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A B S T R A C T  
Diatomic molecules play a key role in molecular physics and 
quantum chemistry because of their simple structure and their 
usefulness in studying how molecules behave under external 
factors. Examining the impact of influences like magnetic fields and 
Aharonov-Bohm (AB) flux on their quantum properties is essential for 
advancements in areas such as quantum control, molecular 
spectroscopy, and condensed matter research. In this study, 
numerical calculations were conducted to validate the computed 
results, revealing that both the external magnetic field B(T) and flux 
𝜙𝐴𝐵   significantly affect the energy levels of the selected diatomic 
molecules. At zero temperature, the energy eigenvalues indicate a 
slight decrease in magnetization (𝑀𝑛𝑚) and magnetic susceptibility 
(𝜒𝑛𝑚) under varying magnetic field B(T) and flux 𝜙𝐴𝐵, with hydrogen 
(𝐻2) exhibiting an overlap at specific field strengths B(T). 
Magnetization (𝑀𝑛𝑚) generally increases with both magnetic field 
B(T) and flux 𝜙𝐴𝐵  as temperature changes, while for Co, it decreases 
with rising temperature but increases when plotted against 
temperature as magnetic field B(T) and flux 𝜙𝐴𝐵   vary. A similar 
pattern is observed in 𝑆𝑐𝐻 and 𝑆𝑐𝐹. Additionally, partition function 
results show that temperature, magnetic field B(T) and flux 𝜙𝐴𝐵   
strongly influence the bound state energy eigenvalues, leading to a 
slight increase in the thermal properties of these diatomic 
molecules. 

 
INTRODUCTION 
The study of diatomic molecules and their energy spectra 
is a fundamental aspect of quantum mechanics, energy 
physics and molecular physics. Accurately determining 
the energy eigenvalues of such molecules is essential for 
understanding their electronic structure, vibrational 
motion, and rotational behaviour, which have applications 
in spectroscopy, chemical bonding analysis, and material 
science (Abu – shady et al., 2023). Manga et al. (2023) 
utilized the modified Yukawa potential to explore the 

interaction between pseudovector and pseudoscalar 
components in determining the neutron-neutron, proton-
proton, and proton-neutron coupling constants. Similarly, 
the application of an appropriate potential function has 
been employed to refine the screened-kratzer and kratzer 
potentials, particularly in quantum approximations. In a 
related study,  Ding et al. (2011) investigated bound-state 
and thermal properties using the modified Tietz–Hua 
potential within the framework of supersymmetric 
quantum mechanics. Their research focused on the 
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vibrational energy spectra and thermodynamic 
characteristics of select diatomic molecules (Ding et al. 
2011). 
Edet et al. (2021) examined eigen solutions and various 
properties of the screened cosine kratzer potential in 2D-
dimensional space under both relativistic and 
nonrelativistic conditions. Their work extended to 
calculating the rotational and vibrational energy levels of 
different heteronuclear diatomic molecules. In an earlier 
study, applied coupling constants to determine the 
effective radius and scattering length for neutron-neutron 
and proton-neutron interactions using the Modified 
Yukawa Potential (Dong, 2023). 
Several researchers have explored potential models to 
analyse the partition function and various information-
theoretic measures, such as Tsallis, Renyi, Shannon, and 
Fisher information entropies. Recently, there has been 
significant interest in studying potential models in the 
presence of an Aharonov–Bohm flux and an external 
magnetic field (Edet et al., 2021) investigated the 
thermomagnetic properties of the screened-Kratzer 
potential under these conditions, examining effects such 
as persistent current, magnetization, and magnetic 
susceptibility (Ikot et al., 2021). 
Ikot et al. (2021) further analysed the impact of the 
Aharonov–Bohm flux and an external magnetic field on the 
Hellmann plus screened-Kratzer potential, presenting the 
energy equation in a closed-form solution. Their study 
extended to the thermomagnetic properties of diatomic 
molecules, where they derived a normalized wave function 
expressed in terms of Jacobi polynomials. Additionally, 
they provided wave function plots and probability density 
distributions for selected diatomic molecules. The study 
also covered essential thermomagnetic characteristics, 
including partition function, vibrational mean energy, 
vibrational heat capacity, magnetization, persistent 
current, and magnetic susceptibility (Edet et al., 2021). 
In this Study, we focus on four specific diatomic 
molecules: H₂ (hydrogen), Co (carbon monoxide), 𝑆𝑐𝐻 
(scandium hydride), and 𝑆𝑐𝐹 (scandium fluoride). The 
energy eigenvalues of these molecules are influenced by 
the presence of an exponential screening parameter, the 
Yukawa potential, and an external magnetic field, making 
the problem both complex and scientifically significant. 
 
Theoretical Framework of Yukawa potential  
In molecular systems, interatomic forces primarily arise 
due to electrostatic interactions between charged 
particles such as nuclei and electrons. The Coulomb 
potential provides a classical description of these 
interactions, but in many physical environments, such as 
plasmas, semiconductors, and astrophysical systems, 
these interactions are often modified due to screening 
effects caused by surrounding particles. This is where the 
Yukawa potential becomes useful (Manga et al., 2023). 

 
The Nikiforov-Uvarov-Functional Analysis (NUFA) 
Method 
By employing the concept of NU method, Parametric NU 
method and Functional analysis method, we deduced a 
simple and intuitiveness method for solving a second order 
differential equation of the hypergeometric form called the 
Nikiforov-Uvarov-Function Analysis (NUFA) method. This 
method is simple which require little mathematical 
manipulation just as its counter part of parametric NU 
method (Edet et al. 2021). On the same note, the NU 
method required finding the square of the polynomials and 
other conditions this make it complicated, NUFA method 
said to be easier in obtaining the energy and the wave 
function once the wave equation is well transformed and 
the singularities is identified. It is well known that the NU 
method is deployed for the past decade in solving second-
order differential equation of the form (Jia et al. 2012).  
𝑑2 Ψ(𝑢)

𝑑𝑢2 +
ℸ̅(𝑢)

ℴ(𝑢)

𝑑Ψ (u)

𝑑𝑢
+

ℴ̅(𝑢)

ℴ2(𝑢)
Ψ (u) = 0   (1) 

Where ℴ(𝑢) and ℴ̅(𝑢) are polynomials of second order and 
ℸ̅(𝑢) is the first order polynomial. Tezcan and sever latter 
invent the parametric form od NU method in the form (Jia 
et al. 2012). 
𝑑2 Ψ(𝑢)

𝑑𝑢2 +
𝜂1−𝜂2𝑢

𝑢(1−𝜂3𝑢)

𝑑Ψ (u)

𝑑𝑢
+

1

𝑢2(1−𝜂3𝑢)2
[−𝜉1𝑢

2 +

𝜉2𝑢−𝜉3]Ψ (u) = 0    (2) 
Where𝜂𝑖 𝑎𝑛𝑑  𝜉𝑖

(𝑖 = 1, 2, 3)are all parameters, it can be 
observed in equation (3) that the differential equation has 
two singularities at 𝑢 → 0 and 𝑢 → 1, thus the wave is 
express in the form (Jia et al. 2012). 
Ψ(𝑢) = 𝑢𝜆0

(1 − 𝑢)𝑣𝑓(𝑢)    (3) 
By substituting equation (3) into equation (2) we obtained 
the following equation.  

𝑢(1 − 𝜂3𝑢)
𝑑2 𝑓(𝑢)

𝑑𝑢2 + [𝜂1 + 2𝜆0 − (2𝜆0𝜂3 + 2𝑣𝜂3 +

𝜂2)𝑢]
𝑑 𝑓(𝑢)

𝑑𝑢
− 𝜂3 (𝜆0 + 𝑣 +

1

2
(
𝜂2

𝜂3
− 1) + √

1

4
(
𝜂2

𝜂3
− 1)

2

+

𝜉1

𝜂3
2) (𝜆0 + 𝑣 +

1

2
(
𝜂2

𝜂3
− 1) − √

1

4
(
𝜂2

𝜂3
− 1)

2

+
𝜉1

𝜂3
2) +

[
𝜆0(𝜆0−1)+𝜂1𝜆0−𝜉3

𝑢
+

𝑣(𝑣−1)𝜂3+𝜂2𝑣−𝜂1𝜂3𝑣−
𝜉1
𝜂3

+𝜉2−𝜉3𝜂3

(1−𝜂3𝑢)
] 𝑓(𝑢) = 0

      (4) 
The expression of equation (4) in the form of gauss 
hypergeometric equation can be obtain if and only the 
following function vanished, 
𝜆0(𝜆0 − 1) + 𝜂1𝜆

0 − 𝜉3 = 0   (5) 

𝑣(𝑣 − 1)𝜂3 + 𝜂2𝑣 − 𝜂1𝜂3𝑣 −
𝜉1

𝜂3
+ 𝜉2 − 𝜉3𝜂3 = 0 (6) 

Now equation (4) becomes 

𝑢(1 − 𝜂3𝑢)
𝑑2 𝑓(𝑢)

𝑑𝑢2 + [𝜂1 + 2𝜆0 − (2𝜆0𝜂3 + 2𝑣𝜂3 +

𝜂2)𝑢]
𝑑 𝑓(𝑢)

𝑑𝑢
−𝜂3 (𝜆0 + 𝑣 +

1

2
(
𝜂2

𝜂3
− 1) + √

1

4
(
𝜂2

𝜂3
− 1)

2

+
𝜉1

𝜂3
2)  
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(𝜆0 + 𝑣 +
1

2
(
𝜂2

𝜂3
− 1) − √

1

4
(
𝜂2

𝜂3
− 1)

2

+
𝜉1

𝜂3
2) 𝑓(𝑢) = 0  

      (7) 
By solving equation (5) and (6) we have (Lublinsky et al., 
2017). 

𝜆0 =
1

2
((1 − 𝜂1) ± √(1 − 𝜂1)

2 + 4𝜉3)  (8) 

𝑣 =
1

2𝜂3
((𝜂3 + 𝜂1𝜂3 − 𝜂2) ±

√(𝜂3 + 𝜂1𝜂3 − 𝜂2)
2 + 4(

𝜉1

𝜂3
+ 𝜂3𝜉3 − 𝜉2))  (9) 

 
Equation (7) is the hypergeometric equation of the form 
(Lublinsky et al., 2017). 

𝑣(1 − 𝑣)
𝑑2 𝑓(𝑣)

𝑑𝑣2 + [𝛾3 + (𝛾1 + 𝛾2 + 1)𝑣]
𝑑 𝑓(𝑣)

𝑑𝑣
−

[𝛾1𝛾2]𝑓(𝑣) = 0      (10) 
Where 𝛾1 , 𝛾2, 𝛾3 are given as follows, 

𝛾1 = √𝜂3 (𝜆0 + 𝑣 +
1

2
(
𝜂2

𝜂3
− 1) + √

1

4
(
𝜂2

𝜂3
− 1)

2

+
𝜉1

𝜂3
2)

      (11) 

𝛾2 = √𝜂3 (𝜆0 + 𝑣 +
1

2
(
𝜂2

𝜂3
− 1) − √

1

4
(
𝜂2

𝜂3
− 1)

2

+
𝜉1

𝜂3
2)

      (12) 
𝛾3 = 𝜂1 + 2𝜆0     (13) 
Letting either 𝛾1 𝑎𝑛𝑑 𝛾2 equal to a negative integer −𝑛, the 
hypergeometric functions 
𝑓(𝑢) turns to a polynomial of degree 𝑛. Thus, the 
hypergeometric function 𝑓(𝑢) approaches finite in the 
following quantum conditions that is 𝛾1 = −𝑛, where 𝑛 =
0, 1, 3, … , 𝑛𝑚𝑎𝑥 . 
From the above quantum conditions, we have (Mulian, 
2025), 

𝛾1 = √𝜂3 (𝜆0 + 𝑣 +
1

2
(
𝜂2

𝜂3
− 1) + √

1

4
(
𝜂2

𝜂3
− 1)

2

+
𝜉1

𝜂3
2) = −𝑛

      (14) 

𝜆0 + 𝑣 +
1

2
(
𝜂2

𝜂3
− 1) +

𝑛

√𝜂3
= −√

1

4
(
𝜂2

𝜂3
− 1)

2

+
𝜉1

𝜂3
2 (15) 

Squaring both side of equation (15) and rearranging, we 
obtain the energy equation for NUFA method as  

(𝜆0)2 + 2𝜆0 (𝑣 +
1

2
(
𝜂2

𝜂3
− 1) +

𝑛

√𝜂3
) + (𝑣 +

1

2
(
𝜂2

𝜂3
− 1) +

𝑛

√𝜂3
)
2

−
1

4
(
𝜂2

𝜂3
− 1)

2

−
𝜉1

𝜂3
2     (16) 

By substituting equation (8) and (9) into Equation (3), we 
corresponding NUFA wave equation is given as  (Onate et 
al. 2022). 

Ψ(𝑢) = ℕ𝑢
(1−𝜂1)+√(𝜂1−1)2+4𝜉3

2 (1 −

𝜂3𝑢)

√
(𝜂3+𝜂1𝜂2−𝜂2)+4(

𝜉1
𝜂3
2 +𝜂2𝜉3−𝜉2)

2𝜂3 2𝐹1(𝛾1 , 𝛾2 , 𝛾3; 𝑢)  (17) 
 
 

Application of the NUFA method to modified 
exponential (Modified Tietz-Wei) plus Yukawa potential 
We use the NUFA method to find the energy eigenvalues for 
selected diatomic molecules based on different principal 
number quantum number and magnetic quantum number. 
The Hamiltonian operator of a system of particles 
characterised by a particle that is charged and confined to 
move with the improved screened Greene and Aldrich 
modified exponential plus Yukawa potential under the 
combined influence of AB and magnetic fields can be 
express in cylindrical coordinates as follows (Onate et al., 
2022). 

(𝑖ℏ∇⃗⃗ −
𝑒

𝑐
𝐴 )

2

𝜓(𝑟, 𝜙, 𝑧) = 2 𝜇 [𝐸𝑛𝑚 + (𝐷0 (
1+𝑒−2𝛼𝑟

1−𝑒−2𝛼𝑟) +

 
𝐷1𝑒−2𝛼𝑟

𝑟
+

𝑐 

2
)]𝜓(𝑟, 𝜙, 𝑧)    (18) 

Where 𝐸𝑛𝑚 donates the energy level, 𝜇 is the effective 
reduce mass of the system, the vector potential is given as 
𝐴  which can give as the superposition of two terms 𝐴 =

𝐴1
⃗⃗⃗⃗ + 𝐴2

⃗⃗ ⃗⃗  having the azimuthal component and external 
magnetic field with ∇⃗⃗ × 𝐴 = 𝐵,⃗⃗  ⃗ 𝐴2

⃗⃗ ⃗⃗ = 0 where �⃗�  is the 

magnetic field. We choose 𝐴1
⃗⃗⃗⃗ =

�⃗� 𝑒−2∝𝑟

1−𝑒−2∝𝑟 �̂� and 𝐴2
⃗⃗ ⃗⃗ =

𝜙𝐴,𝐵

2𝜋𝑟
�̂� 

the additional magnetic flux 𝜙𝐴,𝐵 created by a solenoid 
with ∇⃗⃗ . 𝐴2

⃗⃗ ⃗⃗ = 0. Hence the vector potential can be written 
as  

𝐴 = (0,
�⃗� 𝑒−2∝𝑟

1−𝑒−2∝𝑟 +
𝜙𝐴,𝐵

2𝜋𝑟
, 0 )   (19) 

This equation can be solved analytically for 𝑚 ≠ 0 due to 
the centrifugal term. We employed the Greene and Aldrich 
screening Approximation (Jia et al. 2012). 
1

𝑟2 =
4𝛼2𝑒−2𝛼𝑟

(1−𝑒−2𝛼𝑟)2
⟹

1

𝑟
=

2∝𝑒−2𝛼𝑟

(1−𝑒−2𝛼𝑟)
   (20) 

We substitute equation (19) & (20) into equation (18) and 
transform it. We have   

𝑅′′(𝑟) + [
2𝜇𝐸𝑛𝑚

ℏ2 +
2𝜇

ℏ2 (𝐷0 (
1+𝑢

1−𝑢
) + 𝐷1 (

2∝𝑢

(1−𝑢)
) −

𝑚2−1 4 (4𝛼2)⁄

(1−𝑢)2
− (

𝑒

ℏ𝑐
)

4𝛼2𝑢2

(1−𝑢)2
(𝐵 +

𝜙𝐴,𝐵

2𝜋
) −

𝑒2

ℏ2𝑐2  (
4𝛼𝑢2

(1−𝑢)2
) (𝐵 +

𝜙𝐴,𝐵

2𝜋
)
2

)] 𝑅𝑛𝑚(𝑟) = 0    (21) 

We transform equation (21) into hypergeometric equation 
type of the form 
𝑑2𝑅

𝑑𝑢2 +
(1−𝑢)

𝑢(1−𝑢)

𝑑𝑅

𝑑𝑢
+

1

𝑢2(1−𝑢)2
{−(𝜀𝑛𝑚 + 𝐵 + 𝐵𝐷12𝛼 + 𝐶 + 𝐷 +

𝐸 + 𝐹 + 𝐺 + 𝐻)𝑢2 + (2𝜀𝑛𝑚 + 𝐵𝐷12𝛼)𝑢 − 𝜀𝑛𝑚 + 𝐵𝐷0} = 0
      (22) 
Comparing equation (22) with equation (23) given as. 
𝜓′′ +

𝜂1−𝜂2 𝑢

𝑢(1−𝑢)
𝜓′ +

1

𝑢2(1−𝑢)2
{−𝜉1𝑢

2 + 𝜉2𝑢 − 𝜉3}𝜓 = 0

      (23)  
𝜉1 = 𝜀𝑛𝑚 + 𝐵 + 𝐵𝐷12𝛼 + 𝐶 + 𝐷 + 𝐸 + 𝐹 + 𝐺 + 𝐻 
      (24) 
 𝜉2 = 2𝜀𝑛𝑚 + 𝐵𝐷12𝛼    (25) 
𝜉3 = 𝜀𝑛𝑚 + 𝐵𝐷0     (26) 
Where 𝐷0 = 

𝐷𝑒

2
> 0, 𝐷𝑒  is the dissociation energy that 

describes the depth of the potential well, 𝛼 is the screening 
parameter which characterizes the strength of the 
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potential. 𝐷1 is a real constant which also serve as a 
control parameter for the potential model, while 𝑟 is the 
internuclear distance between the atoms of diatomic 
molecules (Jia et al. 2012). 

𝐵 =
𝜇

2𝛼2ℏ2, 𝐶 = (𝑚 + 𝑥)2, 𝐷 =  (
𝑒 𝐵

ℏ𝑐
), 𝐸 = (

𝑒 𝜙𝐴𝐵

2𝜋ℏ𝑐
) , 𝐹 =

𝑒2𝐵2

ℏ2𝑐2 , 𝐺 =
𝑒2𝜙𝐴𝐵𝐵

2𝜋ℏ2𝑐2 , 𝐻 =
𝑒2𝜙𝐴𝐵

2

4𝜋2ℏ2𝑐2   (27) 

𝜆0 =
1

2
((1 − 𝜂1) ± √(1 − 𝜂1)

2 + 4𝜉3)  (28) 
(𝜆0)2 = 𝜀𝑛𝑚 + 𝐵𝐷0    (29) 
For  
𝜂1 = 𝜂2 = 𝜂3 = 1, we have the expression for the coiling 
velocity as follows 

𝑣 =
1

2𝜂3
((𝜂3 + 𝜂1𝜂3 − 𝜂2) ±

√(𝜂3 + 𝜂1𝜂3 − 𝜂2)
2 + 4(

𝜉3

𝜂2
+ 𝜂3𝜉3 − 𝜉2))  (30) 

  𝑣 =
1+√1+4(𝐵+𝐶+𝐷+𝐸+𝐹+𝐺+𝐻+𝐵𝐷0)

2
   (31) 

The energy eigenvalue equation is deduced from the 
relation 

(𝜆0)2 + 2𝜆0 (𝑣 +
1

2
(
𝜂2

𝜂3
− 1) +

𝑛

√𝜂3
) + ((𝑣 +

1

2
(
𝜂2

𝜂3
− 1) +

𝑛

√𝜂3
)
2

+
1

4
(
𝜂2

𝜂3
− 1)

2

−
𝜉1

𝜂3
2)=0   (32) 

𝐸𝑛𝑚 = 𝐷0 −
2𝛼2ℏ2

𝜇
(
𝛾−𝐵𝐷0−(𝑣+𝑛)2

2(𝑣+𝑛)
)
2

   (33) 

 
Thermodynamic Properties 
In this section, the thermodynamic properties of the 
potential model were evaluated. These properties can be 
derived using the exact partition function as follows (Reiss, 
2012). 
𝑍(𝛽) = ∑ 𝑒−𝛽𝐸𝑛 𝜆

𝑛=0     (34) 
Where 𝜆 is an upper bound of the vibrational quantum 
number deduced from 𝑑𝐸  𝑛

𝑑𝑛
= 0, 𝛽 =

1

𝐾𝑇
 where k and T are 

Boltzmann constant and temperature respectively. The 
summation can be replaced with an integral (Ikot et al. 
2021).  

𝑍(𝛽) = ∫ 𝑒−𝛽𝐸𝑛
𝜆

0
𝑑𝑛    (35) 

The energy equation can be expressed in terms of a 
partition function as follows (Ikot et al. 2021). 

𝑍 = 𝑒−𝛽𝐾1 ∫ 𝑒
−

𝛽

2
(
2𝐾2𝐾3

2

𝑃2  + 𝐾2𝑃2)𝜆

0
𝑑𝑃   (36) 

 
Magnetisation and Magnetic Susceptibility at Zero 
Temperature 
At absolute zero, magnetization 𝑀nm and magnetic 
susceptibility χnm  reveal key quantum characteristics of a 
system subjected to an external magnetic field B(T). 
Magnetization 𝑀nm(𝐵, 𝛷AB) describes the material’s 
response to the applied field and is given by (Jia et al. 2012) 
 𝑀nm = −

𝜕𝐸

𝜕𝐵
     (37) 

Magnetic susceptibility quantifies how magnetization 
varies with the magnetic field. At zero temperature, 
quantum effects become dominant, influencing 
susceptibility through the system’s ground state 
properties. 
χnm =

𝜕𝐸

𝜕𝐵
     (38) 

 
Magnetisation and Magnetic Susceptibility at Finite 
Temperature 
At finite temperatures, magnetization (𝑀nm) and magnetic 
susceptibility (χnm) are influenced by both thermal 
fluctuations and quantum effects. It depends on the 
statistical distribution of energy states with thermal 
excitations leading to gradual changes in magnetic 
response compared to the abrupt transitions seen at zero 
temperature (Umirzakov, 2019).  
𝑀nm =

1

𝛽

𝜕𝑍

𝜕𝐵
     (39) 

Magnetic susceptibility (χnm) describes how 
magnetization responds to variations in the applied field. 
χnm =

𝜕𝑀

𝜕𝐵
     (40) 

 
Numerical computation of energy eigenvalues 
The numerical computation for energy eigenvalues is 
calculated using equation (33) as shown in table (1 - 4) for 
four diatomic molecules based on the results of 
spectroscopic analysis by vary magnetic field B(T) and flux 
𝜙𝐴𝐵 . The numerical bound state solutions were carried out 
for fixed principal quantum number (𝑛 = 0, 1, 2, 3) with 
varying magnetic quantum number 𝑚 = 0,+1,−1. 

 
Table 1: The Results of Spectroscopic Analysis (Jia et al., 2012) 

Parameters 𝑯𝟐 𝑪𝒐 𝑺𝒄𝑯 𝑺𝒄𝑭 
𝜇(𝑎𝑚𝑢) 0.50391 6.86067 10.68277 13.35894 
𝐷𝑒(𝑐𝑚

−1) 38266 90540 36778.9 47183.43 
𝛼(𝐴−1)̇  1.9426 2.2940 1.5068 1.46102 
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Table 2: Numerical Solutions for Energy Eigenvalues of 𝑯𝟐 𝑫iatomic Molecule  
𝑯𝟐 𝑫iatomic Molecule 

𝒎 𝒏 𝑩 = 𝟎,𝝓𝑨𝑩 = 𝟎 𝑩 = 𝟑,𝝓𝑨𝑩 = 𝟎 𝑩 = 𝟎,𝝓𝑨𝑩 = 𝟑 𝑩 = 𝟑,𝝓𝑨𝑩 = 𝟑 
0 0 −12.09318 −11.46353 −11.89254 −11.10884 
 1 −9.47862 −8.97591 −9.3186 −8.69199 
 2 −7.34169 −6.93629 −7.21278 −6.70683 
 3 −5.58088 −5.25123 −5.47614 −5.064315 
1 0 −12.02567 −11.40175 −11.82689 −11.05017 
 1 −9.42480 −8.92649 −9.26621 −8.64497 
 2 −7.29835 −6.89637 −7.17054 −6.66879 
 3 −5.54567 −5.21873 −5.44180 −5.03330 
−1 0 −12.02567 −11.40175 −11.82689 −11.05017 
 1 −9.42480 −8.92649 −9.26621 −8.64497 
 2 −7.29835 −6.89637 −7.17054 −6.66879 
 3 −5.54567 −5.21873 −5.44180 −5.03330 

 
Table 3: Numerical Solution for Energy Eigenvalues of 𝑪𝒐 𝑫iatomic Molecule  

𝑪𝒐 𝑫iatomic Molecule 
𝒎 𝒏 𝑩 = 𝟎,𝝓𝑨𝑩 = 𝟎 𝑩 = 𝟑,𝝓𝑨𝑩 = 𝟎 𝑩 = 𝟎,𝝓𝑨𝑩 = 𝟑 𝑩 = 𝟑,𝝓𝑨𝑩 = 𝟑 
0 0 0.55234 0.56455 0.55612 0.57190 
 1 0.88345 0.89490 0.88700 0.90178 
 2 1.19636 1.20709 1.19968 1.21355 
 3 1.49211 1.50217 1.49522 1.5082 
1 0 0.55360 0.56581 0.55738 0.57315 
 1 0.88463 0.89607 0.88818 0.90296 
 2 1.19747 1.20820 1.20079 1.21465 
 𝑙3 1.49314 1.50320 1.49626 1.50926 
−1 0 0.55360 0.56581 0.55738 0.57315 
 𝑙1 0.88463 0.89607 0.88818 0.90296 
 2 1.19747 1.20820 1.20079 1.21465 
 3 1.49314 1.50320 1.49626 1.50926 

 
Table 4: Numerical Solution for Energy Eigenvalues of 𝑺𝒄𝑯 𝑫iatomic Molecule  

𝑺𝒄𝑯 𝑫iatomic Molecule 
𝒎 𝒏 𝑩 = 𝟎,𝝓𝑨𝑩 = 𝟎 𝑩 = 𝟑,𝝓𝑨𝑩 = 𝟎 𝑩 = 𝟎,𝝓𝑨𝑩 = 𝟑 𝑩 = 𝟑,  𝝓𝑨𝑩 = 𝟑 
0 0 −5.97612 −5.96501 −5.97268 −5.95831 
 1 −5.66566 −5.65502 −5.66237 −5.64860 
 2 −5.36672 −5.35651 −5.36356 −5.35035 
 3 −5.07877 −5.06898 −5.07574 −5.06308 
1 0 −5.97497 −5.96386 −5.97153 −5.95717 
 1 −5.66457 −5.65392 −5.66127 −5.64750 
 2 −5.36567 −5.35546 −5.36251 −5.34930 
 3 −5.07776 −5.06797 −5.07473 −5.06207 
−1 0 −5.97497 −5.96386 −5.97153 −5.95717 
 1 −5.66457 −5.65392 −5.66127 −5.64750 
 2 −5.36567 −5.35546 −5.36251 −5.34930 
 3 −5.07776 −5.06797 −5.07473 −5.06207 
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Table 5: Numerical Solution for Energy Eigenvalues of 𝑺𝒄𝑭 𝑫iatomic Molecule 
𝑺𝒄𝑭 𝑫iatomic Molecule 

𝒎 𝒏 𝑩 = 𝟎,𝝓𝑨𝑩 = 𝟎 𝑩 = 𝟑,𝝓𝑨𝑩 = 𝟎 𝑩 = 𝟎,𝝓𝑨𝑩 = 𝟑 𝑩 = 𝟑,𝝓𝑨𝑩 = 𝟑 
0 0 −1.87691 −1.87284 −1.87565 −1.87039 
 1 −1.70905 −1.70513 −1.70784 −1.70276 
 2 −1.54645 −1.54267 −1.54528 −1.54038 
 3 −1.38893 −1.38527 −1.38780 −1.38307 
1 0 −1.87649 −1.87242 −1.87523 −1.86997 
 1 −1.70865 −1.70473 −1.70744 −1.70236 
 2 −1.54606 −1.54228 −1.54489 −1.54000 
 3 −1.38855 −1.38490 −1.38742 −1.38270 
−1 0 −1.87649 −1.87242 −1.87523 −1.86997 
 1 −1.70865 −1.70473 −1.70744 −1.70236 
 2 −1.54606 −1.54228 −1.54489 −1.54000 
 3 −1.38855 −1.38490 −1.38742 −1.38270 

 
Computational Analysis 
The computational analysis was conducted to validate the 
numerical solutions for the bound state energy 
eigenvalues of four diatomic molecules under the 
influence of an external magnetic field B(T) and flux (𝜙𝐴𝐵). 
This study is framed within the parametric Nikiforov-
Uvarov-Functional Analysis (NUFA) approach, utilizing the 
exponential screened plus Yukawa potential (ESPYP). 
This section is divided into two parts. The first part involves 
calculating the molecular energy eigenvalues by varying 
the magnetic field B(T) and flux (𝜙𝐴𝐵) across the four 
diatomic molecules. The second part focuses on 
computing the magnetisation and magnetic susceptibility 

at both zero and finite temperatures under the influence of 
the external magnetic field B(T) and flux (𝜙𝐴𝐵). 
The thermodynamic characteristics of the diatomic 
molecules are determined by the partition function, 
expressed as follows. 

𝑍 =
𝑒−𝛽(𝐾1+𝐾2𝐾3)√

𝜋

2
(𝑒

−√−𝛽𝐾2√−𝛽𝐾2𝐾3
2

𝐴 + 𝑒
√−𝛽𝐾2√−𝛽𝐾2𝐾3

2

 𝐵)

2√−𝛽𝐾2

      (41) 

𝐴 = (1 + Erf[
𝑃2√−𝛽𝐾2−√−𝛽𝐾2𝐾3

2

√2𝑃
])   (42) 

𝐵 = (−1 + Erf[
𝑃2√−𝛽𝐾2+√−𝛽𝐾2𝐾3

2

√2𝑃
])   (43) 
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Figure 1: Calculated partition function based on temperature (𝛽) for four diatomic molecules under 
varying B(T) and flux (𝜙𝐴𝐵).  
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Figure 2: Calculated energy eigenvalues for four diatomic molecules under varying B(T) and flux (𝜙𝐴𝐵) 
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Figure 3: Calculated magnetisation for four diatomic molecules under varying B(T) and flux (𝜙𝐴𝐵) at zero temperature 
 



Manga et al.,  JOSRAR 2(3) MAY-JUN 2025 66-79 
 

75 

 
Figure 4: Calculated magnetic susceptibility for four diatomic molecules under varying B(T) and flux (𝜙𝐴𝐵) 
at zero temperature 
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Figure 5: Computed magnetic susceptibility for four different diatomic molecules under varying magnetic 
field strength B(T) and flux (𝜙𝐴𝐵) at a finite temperature 
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Figure 6: Computed magnetic susceptibility for four different diatomic molecules under varying 
magnetic field strength B(T) and flux (𝜙𝐴𝐵) at a finite temperature 

 
Discussion of Results 
To validate the results of our study, we calculate the energy 
eigenvalues using equation (33) for various diatomic 
molecules, such as 𝐻2, 𝐶𝑜, 𝑆𝑐𝐻 𝑎𝑛𝑑 ScF and our findings is 
similar to that of manga et al. 2025A; Manga et al. 2025B; 
Manga et al. 2023. These computations were performed 
under an external magnetic field by varying the magnetic 
field B(T) and magnetic flux  (𝜙𝐴𝐵)  across different 
principal and magnetic quantum numbers. More so, we 
make used of spectroscopic parameters as shown in table 
1 obtained from NIST database under the following 
conversions (Jia et al. 2012); 
1 𝑎𝑚𝑢 = 931.494028 𝑀𝑒𝑉 𝑐2⁄    (44) 
1 𝑐𝑚−1 = 1.239841875 × 𝑒𝑉�̇�   (45) 
The calculated numerical energy eigenvalues are 
presented in tables (2 – 5), shows that both the external 
magnetic B(T) and magnetic flux  (𝜙𝐴𝐵) significantly 
influence the energy levels of the (𝐻2, 𝐶𝑜, 𝑆𝑐𝐻 𝑎𝑛𝑑 𝑆𝑐𝐹) 
diatomic molecules. The upward shifts in energy levels 
with increasing B(T) and magnetic flux  (𝜙𝐴𝐵) indicates 
their role in modifying the molecular quantum states, 

which can be critical for understanding magneto-quantum 
effects in diatomic systems. Figure 1. Show that there is 
slightly influence of temperature, magnetic field, and 
magnetic flux on the statistical (thermal) properties of 
diatomic molecules. Figure 2  demonstrates how external 
magnetic fields and flux modify the quantum energy states 
of diatomic molecules with a trend relation. Figure 3 
illustrates the impact of magnetic field B(T) and magnetic 
flux  (𝜙𝐴𝐵)on the magnetization of diatomic molecules at 
zero temperature. However, in plot (b) for hydrogen, an 
overlap occurs at 𝐵 = 5 𝑇 𝑎𝑛𝑑 𝐵 = 10 𝑇. Figure 4 shows 
how external magnetic fields B(T) and magnetic flux  (𝜙𝐴𝐵) 
affect the magnetic susceptibility of diatomic molecules at 
zero temperature. These variations provide insight into the 
quantum magnetic properties of molecular systems with a 
trend relationship, that at zero temperature magnetic 
suceptibility (χnm) increases. Figure 5 shows that for 𝐻2 
the magnetization (𝑀nm) increases with both the magnetic 
field B(T) and magnetic flux  (𝜙𝐴𝐵). as temperature varies. 
A similar trend is observed in the relationship between 
magnetization (𝑀nm) and temperature when B(T) and 
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magnetic flux  (𝜙𝐴𝐵).  are varied. In the case of Co, 
magnetization (𝑀nm) decreases with increasing 
temperature while varying B(T) and magnetic flux  (𝜙𝐴𝐵). 
However, when plotted against temperature, 
magnetization (𝑀nm) increases as B(T) and magnetic flux  
(𝜙𝐴𝐵) change. This behavior is also observed in ScH and 
ScF. 
Figure 5 for 𝐻2 the magnetisation 𝑀nm increseases with 
magnetic field B(T) and magnetic flux  (𝜙𝐴𝐵) by varying 
temperature. Similar trend was observed that the 
magnetisation (𝑀nm) with temperature increases by 
varying magnetic field B(T) and magnetic flux  (𝜙𝐴𝐵). For 𝐶𝑜 
it was observed that magnetisation (𝑀nm) with magnetic 
field B(T) and magnetic flux  (𝜙𝐴𝐵) decreases by varying 
temperature. On the same note, the magnetisation (𝑀nm) 
with temperature increased by varying magnetic field B(T) 
and magnetic flux  (𝜙𝐴𝐵). Similar effect is observed for 𝑆𝑐𝐻 
and 𝑆𝑐𝐹. Figure 6 shows that the magnetic susceptibility 
(χnm) with temperature increases by varying B(T) and 
magnetic flux  (𝜙𝐴𝐵) and it also shows that magnetic 
susceptibility (χnm) with magnetic field B(T) and magnetic 
flux  (𝜙𝐴𝐵) increases by varying temperature, expect plot 
(d) for 𝑆𝑐𝐹, which show that magnetic susceptibility (χnm) 
with temperature decreases by varying magnetic field B(T) 
and magnetic flux  (𝜙𝐴𝐵). 
 
CONCLUSION 
In summary, this study provides a comprehensive analysis 
of the energy eigenvalues of H₂, 𝐶𝑜, 𝑆𝑐𝐻 and 𝑆𝑐𝐹 diatomic 
molecules influence by external magnetic based the 
exponential screened Yukawa potential (ESYP). The 
numerical calculations were used to validate the 
computation results of four different diatomic molecules. 
The calculations of the energy eigenvalues were carried-
out at zero temperature along side magnetisation (𝑀nm) 
and magnetic susceptibility (χnm).  We obtained the 
thermal properties of the diatomic molecules at finite 
temperature based on partition function. similarly, 
magnetisation (𝑀nm) and magnetic susceptibility (χnm). 
The findings have broad implications across quantum 
mechanics, spectroscopy, astrophysics, energy physics 
and material science, contributing to both fundamental 
and applied research. 
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