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A B S T R A C T  
Malaria, transmitted by Anopheles mosquitoes carrying Plasmodium 
parasites, poses a significant health burden, especially in tropical 
regions. This study employs a mathematical framework to explore 
malaria dynamics, emphasizing system stability and effective 
interventions that incorporate immediate (IEh) and delayed (ILh) 
treatment strategies. Using center manifold analysis, we investigate 
stability at the critical threshold R0=1, identifying a forward 
bifurcation (a<0, b>0), indicating that maintaining R0 below 1 halts 
disease persistence. By applying Pontryagin’s principle and 
numerical optimization techniques, we formulate control strategies 
integrating rapid treatment, mosquito population management, and 
reduction of untreated infections, achieving a controlled 
reproduction number of R0

c=0.1964, compared to an uncontrolled 
R0=2.2356. These findings underscore the efficacy of combined 
interventions and provide actionable insights for malaria control in 
resource-limited settings. 

INTRODUCTION 
Malaria, driven by Plasmodium parasites and transmitted 
via Anopheles mosquitoes, remains a critical public health 
issue, particularly in sub-Saharan Africa (World Health 
Organization, 2023). Mathematical models provide 
valuable tools for understanding disease transmission and 
crafting effective interventions. This work presents an 
SEIIR-SEI model that distinguishes between individuals 
receiving prompt treatment and those with delayed care. 
Our objectives are to analyze the system’s behavior at the 
threshold R0=1 using advanced stability techniques and to 
develop optimized intervention strategies, including rapid 
treatment, mosquito population reduction, and 
minimizing untreated cases, to reduce transmission. Our 
analysis confirms a forward bifurcation at R0=1, ensuring 
disease eradication when R0<1, and offers practical 

intervention strategies for high-transmission, resource-
constrained regions. 
In regions like Nigeria, malaria’s burden is exacerbated by 
limited healthcare access and environmental conditions 
conducive to mosquito proliferation (World Health 
Organization, 2023). Effective control demands integrated 
approaches targeting both human infections and 
mosquito vectors. This study builds on prior research by 
focusing on system dynamics and customized intervention 
strategies for high-transmission settings (Opaginni & 
Durojaye, 2025). 
Mathematical frameworks have been widely applied to 
study infectious diseases, using methods like spectral 
analysis to estimate R0 (van den Driessche & Watmough, 
2002). Stability analyses differentiate between forward 
and backward bifurcations at R0=1, with backward 
bifurcations complicating eradication efforts (Castillo-
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Chavez & Song, 2004; Chitnis, Cushing, & Hyman, 2006). 
Insights from similar epidemiological modeling efforts, 
such as the survival analysis of TB patients using Weibull 
and Log-Logistic Accelerated Failure Time model (AFT) 
models (Exploring Accelerated Failure Time Models for 
Tuberculosis Survival: Log-Logistic and Weibull Survival 
Regression Model,) (Usman, Doguwa, Sadiq &Akor, 2025), 
reinforce the importance of selecting model structures 
that best capture disease progression variability. Vector 
control is critical alongside medical interventions (Isah, 
Ibrahim, Isah, & Magaji, 2024). Prompt treatment reduces 
severe outcomes, while inconsistent efforts hinder 
progress (Challenger et al., 2019; Mousa et al., 2020). In 
Nigeria, challenges such as drug resistance and 
overtreatment underscore the need for holistic strategies 
(Anjorin et al., 2023; Collins & Duffy, 2022). While previous 
studies have examined treatment and vaccination (Joshi, 
Maity, & Prajapati, 2006; Okosun & Makinde, 2013), few 
integrate prompt and delayed treatment with vector 
control. This research advances the SEIIR-SEI model to 
evaluate stability and optimize interventions (Opaginni & 
Durojaye, 2025). 
 
Model Assumptions 
The model relies on the following premises:   

1. Mosquito biting frequency is constant, excluding 
seasonal variations.  

2. Human-mosquito interactions are uniform.  

3. The model omits drug resistance and spatial 
dynamics.  

4. Recovery rates vary between prompt and delayed 
treatment groups.  

5. Superinfection or reinfection is not considered during 
the study period.  

 
Stability Analysis of the Malaria Model 
This study refines an SEIIR-SEI model to examine malaria 
transmission dynamics, with a focus on equilibrium 
stability (Opaginni & Durojaye, 2025). The system is 
governed by:  
dSh

dt
=αh-σbψShIm+δ3Rh-μhSh,   (1) 

dEh

dt
=σbψShIm-(μh+δ1+δ2)Eh,   (2) 

dIEh
dt

=δ1Eh-(μh+ηh+λ1+a)IEh,   (3) 
dILh
dt

=δ2Eh+aIEh-(μh+ηh+λ2)ILh,   (4) 
dRh

dt
=λ1IEh+λ2ILh-(μh+ηh+δ3)Rh,   (5) 

dSm
dt

=αm-σbψSmIEh-σbψ1SmILh-μmSm,  (6) 
dEm
dt

=σbψSmIEh+σbψ1SmILh-(μm+δm+γm)Em, (7) 
dIm
dt

=δmEm-μmIm     (8) 

The total populations are:  
Nh=Sh+Eh+IEh+ILh+Rh,      (9) 
Nm=Sm+Em+Im.      (10) 

 
Parameters and Variables 
Table 1: Description of Model Parameters 

Parameter Description 
μh,μm Natural mortality rates for humans and mosquitoes. 
αh Human recruitment rate. 
αm Mosquito recruitment rate. 
b Probability of human infection from an infectious mosquito bite. 
a Rate of transition from prompt to delayed treatment. 
c Probability of mosquito infection from biting an infectious human. 
σ Mosquito biting frequency on humans. 
ψ Interaction rate between mosquitoes and humans. 
ψ1 Interaction rate for delayed treatment cases. 
δ1 Rate of progression to infectious state with prompt treatment. 
δ2 Rate of progression to infectious state with delayed treatment. 
λ1 Recovery rate for prompt treatment cases. 
λ2 Recovery rate for delayed treatment cases. 
δ3 Rate of immunity loss, returning to susceptible state. 
δm Mosquito progression rate to infectious state. 
γm Loss rate of exposed mosquitoes due to prompt treatment. 
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Table 2: Model Variables 
Variables Description 

Nh Total human population. 
Nm Total mosquito population. 
Sh Susceptible human population. 
Eh Exposed human population. 
IEh  Infected humans receiving prompt treatment. 
ILh  Infected humans receiving delayed treatment. 
Rh Recovered human population. 
Sm Susceptible mosquito population. 
Em Exposed mosquito population. 
Im Infectious mosquito population. 

  
Basic Reproduction Number 
The reproduction number R0 is determined using a spectral 
radius method (van den Driessche & Watmough, 2002):  

R0=ρ(A)=
bσ√αhαmδm(aδ1ψ1+aδ2ψ1+δ1ηhψ+δ1λ2ψ+δ1μhψ+δ2ηhψ1+δ2λ1ψ1+δ2μhψ1)

μm√μh(δ1+δ2+μh)(δm+γm+μm)(ηh+λ2+μh)(a+ηh+λ1+μh)

      (11) 
It is decomposed into contributions from prompt (R0,prompt) 
and delayed (R0,delayed) treatment:  

R0=√R0,prompt
2 +R0,delayed

2 ,    (12) 

 where  

R0,prompt=
bσ√αhαmδm(aδ1ψ+δ1(ηh+λ2+μh))

μm√μh(δ1+δ2+μh)(δm+γm+μm)(ηh+λ2+μh)(a+ηh+λ1+μh)
 (13) 

  

R0,delayed=
bσ√αhαmδm(aδ2ψ1+δ2(ηh+λ1+μh))

μm√μh(δ1+δ2+μh)(δm+γm+μm)(ηh+λ2+μh)(a+ηh+λ1+μh)
 (14) 

The disease-free equilibrium is stable when R0<1, and an 
endemic equilibrium arises when R0>1. 
 
Bifurcation Analysis 
We apply center manifold analysis to examine system 
behavior at R0=1 (Castillo-Chavez & Song, 2004). The 
system is expressed as:  
dX

dt
=F(X),    X=(Sh,Eh,IEh,ILh,Rh,Sm,Em,Im)T.  (15) 

 The transmission rate is β=bσψeff, where ψeff=ψ+ψ1, 
assuming ψ=cψ1, with c=1. The effective infectivity is:  

R0=
bσψeff√αhαmδm(δ1+δ2)

μm√μh(δ1+δ2+μh)(δm+γm+μm)
   (16) 

  

ψeff=√
δ1(ηh+λ2+μh)ψ+[aδ1+δ2(ηh+λ1+μh)]ψ1

δ1+δ2
  (17) 

The critical transmission rate at R0=1 is:  

β*=μm√
μh(δ1+δ2+μh)(δm+γm+μm)(ηh+λ2+μh)(a+ηh+λ1+μh)

αhαmδm(δ1+δ2)
 (18) 

 The Jacobian at the disease-free equilibrium 

E1= (
αh

μh
,0,0,0,0, αm

μm
,0,0) with β=β* is:  

JB=

[
 
 
 
 
 
 
 
 
 -μh 0 0 0 δ3 0 0 -β*Sh

0

0 -k1 0 0 0 0 0 β*Sh
0

0 δ1 -k3 0 0 0 0 0
0 δ2 a -k4 0 0 0 0
0 0 λ1 λ2 -k5 0 0 0
0 0 -β*ψSm

0 -β*ψ1Sm
0 0 -μm 0 0

0 0 β*ψSm
0 β*ψ1Sm

0 0 0 -k7 0
0 0 0 0 0 0 δm -μm ]

 
 
 
 
 
 
 
 
 

      (19) 
where:  
k1=μh+δ1+δ2, 
k3=μh+ηh+λ1+a, 
k4=μh+ηh+λ2, 
k5=μh+δ3, 
k7=μm+δm+γm, 
Sh

0=αh/μh, 
Sm

0 =αm/μm. 
The right and left eigenvectors are:  

v=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
                            δ3v5-β*Sh

0

μh

                                β
*Sh

0

k1

                              δ1β
*Sh

0

k1k3

                        β
*Sh

0(δ2k3+aδ1)

k1k3k4

λ1δ1β
*Sh

0/(k1k3)+λ2β
*Sh

0(δ2k3+aδ1)/(k1k3k4)

k5

- β*Sm
0 (ψδ1/(k1k3)+ψ1(δ2k3+aδ1)/(k1k3k4))

μm
β*Sm

0 (ψδ1/(k1k3)+ψ1(δ2k3+aδ1)/(k1k3k4))

k7

                                  1 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,  (20) 
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w=

[
 
 
 
 
 
 
 
 
 
 

 

             0
          

μm
β*Sh

0

δ2μm/(β*Sh
0)+aw4

k3

β*ψ1Sm
0 δm/k7

k4

          0
          0
         δm

k7

         1 ]
 
 
 
 
 
 
 
 
 
 

.    (21) 

Bifurcation coefficients are:  

a=2β* (w2v1v8- w7β
*(ψv3+ψ1v4)2Sm

0

μm
) ,   (22) 

b= μm
β* + δmSm

0

μm+δm+γm
(ψv3+ψ1v4).   (23) 

Using parameters from (Opaginni & Durojaye, 2025), we 
find ψeff≈0.818, β*≈0.0229, a=-4.797, b>0, confirming a 
forward bifurcation at R0=1. 

 

 
Figure 1: Forward Bifurcation at R0=1 

 
Figure 1 illustrates the infected human population (Ih

* ) 
against R0. The green curve (disease-free state) is stable 
when R0<1, the red dashed curve indicates instability when 
R0>1, and the blue curve depicts a stable endemic state for 
R0>1. 
 
Effective Control Strategies 
To curb malaria transmission, we propose three dynamic 
intervention measures:   

1. u1(t): Rapid treatment to shorten infectious periods.  
2. u2(t): Mosquito population management to reduce 

transmission.  
3. u3(t): Efforts to address untreated infections to 

enhance recovery.  
 
Control Model 
The control model extends Equation (2.1 – 2.8):  
dSh

dt
=αh-σbψShIm+δ3Rh-μhSh,    (24) 

dEh

dt
=σbψShIm-(μh+δ1+δ2)Eh,   (25) 

dIEh
dt

=δ1Eh-(μh+ηh+λ1+a+u1)IEh,   (26) 
dILh
dt

=δ2Eh+aIEh-(μh+ηh+λ2+u3)ILh,   (27) 
dRh

dt
=λ1IEh+λ2ILh-(μh+ηh+δ3)Rh+u1IEh+u3ILh,  (28) 

dSm
dt

=αm-σbψ(1-u2)SmIEh-σbψ1(1-u2)SmILh-μmSm, (29) 
dEm
dt

=σbψ(1-u2)SmIEh+σbψ1(1-u2)SmILh-(μm+δm+γm)Em,

      (30) 
dIm
dt

=δmEm-μmIm     (31) 

 
Numerical Approach 
We constructed a deterministic model for Plasmodium 
falciparum transmission, incorporating prompt and 
delayed treatment alongside mosquito management. 
Optimal interventions were derived using an optimization 
principle (Fleming & Rishel, 2012), solved numerically via 
an iterative technique. State equations were solved 
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forward using a high-order numerical method, adjoint 
equations backward, and controls updated iteratively 
within 0≤ui(t)≤1. Simulations were performed in Python 
using parameters from Table 1. 
 
Objective Functional 
The cost functional is:  
J(u1,u2,u3)= ∫

tf
t0

[A1IEh
(t)+A2ILh

(t)+A3Im(t)+B1u1
2(t)+B2u2

2(t)+B3u3
2(t)]dt,

      (32) 
where A1,A2,A3 weight the infectious populations, and 
B1,B2,B3 represent intervention costs. The goal is to 
minimize J over [t0,tf], with controls in:  
U={(u1(t),u2(t),u3(t))∈L∞(t0,tf)

3|0≤ui(t)≤1}.  (33) 
 
Theorem 1 (Existence of Optimal Controls) An optimal 
control triple (u1* ,u2* ,u3* ) exists that minimizes J, provided:   

1. The system has a non-empty set of solutions.  
2. The control set U is convex and closed.  
3. The dynamic system is continuous, bounded, and 

linear in the controls.  
4. The cost functional’s integrand is convex with respect 

to the controls.  
5. The integrand satisfies:  

A1IEh+A2ILh+A3Im+B1u1
2+B2u2

2+B3u3
2≥-

l1+l2|u1|l+l3|u2|l+l4|u3|l, 
for positive constants l1,l2,l3,l4, l>1.  
Proof. Using Filippov’s Existence Theorem (Fleming & 
Rishel, 2012; Lenhart & Workman, 2007): 

1. The system has a unique solution due to continuous, 
locally Lipschitz right-hand sides and constrained 
controls.  

2. The control set U is convex and closed, as 
0≤λui+(1-λ)vi≤1.  

3. The dynamic equations are continuous, bounded, 
and linear in u1,u2,u3.  

4. The integrand is convex, as 
(λai+(1-λ)bi)

2-λai2-(1-λ)bi
2≤0.  

5. The integrand satisfies the coercivity condition with 
l1=A1IEh+A2ILh+A3Im, l2=B1, l3=B2, l4=B3, l=2.  

Thus, an optimal control exists.  
Optimal Control Characterization 
The Hamiltonian is:  
H=p1(αh-σbψShIm+δ3Rh-μhSh)  
+p2(σbψShIm-(μh+δ1+δ2)Eh)  
+p3(δ1Eh-(μh+ηh+λ1+a+u1)IEh)  
+p4(δ2Eh+aIEh-(μh+ηh+λ2+u3)ILh)  
+p5(λ1IEh+λ2ILh-(μh+ηh+δ3)Rh+u1IEh+u3ILh)  (34) 
+p6(αm-σbψ(1-u2)SmIEh-σbψ1(1-u2)SmILh-μmSm)  

+p7(σbψ(1-u2)SmIEh+σbψ1(1-u2)SmILh-(μm+δm+γm)Em) 
+p8(δmEm-μmIm)  
-(A1IEh+A2ILh+A3Im+B1u1

2+B2u2
2+B3u3

2)  

 
The adjoint equations are:  
ṗ1=p1(σbψIm+μh)-p2σbψIm,   (35) 
ṗ2=p2(μh+δ1+δ2)-p3δ1-p4δ2,   (36) 
ṗ3=p3(μh+ηh+λ1+a+u1)-p4a-p5(λ1+u1)+(p6-p7)σbψ(1-
u2)Sm+A1, (37) 
ṗ4=p4(μh+ηh+λ2+u3)-p5(λ2+u3)+(p6-p7)σbψ1(1-u2)Sm+A2,
 (38) 
ṗ5=p5(μh+ηh+δ3)-p1δ3,    (39) 
ṗ6=p6[σbψ(1-u2)IEh+σbψ1(1-u2)ILh+μm]    (40) 
-p7[σbψ(1-u2)IEh+σbψ1(1-u2)ILh],  
ṗ7=p7(μm+δm+γm)-p8δm,    (41) 
ṗ8=(p1-p2)σbψSh+p8μm+A3.   (42) 
Optimal controls are:  

u1
* (t)=max {0,min {1,

(p5-p3)IEh
2B1

}} ,   (43) 

u2
* (t)=max {0,min {1,

σbSm(p6-p7)(ψIEh+ψ1ILh)

2B2
}} , (44) 

u3
* (t)=max {0,min {1,

(p5-p4)ILh
2B3

}} .   (45) 

 
Controlled Reproduction Number 
The controlled reproduction number R0

c is evaluated using 
a spectral radius approach (van den Driessche & 
Watmough, 2002): 

FV-1=

[
 
 
 
 
 
 0 0 0 σbψSh

0δm
k4μm

σbψSh
0

μm
0 0 0 0 0
0 0 0 0 0
σbψ(1-u2)Sm

0

k1

σbψ(1-u2)Sm
0 δ1

k1k2

σbψ(1-u2)Sm
0 (aδ1+δ2k2)

k1k2k3
0 0

0 0 0 0 0 ]
 
 
 
 
 
 

      (46) 
where:  
k1=μh+δ1+δ2,     (47) 
k2=μh+ηh+λ1+a+u1,    (48) 
k3=μh+ηh+λ2+u3,     (49) 
k4=μm+δm+γm.     (50) 
The spectral radius is:  

R0
c=√

σ2b2(1-u2)2αhαmδm(ψ2δ1
2k3+ψψ1δ1(aδ1+δ2k2)+ψ1

2δ2
2k2)

μhμm
3 k1

2k2k3k4
+ σ2b2ψ2αhδm

μhμm
2 k4

      (51) 
 
RESULTS AND DISCUSSION 
The optimal intervention strategy reduced R0

c to 0.1964 
from an uncontrolled R0=2.2356, as derived in previous 
work (Opaginni & Durojaye, 2025),, demonstrating 
effective transmission suppression. Average intervention 
intensities are:   
u1

* =0.4107: Prompt treatment.  
u2

* =0.7204: Mosquito control.  
u3

* =0.4297: Reduction of untreated cases.  
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Figure 2: Dynamics under uncontrolled (blue) and controlled (red) scenarios over 100 days 

   

 
Figure 3: Dynamics under uncontrolled (blue) and controlled (red) scenarios over 100 days 
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The controlled scenario reveals:   
1. Increased Sh, indicating fewer infections.  
2. Lower Eh, showing effective prevention.  
3. Reduced IEh  and ILh, due to timely treatment and case 

management.  
4. Higher Rh, reflecting improved recovery rates.  
5. Increased Sm, with lower Em and Im, indicating 

disrupted mosquito transmission.  
 
Discussion 
The forward bifurcation, with a=-4.797 and b>0, indicates 
that keeping R0 below 1 ensures disease eradication. The 
integrated strategy of rapid treatment, mosquito 
management, and addressing untreated cases reduced R0

c 
to 0.1964, demonstrating robust control over malaria 
spread. Prompt treatment is most effective early, 
mosquito control sustains long-term impact, and 
managing untreated cases significantly reduces infected 
populations within 100 days, offering a practical approach 
for resource-scarce regions. 
 
CONCLUSION 
This study explores malaria transmission dynamics using 
an SEIIR-SEI model that differentiates between immediate 
and delayed treatment. The forward bifurcation at R0=1 
(a<0, b>0) confirms that maintaining R0<1 eliminates the 
disease. Optimized interventions (u1

* =0.4107, u2
* =0.7204, 

u3
* =0.4297) achieved a controlled R0

c=0.1964, significantly 
reducing transmission. These results highlight the 
effectiveness of integrated strategies for malaria control in 
high-prevalence regions like Nigeria. Future research 
could investigate the effects of drug resistance and spatial 
dynamics on transmission. 
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