
42 
This work is licensed under the Creative Commons  
Attribution 4.0 International License 

 

 

 

 

 
Learning Analytics and Predictive Modeling: Enhancing Student Success through Data-Driven 

Insights 
 

*1Oyedotun, Samuel A., 2Ejenarhome Otega P. and 1Oise, Godfrey P. 

1Department of Computing, Wellspring University, Edo State. 
2Department of Computer Science, Delta State University, Delta StateOtega. 
*Corresponding Author’s email: godfrey.oise@wellspringuniversity.edu.ng  
ORCID iD: https://orcid.org/0009-0006-4393-7874  
 

K E Y W O R D S  
Academic Performance Prediction, 
Explainable AI (SHAP),  
Learning Analytics,  
Predictive Modeling,  
Student Engagement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C I T A T I O N  
Oyedotun, S. A., Ejenarhome, O. P., & Oise, 
G. P.(2025). Learning Analytics and Predictive 
Modeling: Enhancing Student Success 
through Data-Driven Insights. Journal of 
Science Research and Reviews, 2(3), 42-51. 
https://doi.org/10.70882/josrar.2025.v2i3.77  

A B S T R A C T  
In the evolving landscape of data-informed education, predictive 
modeling has become a powerful tool for identifying students at risk 
of academic failure or withdrawal. This study investigates the use of 
learning analytics techniques to predict student outcomes using the 
Open University Learning Analytics Dataset (OULAD), a 
comprehensive, publicly available dataset that includes 
demographic profiles, continuous assessment records, and detailed 
interaction logs from a virtual learning environment (VLE). By 
integrating and preprocessing these data sources, the authors 
developed a comprehensive set of behavioral and temporal features, 
with particular focus on total click activity, which acts as a proxy for 
student engagement. The prediction task was framed as a binary 
classification problem: distinguishing students who completed a 
course (pass or distinction) from those who failed or withdrew. 
Although the specific classification algorithm is not explicitly 
identified, the trained model achieved a classification accuracy of 
71% and an area under the receiver operating characteristic curve 
(ROC-AUC) of 0.79, indicating a reasonably high level of 
discriminative ability. A key strength of the study is its use of SHAP 
(Shapley Additive Explanations) values to interpret the model’s 
output, offering transparency into how individual features influenced 
prediction results. The analysis showed that engagement-related 
features, especially VLE click counts, had the greatest predictive 
power, while demographic variables such as gender and age 
contributed little, suggesting a reduced risk of bias from protected 
attributes. These findings underscore the practical value of 
interpretable predictive models in supporting early warning systems 
and learner support strategies in higher education. Additionally, the 
study addresses important ethical considerations by emphasizing 
fairness, privacy, and the need for explainable AI. While some 
methodological limitations remain, such as the lack of algorithm 
disclosure and validation details, the research provides valuable 
insights into designing transparent, ethical, and actionable learning 
analytics tools. 
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INTRODUCTION 
The integration of machine learning (ML) and deep learning 
(DL) techniques into the educational landscape has 
witnessed a dramatic surge in recent years. These 
advancements are revolutionizing how educators, 
institutions, and policymakers understand, predict, and 
enhance student learning outcomes. Central to this 
transformation is the use of predictive analytics to 
anticipate key academic events ranging from student 
performance and engagement to retention and dropout 
risks based on increasingly rich and multidimensional data 
sources (Capuano et al., 2023a). Fueled by the ubiquity of 
digital learning environments and the rapid expansion of 
data availability, educational institutions now have access 
to a broad array of student-related data streams (Ahn et al., 
2021). These include behavioral traces from Learning 
Management Systems (LMSs), academic performance 
records, demographic attributes, self-reported affective 
measures, and even physiological signals from wearable 
devices. The convergence of these data modalities allows 
for the development of sophisticated predictive models 
that not only diagnose academic issues but also 
proactively guide interventions, optimize instructional 
strategies, and personalize learning pathways. This 
evolution aligns with the broader shift in the fields of 
Learning Analytics (LA) and Educational Data Mining 
(EDM), which have transitioned beyond retrospective 
analysis to a predictive, decision-support paradigm 
(James et al., 2024). Predictive analytics, once a novel 
addition, has become a cornerstone in these disciplines, 
enabling early identification of at-risk students, fostering 
just-in-time support mechanisms, and informing 
institutional planning (Afzaal et al., 2021). In an era where 
educational ecosystems are increasingly complex, driven 
by the proliferation of online and hybrid modalities, 
widening learner diversity, and escalating performance 
accountability, the ability to forecast academic 
trajectories is more vital than ever. Across global higher 
education systems, longstanding challenges related to 
student retention, academic underperformance, and 
delayed graduation persist. For example, undergraduate 
attrition rates in some OECD countries exceed 45%, 
underscoring the urgent need for timely, data-driven 
strategies that support student success. Traditional 
reactive support models are often insufficient in 
addressing these multifaceted issues, particularly in 
digital and hybrid learning environments where early 
warning signals may be subtle or dispersed across 
platforms (Zhang & Xu, 2024). In response, LA has 
embraced the predictive potential of ML and AI to offer 
anticipatory solutions (G. Oise & Konyeha, 2024). From 
automated risk detection and real-time dashboards to 
adaptive feedback systems and personalized learning 
interfaces, these technologies are reshaping how 

education is delivered and experienced (Afzaal et al., 
2021). As predictive analytics becomes more deeply 
embedded in institutional workflows, it promises not only 
to transform pedagogical practices but also to promote 
academic equity and operational efficiency. (Hwang & Tu, 
2021)A foundational step in building effective predictive 
systems is the accurate identification of meaningful 
indicators of academic risk or success. These indicators 
fall into three broad categories: behavioral engagement 
metrics, academic performance data, and affective or 
socio-emotional factors. LMS interaction data, such as 
login frequency, resource views, and forum activity, serve 
as early proxies for engagement but may vary in predictive 
strength depending on the learning context (Albreiki et al., 
2022). Recent findings suggest that temporal engagement 
patterns, such as consistency in study habits over time, 
provide more nuanced and reliable insights than aggregate 
metrics alone. Historical academic records, including 
cumulative GPA and standardized test scores, remain 
among the most robust predictors due to their ability to 
reflect long-term academic preparedness (Waheed et al., 
2023a). Additionally, early formative assessments offer 
crucial insights into student progress during the initial 
weeks of a course, enabling preemptive support. 
Meanwhile, socio-emotional indicators such as 
motivation, self-regulation, and emotional well-being are 
gaining prominence, supported by advances in Natural 
Language Processing (NLP) and sentiment analysis of 
student-generated content (Zhang & Xu, 2024). 
Physiological data from wearable devices, though still 
emerging, offer real-time signals of cognitive readiness 
and stress, but raise important ethical considerations.  
Umer et al. (2023) presented a systematic literature review 
on the use of predictive analytics in higher education to 
forecast student performance and identify at-risk learners. 
By analyzing studies from 2008 to 2018, the review 
highlights how historical data and machine learning 
techniques have been employed to model learning 
behaviors and support timely interventions. It also 
discusses methodological trends, challenges in data 
interpretation, and outlines future research directions. Ko 
et al. (2023), Explores how students compensate for 
learning loss during a pandemic, focusing on the role of 
artificial intelligence (AI) in this process. It examines how 
students’ use of an AI-powered learning app varies in 
quantity, pattern, and pace depending on their exposure to 
pandemic threats and their proximity to academic goals. 
Findings show that students in the epicenter of a COVID-
19 outbreak initially reduce app usage but eventually 
increase it, use it more consistently, and return to their 
curriculum pace, indicating compensatory behavior. 
Additionally, the urgency of approaching academic goals, 
such as university entrance exams, influences these 
learning behaviors. The study highlights the potential of AI-
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driven educational technologies to support both 
immediate learning and long-term recovery following 
disruptions (Motz et al., 2023). Critically examines the 
alignment between the stated goals of learning analytics, 
understanding and optimizing student learning through 
learner data, and the actual practices within the field. 
Analyzing research published in top venues, including the 
Learning Analytics and Knowledge (LAK) conferences and 
the Journal of Learning Analytics from 2020 to 2022, the 
authors reveal significant gaps: 37.4% of articles do not 
use data from real learners, 71.1% fail to measure student 
learning, and 89.0% do not attempt to intervene in the 
learning process. These findings highlight a concerning 
disconnect between the foundational mission of learning 
analytics and current research trends. The authors call for 
critical reflection and dialogue within the community to 
realign the field with its core objectives of evidence-based 
understanding and improvement of educational 
outcomes.   Ahn et al. (2021), Explores how crowdsourcing 
can help educators efficiently process everyday 
educational data, such as student work and paper-based 
artifacts, into actionable analytics. Through two design 
experiments involving crowdsourced scoring of open-
ended assessments, the researchers address challenges 
related to crowd expertise and learning. They evaluate 
design strategies such as screening participants, offering 
multimedia instruction, and prompting explanations for 
responses. The findings highlight both the practical 
potential of crowdsourcing for educational data analysis 
and its value as a learning opportunity for crowd 
participants. The study offers important design insights for 
making educational data more usable for educators 
through collective intelligence (Carpenter et al., 2021), It 
investigates the role of reflection in inquiry-driven, game-
based learning by examining how middle-school students 
reflect while interacting with Crystal Island, a game-based 
environment for learning microbiology. Reflection is 
essential for fostering higher-order thinking and self-
regulated learning, yet it presents challenges in terms of 
how it is measured, modeled, and supported (Waheed et 
al., 2023a). Using embedded prompts, the researchers 
elicited written reflections from 105 students and analyzed 
their relationship to learning outcomes. The results show 
that specific features of students’ reflections and 
problem-solving behaviors are predictive of reflection 
depth and correlate with gains in science knowledge and 
problem-solving skills. The study offers insights for 
designing adaptive support in game-based learning 
environments to promote deeper reflection and improved 
learning outcomes. (Susnjak, 2024), Addresses key 
limitations in current Learning Analytics research, which 
has largely emphasized predictive modeling to identify at-
risk students while neglecting interpretability and 
actionable support. It proposes a novel framework that 
combines transparent machine learning with prescriptive 

analytics, leveraging the capabilities of eXplainable AI (XAI) 
and large language models like ChatGPT to provide both 
interpretable predictions and personalized, human-
readable remedial advice. Using a real-world dataset of 
approximately 7,000 learners from 2018 to 2022, the study 
demonstrates how predictive models can be effectively 
integrated with prescriptive tools to not only identify 
students at risk of non-completion but also guide them 
with targeted, evidence-based feedback. This work 
advances the field by bridging the gap between prediction, 
explanation, and actionable intervention in educational 
settings. Liang et al. (2024) work tackles the persistent 
challenge of delivering personalized feedback at scale by 
enhancing Prescriptive Learning Analytics (PLA) with a 
novel, learning activity-based feature engineering 
approach. While PLA combines predictive models with 
explainable AI (XAI) to provide actionable feedback, not all 
predictive features translate well into meaningful 
prescriptions. To bridge this gap, the authors designed 
features grounded in student learning activities that 
support both accurate prediction and high-quality 
feedback generation. Through empirical evaluation in a 
large university course, PLA-generated feedback was 
assessed against teacher-written feedback using four 
criteria: Readily Applicability, Readability, Relational 
quality, and Specificity. Results showed that PLA-
generated feedback maintained strong predictive 
performance and was rated significantly higher than 
teacher-written feedback across all criteria. Most 
instructors also found the feedback applicable and 
actionable. This work offers a scalable and effective 
method for generating high-quality, personalized feedback 
and makes its tools publicly available via GitHub. 
Crompton & Burke, (2023), analyzed 138 studies on 
artificial intelligence in higher education (AIEd HE) 
published between 2016 and 2022, using PRISMA 
guidelines and a combination of a priori and grounded 
coding methods. Key findings reveal a sharp increase in 
publications during 2021 and 2022, signaling growing 
global interest. The geographic research focus has shifted, 
with China now surpassing the U.S. in publication volume. 
Additionally, education departments have become the 
most dominant source of AIEd research, correcting earlier 
disciplinary imbalances. Most studies focused on 
undergraduate students (72%), with language learning 
(writing, reading, vocabulary) as the most common subject 
area. AIEd tools were primarily aimed at students (72%), 
followed by instructors (17%) and administrators (11%). 
Five primary application areas emerged: 
assessment/evaluation, prediction, AI assistants, 
intelligent tutoring systems (ITS), and managing student 
learning. The review also highlights gaps and opportunities 
for future research, particularly in exploring new AI tools 
like ChatGPT. Fahd et al. (2022) presented a 
comprehensive systematic review and meta-analysis of 
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research on the application of machine learning (ML) in 
higher education (HE), with a specific focus on predicting 
student academic performance, identifying at-risk 
students, and addressing attrition. As ML increasingly 
transforms educational data analysis, it offers valuable 
insights into enhancing educational quality and decision-
making. Despite its growing use, the literature lacks a 
consolidated review capturing overarching trends and 
methodological patterns in this domain. To address this 
gap, the study adopts the PRISMA (Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses) 
framework to ensure methodological rigor in identifying 
and analyzing relevant studies. Following a structured 
selection and filtering process, 89 peer-reviewed articles 
published between 2010 and 2020 were included for in-
depth analysis. The review categorizes ML approaches 
spanning supervised, unsupervised, and reinforcement 
learning, and examines commonly used algorithms, 
evaluation metrics, and demographic factors. The results 
offer quantitative insights into prevailing publication 
patterns, model effectiveness, and emerging trends, 
thereby contributing to a clearer understanding of how ML 
can be effectively leveraged to monitor and improve 
student outcomes in HE. This work fills a critical gap in the 
educational technology literature and serves as a 
foundation for future research and institutional practice in 
data-driven student support. Valdiviezo-Diaz & Chicaiza, 
(2024) surveyed recent research (2019–2023) on predicting 
students’ academic performance and dropout rates using 
machine learning (ML). It reviews studies that applied 
various ML algorithms across diverse educational settings, 
utilizing data such as demographics, academic history, 
and student interactions. The findings show that ML 
models can predict academic outcomes with high 
accuracy. However, challenges remain, including the need 
for effective data collection and preprocessing, as well as 
addressing ethical concerns related to student data use. 
The study offers valuable insights for educators, 
administrators, and researchers aiming to enhance 
student success through data-driven methods. The 
integration of machine learning (ML) and deep learning (DL) 
(Oise & Akpowehbve, 2024), into higher education (HE) has 
significantly reshaped how institutions understand and 
enhance student learning. Leveraging diverse data 
sources such as learning management system logs, 
academic records, and even sentiment and physiological 
data, these technologies enable personalized, proactive 
interventions and timely feedback. Predictive analytics 
now plays a central role in learning analytics (LA) and 
educational data mining (EDM), helping to forecast 
academic performance and identify at-risk students. 
Recent developments show a shift toward prescriptive 
analytics, with explainable AI (XAI) methods like SHAP and 
LIME making model outputs more interpretable and 
actionable. AI-powered tools such as intelligent tutoring 

systems and real-time dashboards have been particularly 
valuable during crises like the COVID-19 pandemic. Global 
research interest has surged since 2021, especially in 
areas like language learning, with China emerging as a 
leading contributor. 
Despite these advances, significant challenges remain. 
Many studies rely on synthetic datasets or lack validation 
in real-world educational contexts, leading to concerns 
about scalability, reproducibility, and model 
generalizability. A common issue is the lack of 
interpretability in ML models (Oise et al., 2025), which 
limits their practical application for educators. Although 
interest in multimodal data is growing, including emotional 
and physiological indicators, ethical and technical 
challenges hinder widespread adoption. There is a need for 
more real-time, context-aware analytics systems that 
combine cognitive, behavioral, and emotional signals to 
better understand learner engagement. Future research 
must focus on explainable, ethical, and inclusive ML 
systems that align with educational goals and regulatory 
standards like GDPR and FERPA. Longitudinal studies and 
human-in-the-loop systems are also essential for 
assessing long-term impact and ensuring interventions are 
meaningful, equitable, and supportive of all students. In 
this study, we explore the use of learning analytics to 
predict student outcomes using the Open University 
Learning Analytics Dataset (OULAD). By analyzing 
behavioral and temporal features, especially VLE click 
activity, we achieved a classification accuracy of 71% and 
ROC-AUC of 0.79. Using SHAP values for model 
interpretability, the findings emphasize the predictive 
value of engagement metrics over demographic attributes, 
highlighting the potential of transparent and ethical AI to 
inform early intervention strategies in higher education. 
 
MATERIALS AND METHODS 
The paper employs a standard predictive modeling 
pipeline using the Open University Learning Analytics 
Dataset (OULAD) to forecast student success. After 
integrating multiple data tables (demographics, 
assessments, and VLE logs), the authors engineered 
behavioural and demographic features, focusing 
particularly on student engagement metrics like total click 
counts. The task was framed as a binary classification 
predicting whether a student would pass or fail/withdraw 
from a course. 
 
Data collection & integration 
The dataset originates from the Open University, the UK’s 
largest academic institution, with 2 million students since 
its founding in 1969, primarily serving off-campus learners. 
It captures data from the university’s Virtual Learning 
Environment (VLE), used for course access, discussions, 
assessments, and grade tracking. The dataset covers 
seven selected courses (called modules), across different 
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semesters (denoted by "B" for the second semester and "J" 
for the first). It includes student demographics (e.g., age, 
gender, location, education level, disability status), 
assessment scores, and detailed interactions with the 
VLE. 
 
Feature engineering & cleaning 
Behavioral aggregates were derived from the VLE data, 
most notably total-clicks, which summed up all 
interactions by each learner. The authors also retained 
categorical demographic variables like gender and age-
band, which were label-encoded. Missing values were 
handled through simple imputation, and notably, no 
records were excluded from the dataset. SHAP analysis 
later confirmed that these engineered features 
contributed meaningfully to the model. 
 
Problem formulation 
The predictive task was defined as a binary classification 
problem, distinguishing between students who completed 
a module (Pass or Distinction) and those who did not (Fail 
or Withdraw). The positive class, coded as 1, represented 
successful outcomes. This formulation was consistently 
reflected in the confusion matrix and related analysis. 
 
Model training 
While the paper does not specify the exact algorithm used 
for classification, it is clear that a single binary classifier 
was trained. The dataset was split into training and testing 
sets, with the test set containing 6,519 instances. The 
model was tuned using metrics such as balanced 
accuracy and F-measure, though no details about cross-
validation procedures were provided. 
 
RESULTS AND DISCUSSION 
The predictive model developed in this study was 
evaluated using a comprehensive set of classification 
metrics on a test set comprising 6,519 student 
enrollments. The binary classification task aimed to 
predict whether a student would complete a course with a 

pass or distinction versus a failure or withdrawal. The 
model achieved an overall classification accuracy of 71%, 
with precision and recall scores of approximately 0.73 and 
0.70, respectively. Performance was consistent across 
both classes, with balanced F1 scores, indicating the 
model’s robustness in handling imbalanced outcomes. 
Additionally, the ROC-AUC score of 0.79 reflected strong 
discriminative capability in distinguishing between 
successful and at-risk students. A detailed confusion 
matrix revealed 1,873 misclassified instances: 918 false 
negatives (students predicted to fail but who passed) and 
955 false positives (students predicted to pass but who 
ultimately failed or withdrew). These misclassification 
rates highlight important trade-offs in real-world 
educational settings: false negatives may result in missed 
opportunities for timely interventions, while false positives 
could lead to unnecessary allocation of resources toward 
students who may not require additional support. Hence, 
achieving a balance between sensitivity and specificity is 
crucial for effective deployment. For model 
interpretability, SHAP (SHapley Additive exPlanations) was 
employed to provide transparency into feature 
contributions. The analysis confirmed that total_clicks a 
measure of students' engagement with the virtual learning 
environment (VLE) was the most influential predictor. 
Conversely, protected demographic attributes such as 
gender and age_band showed minimal impact on the 
model’s output, suggesting a lower risk of demographic 
bias and reinforcing the model’s emphasis on behavior-
based predictors. Ethical and practical considerations 
were integral to the study. The authors underscored the 
importance of transparency, privacy, and fairness in 
predictive analytics. They advocated for the use of 
explainable AI (XAI) tools, such as visual dashboards, to 
support academic staff in making informed and ethical 
intervention decisions. These considerations shaped not 
only the technical aspects of model development but also 
the proposed application frameworks, ensuring that 
predictive insights are actionable, interpretable, and 
ethically grounded. 

 
Table 1: Classification Report 

 Precision Recall F1-Score Support 
0 0.73 0.73 0.73 3442 
1 0.70 0.69 0.69 3077 
     
Accuracy   0.71 6519 
Macro Avg 0.71 0.71 0.71 6519 
Weighted Avg 0.71 0.71 0.71 6519 

 
Table 1 depicts the classification report shows the 
performance of a binary classification model using 
precision, recall, F1-score, and support. For class 0, the 
model achieved a precision, recall, and F1-score of 0.73, 
while for class 1, these metrics were slightly lower at 0.70, 

0.69, and 0.69, respectively. The support values indicate a 
relatively balanced dataset, with 3442 samples for class 0 
and 3077 for class 1. The overall accuracy of the model is 
71%, meaning it correctly classified 71% of all test 
instances. Both the macro and weighted averages for 
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precision, recall, and F1-score are also 0.71, suggesting 
consistent performance across both classes. Although the 
model performs reasonably well, there is a slight 

performance drop in predicting class 1, highlighting 
potential areas for further improvement, especially if class 
1 represents a critical category in the application context. 

 

 
Figure 1:  Shap Value 

 
Figure 1 depicts a SHAP summary plot illustrating the 
impact of three features: total_clicks, gender, and 
age_band, on a model’s predictions. The x-axis represents 
the SHAP value, indicating how much each feature 
contributes to pushing the prediction away from the 
average (either positively or negatively). Each dot 
corresponds to a single instance and is colored by the 
feature value (red for high, blue for low). The total_clicks 
feature has the most significant influence on the model 

output, as demonstrated by its wide range of SHAP values; 
higher values (in red) tend to increase the prediction, while 
lower values (in blue) pull it down. The features gender and 
age_band show less influence, with SHAP values clustered 
closer to zero, indicating a smaller effect on the model's 
decisions. Overall, the plot highlights total_clicks as the 
most important predictor, while gender and age_band 
contribute minimally. 

 

 
Figure 2: ROC (Receiver Operating Characteristic) curve 

 
Table 2 depicts the ROC (Receiver Operating 
Characteristic) curve illustrates the performance of a 
binary classification model across various threshold 
settings. The x-axis shows the false positive rate (FPR), 
while the y-axis shows the true positive rate (TPR) or 
sensitivity. The solid orange line represents the model’s 
performance, and the diagonal dashed line indicates a 
random classifier (with no discriminative power). The area 

under the ROC curve (AUC) is 0.79, indicating that the 
model has good discriminative ability, substantially better 
than random guessing. AUC values closer to 1.0 suggest 
excellent performance, while values near 0.5 suggest poor 
performance. Overall, this ROC curve confirms that the 
model is fairly effective at distinguishing between the two 
classes. 
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Figure 3: Confusion matrix 

 
Table 3 depicts, confusion matrix that shows the model 
correctly predicted 2,524 students as Fail/Withdraw and 
2,122 as Pass/Distinction, while misclassifying 918 
students who failed/withdrew as passing and 955 students 
who passed as failing. Out of 6,519 total predictions, 4,646 
were accurate, reflecting a moderately strong 
classification performance. Although the model performs 
reasonably well, the notable number of false positives and 
false negatives suggests room for improvement in both 
sensitivity and specificity. These results are consistent 
with the earlier reported accuracy of 71% and an ROC AUC 
of 0.79, indicating a fair but improvable ability to 
distinguish between the two academic outcomes. 
The findings of this study reaffirm the centrality of student 
engagement data, particularly granular behavioural 
metrics such as total VLE click activity, as powerful 
predictors of academic outcomes. This aligns with a well-
established trend in the learning analytics literature, which 
underscores the diagnostic value of digital trace data in 
forecasting learner performance. Notably, the 
incorporation of temporally aggregated engagement 
features strengthens predictive accuracy by capturing 
nuanced, time-dependent patterns in study behaviour, 
which static metrics alone may overlook. This temporal 
dimension enhances the model’s ability to discern early 
warning signals embedded in learners’ longitudinal 
interaction profiles, thereby contributing to more timely 
and targeted interventions. However, the model's 
predictive efficacy must be critically evaluated in light of its 
moderate false-positive and false-negative rates, which 
pose substantive implications for real-world educational 
deployment. False negatives, where at-risk students are 
not flagged, can result in missed opportunities for support, 
potentially exacerbating dropout risk. Conversely, false 
positives may lead to the misallocation of institutional 

resources and the imposition of unnecessary support on 
students who would have succeeded independently. 
These outcomes underscore the need to strike a careful 
balance between sensitivity and specificity, especially 
when predictive models inform automated or semi-
automated decision-making processes that impact 
student trajectories. 
A particularly commendable aspect of the study is its 
emphasis on model interpretability through SHAP 
(SHapley Additive Explanations). By quantifying the 
contribution of each feature to individual predictions, 
SHAP not only enhances transparency but also fosters 
trust among key stakeholders, including educators, 
academic advisors, and learners. The results show that 
total_clicks dominate the predictive landscape, while 
protected attributes such as gender and age_band exhibit 
minimal influence. This observation tentatively suggests a 
reduced risk of algorithmic bias; however, without formal 
fairness metrics or bias audits, such conclusions remain 
preliminary. Future work must adopt rigorous fairness 
evaluation frameworks to assess differential predictive 
performance across demographic subgroups. 
Despite its strengths, the study exhibits notable 
methodological limitations that constrain its 
reproducibility and generalizability. Chief among these is 
the lack of disclosure regarding the specific classification 
algorithm employed, as well as the absence of detail on 
cross-validation, hyperparameter tuning, and model 
selection criteria. These omissions limit both the 
robustness of the reported results and the ability of other 
researchers to replicate or extend the work. Addressing 
these gaps is critical for advancing reproducible science in 
the learning analytics domain. In addition, the exploration 
of more sophisticated modeling approaches, such as 
ensemble methods, recurrent neural networks (RNNs), or 
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transformer-based architectures, may yield enhanced 
performance, particularly when dealing with sequential 
data or multimodal feature sets (G. P. Oise & Konyeha, 
2024). From an applied perspective, the findings have 
direct relevance to the design and deployment of early 
warning systems (EWS) and Learning Analytics 
Dashboards (LADs). Instructor-facing LADs can assist 
educators in identifying struggling students early, while 
student-facing dashboards can promote self-regulated 
learning by providing real-time feedback on engagement 
and progress (Onyema et al., 2022). However, despite their 
growing popularity, many existing tools fall short of 
delivering prescriptive analytics, offering insights into what 
is happening, but not why or how to act on it. Moreover, few 
have been validated in controlled environments or 
assessed for long-term impact on learner success and 
institutional outcomes. 
Existing EWS platforms such as Othot AI and the S3 
Framework provide practical illustrations of analytics-
driven interventions. By integrating academic, 
behavioural, and even financial data, these systems have 
demonstrated tangible benefits such as 5–12% increases 
in retention rates during pilot phases, highlighting the 
transformative potential of data-informed support 
strategies. Likewise, analytics-based strategic planning 
can optimize resource allocation for advising, mental 
health services, and curricular improvements, while 
identifying systemic bottlenecks and underperforming 
learner cohorts (Rashidian & Hilal, 2022). Nevertheless, 
the institutionalization of learning analytics presents a 
series of ethical, legal, and operational challenges. 

Ensuring compliance with data protection regulations 
such as the General Data Protection Regulation (GDPR) 
and the Family Educational Rights and Privacy Act (FERPA) 
is imperative, particularly as analytics systems handle 
sensitive personal data (Sassirekha & Vijayalakshmi, 
2022). Moreover, the use of black-box models exacerbates 
transparency issues, complicating efforts to build 
stakeholder trust. Additional barriers include technical 
limitations, interoperability issues, and varying levels of 
digital literacy among faculty and support staff all of which 
hinder widespread adoption. Looking ahead, the evolution 
of learning analytics will likely be shaped by advances in 
explainable artificial intelligence (XAI), with techniques 
such as SHAP and LIME playing pivotal roles in bridging the 
gap between accuracy and interpretability. Emerging 
innovations in multimodal, real-time analytics involving 
data streams from IoT devices, wearables, and mobile 
apps hold promise for offering a holistic view of student 
engagement, motivation, and well-being. However, for 
these approaches to be impactful at scale, greater 
attention must be paid to issues of scalability, equity, and 
generalizability across diverse institutional contexts. 
Finally, there is a critical need for longitudinal research to 
assess the sustained effects of analytics-driven 
interventions not only on academic performance but also 
on learners’ personal development, mental health, and 
post-graduate outcomes. The current study contributes to 
this growing body of work by offering an interpretable and 
ethically conscious predictive framework that balances 
performance with transparency, paving the way for 
responsible, evidence-based educational innovation. 

 
Table 2: Comparative Analysis of Predictive Learning Analytics Studies 

Study Dataset / Focus Accuracy  Key Predictors Key Contribution 

Our Study 
(2025) 

OULAD (Open 
University Learning 
Analytics Dataset) 

71% 
Total VLE clicks, 
engagement, and 
temporal patterns 

Transparent, ethical prediction 
using behavioral data; minimal 
demographic bias 

(Simaei & 
Rahimifard, 
2024) 

Meta-analysis of 89 
studies in higher 
education 

60% Academic records, LMS 
interaction data 

Overview of ML performance, 
methods, and metrics across a 
decade of research 

(Waheed et 
al., 2023b) 

Self-paced education 
with neural networks 

85% 
Formative assessments, 
click behavior 

Early identification of at-risk 
learners 

(Albreiki et 
al., 2022) 

Framework for 
remedial suggestions 
using explainable ML 

78% 
LMS activity, logins, and 
resource views 

Rule-driven intervention support 
for struggling students 

(Capuano et 
al., 2023b) 

Online course 
environments 
(MOOCs) 

83% 
Course access patterns, 
engagement 

Interpretable predictors in massive 
online courses 

 
Table 2 depicts the comparative analysis shows that while 
the predictive model in this study achieved a modest 
accuracy of 71%, it stands out because of its focus on 
transparency, ethical AI, and the use of SHAP for model 
interpretability. Compared to other studies, such as 
Waheed et al. (2023b) and Capuano et al. (2023b), which 

reported higher accuracies of 85% and 83% respectively, 
this study emphasizes reducing demographic bias and 
supporting explainable decision-making. Albreiki et al. 
(2022) also discussed interpretability but favored rule-
based interventions, while Simaei & Rahimifard’s (2024) 
meta-analysis confirmed that most models in educational 
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prediction range from 60% to 95% accuracy, depending on 
the methodology. Overall, this study aligns with current 
trends that favor interpretable and ethically conscious 
learning analytics, even though there is still room for 
improvement in model performance. 
 
CONCLUSION 
This study shows how student engagement data, 
especially Virtual Learning Environment click activity, can 
predict academic success using a transparent and 
interpretable machine learning model. With 71% accuracy 
and an ROC-AUC of 0.79, the model emphasizes the 
strong predictive power of behavioral metrics while 
reducing dependence on sensitive demographic 
information. The use of SHAP values improves 
transparency, promoting ethical and fair decision-making. 
However, the lack of methodological details such as the 
algorithm type and validation procedures limits 
reproducibility. Despite moderate misclassification rates, 
the results support developing early warning systems and 
learning analytics tools that can guide timely interventions. 
Future research should address current limitations, 
implement rigorous evaluation methods, and explore 
scalable, ethical solutions in various educational settings. 
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