝 + 𝜂)𝑃

𝛽𝑎𝑃

1+𝜅𝑎𝐼𝑎
𝑆𝑎 − (𝜇𝑎 + 𝜀𝑎)𝐸𝑎

𝜀𝑎𝐸𝑎 − (𝜇𝑎 + 𝐶𝑎 + 𝛿𝑎)𝐼𝑎 ]
 
 
 
 
 
 
 

      (27) 
and 𝐴 = 𝐷𝑗(𝑌, 0) is the Jacobian of 𝐺(𝑌, 𝑍) with respect to 
𝑍, such that 

𝐴 =

[
 
 
 
 
 
 
−𝐾1 𝑦1 0 −𝑦1 0 𝑦2
𝜀ℎ −𝐾2 0 0 0 0
0 𝜙ℎ −𝐾3 0 0 0
0 0 0 −𝐾4 0 𝜉𝑎

0 0 0
𝛽𝑎𝑆𝑎

1+𝜅𝑎𝐼𝑎
−𝐾5

𝛽𝑎𝑃𝑆𝑎𝜅𝑎

(1+𝜅𝑎𝐼𝑎)
2

0 0 0 0 𝜀𝑎 −𝐾6 ]
 
 
 
 
 
 

 (28) 

where: 
𝐾1 = 𝜇ℎ + 𝜀ℎ, 𝐾2 = 𝜇ℎ + 𝜙ℎ + 𝐶ℎ, 𝐾3 = 𝜇ℎ + 𝛿ℎ, 𝐾4

= 𝑝 + 𝜂, 𝐾5 = 𝜇𝑎 + 𝜀𝑎, 𝐾6 = 𝜇𝑎 + 𝛿𝑎 + 𝐶𝑎 

𝑦1 =
(1 − 𝜏)𝛽ℎ𝜅ℎ(𝑃 + 𝐼𝑎)𝑆𝑒

(1 + 𝜅ℎ𝐼ℎ)
2

+
𝛽ℎ𝜅ℎ(𝑃 + 𝐼𝑎)𝑆𝑢
(1 + 𝜅ℎ𝐼ℎ)

2
, 𝑦2

=
(1 − 𝜏)𝛽ℎ
(1 + 𝜅ℎ𝐼ℎ)

𝑆𝑒 +
𝛽ℎ

(1 + 𝜅ℎ𝐼ℎ)
𝑆𝑢  

Therefore; 

𝐺̂(𝑌, 𝑍) =

[
 
 
 
 
 
 
 
 
(1−𝜏)𝛽ℎ(𝑃+𝐼𝑎)(

Λℎ
𝜇ℎ
−𝑆𝑒)

(1+𝜅ℎ𝐼ℎ)
+

𝛽ℎ(𝑃+𝐼𝑎)(
Λℎ
𝜇ℎ
−𝑆𝑢)

(1+𝜅ℎ𝐼ℎ)

0
0
0

𝛽ℎ𝑃(
Λ𝑎
𝜇𝑎
−𝑆𝑎)

1+𝜅𝑎𝐼𝑎

0 ]
 
 
 
 
 
 
 
 

 29) 

Clearly, since 𝑆𝑒 , 𝑆𝑢 , 𝑆𝑎  are bounded above by Λℎ
𝜇ℎ
 and 

Λ𝑎

𝜇𝑎
 

respectively, it implies that Λℎ

𝜇ℎ
≥ (𝑆𝑒 , 𝑆𝑢) and 

Λ𝑎

𝜇𝑎
≥ 𝑆𝑎. 

Thus, 𝐺̂(𝑌, 𝑍) ≥ 0, ∀𝑌, 𝑍 ∈ Ω. This concludes the proof that 
anthrax-free equilibrium is globally asymptotically stable 
whenever 𝑅0 < 1. 
 
Numerical Simulation 
To illustrate the theoretical results, numerical simulations 
were carried out. Model variables and parameters value for 
the numerical simulations source are listed in Table 3 
below. Whenever parameter values were not available in 
the literature, we assumed realistic values for the purpose 
of illustration.  

 
Table 3: Parameter values 

Parameter Value Source 
Λℎ(Λ𝑎) 0.92(0.99) Osman et al., (2018) 
𝜇ℎ(𝜇𝑎) 0.0001(0.0001) Osman et al., (2018) 
𝛽ℎ(𝛽𝑎) 0.0001(0.02) Baloba and Seidu (2022) 
𝜏 0.000017 Assumed 
𝐶ℎ(𝐶𝑎) 0.2(0.45) Baloba and Seidu (2022) 
𝜃ℎ  0.005 Assumed 
𝛼𝑎 0.004 Osman et al., (2018) 
𝜀ℎ(𝜀𝑎) 0.002(0.002) Assumed 
𝜉𝑎  0.45 Baloba and Seidu (2022) 
𝜂 0.8 Baloba and Seidu (2022) 
𝜅ℎ(𝜅𝑎) 0.6(0.6) Baloba and Seidu (2022) 
𝑝 0.5 Baloba and Seidu (2022) 
𝛾𝑎 0.6 Osman et al., (2018) 
𝜙ℎ  0.04 Osman et al., (2018) 
𝛿ℎ(𝛿𝑎) 0.04 Osman et al., (2018) 
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Figure 2: Time series plot of anthrax infection model for exposed human population with 
different initial conditions for 𝑅0 < 1 with parameter values in table 4.1 

 
Figure 3: Time series plot of anthrax infection model for infected human population with 
different initial conditions for 𝑅0 < 1 with parameter values in table 4.1 
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Figure 4: Time series plot of anthrax infection model for exposed human population with 
different initial conditions for 𝑅0 > 1 with parameter values in table 4.1 

 
Figure 5: Time series plot of anthrax infection model for infected human population with 
different initial conditions for 𝑅0 > 1 with parameter values in table 4.1 
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Figure 6: The effect of public health campaign on un educated susceptible humans with 
parameter values in table 4.1 

 

 
Figure 7: The impact of treatment on infected humans with parameter values in table 4.1 
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Figure 8: The effect of transmission rate 𝛽ℎ on un educated susceptible 
humans with parameter values in table 4.1 

 
Discussion  
Figure 2 to 3 shows that when 𝑅0 < 1 all trajectories of 
exposed and infected humans converges to zero, for 
different values of initial conditions, which indicates the 
local stability for disease free equilibrium 𝐸0, in human 
populations. Also using the values in table 4.1 varying the 
initial conditions, figure 4 and 5, shows that when 𝑅0 > 1 
the anthrax free equilibrium becomes unstable in human 
population.  
Figure (6) Simulation results for the impacts of awareness 
program on the transmission dynamics of anthrax. The 
simulation assessed the influence of the awareness 
program on the un educated population by changing the 
level of awareness from zero to 33%, 67%, and 100%. The 
figure illustrates that lack of awareness leads to a high 
number of infected individuals, whereas 33% of 
awareness result in a slight decline. Furthermore, with a 
67% level of awareness program, the number of infected 
individuals decreases significantly; however, the greatest 
reduction in infected individuals is observed with a 100% 
level of awareness program. Thus, this simulation finding 
is consistent with previous mathematical models in the 
literature that propose the implementation of public health 
awareness programs to prevent the spread of anthrax in a 
population. 
Figure (7) shows the impact of treatment on infected 
human population at different rate. By increasing 
treatment rate (𝛼 = 0.33; 0.67; 1.00). The disease can be 
eradicated in shortest possible time. This result clearly 
revealed that providing treatment for the infected 
individuals is crucial in saving the lives of those that are 
infected. Hence, the addition of treatment class has 
provided more insights into the control of anthrax in a given 
population. When illustrated in Figure 8, the susceptible 

uneducated persons decrease when anthrax infection 
rates increase. Humans decrease as they contract anthrax 
from the environment, eat meat from infected animals, or 
come into contact with pathogens in the environment.  
Figure 8 shows that anthrax infections appear to be critical 
as years 47 goes by. Thus, this simulation result is in line 
with the existing mathematical models in the literature that 
an increase in the force of infection leads to a 
corresponding increase in the level of pathogens in the 
environment as well as an increase in the number of 
infective population 
 
CONCLUSION 
This study developed and analyzed a deterministic 
compartmental model to investigate the transmission 
dynamics of anthrax in human and animal populations 
while incorporating vaccination, treatment, and public 
health education as control measures. The mathematical 
analysis confirmed that the model is both mathematically 
and biologically well-posed, with all solutions remaining 
positive and bounded for all time. The basic reproduction 
number, 𝑅0, derived via the next-generation matrix 
approach, was shown to play a crucial role in determining 
disease persistence. Specifically, the disease-free 
equilibrium was found to be locally and globally 
asymptotically stable when 𝑅0 < 1, while a unique 
endemic equilibrium exists and is stable when 𝑅0 >
1.Numerical simulations demonstrated that vaccination 
of animals, treatment of infected humans, and public 
health education are effective in reducing anthrax 
transmission. The results suggest that integrating these 
strategies can significantly mitigate outbreaks and 
safeguard both human and animal populations. 
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