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A B S T R A C T  
Industrial Control Systems (ICS), including Supervisory Control and 
Data Acquisition (SCADA) and Distributed Control Systems (DCS), 
are increasingly becoming targets of sophisticated cyber threats. 
This heightened vulnerability is primarily driven by the convergence 
of Information Technology (IT) and Operational Technology (OT), as 
well as the rapid adoption of Industry 4. 4.0 technologies. Traditional 
intrusion detection systems (IDS) often fall short in addressing the 
unique characteristics of ICS environments, which include strict 
real- time operational constraints, the use of legacy systems, and the 
presence of heterogeneous data sources.To overcome these 
limitations, this paper presents a novel multimodal deep learning 
framework for robust anomaly detection in ICS networks. The 
proposed model integrates Convolutional Neural Networks (CNNs), 
Long Short- Term Memory (LSTM) networks, and Autoencoders to 
effectively capture spatial, temporal, and nonlinear features from 
ICS traffic. The framework is trained and evaluated using the HAI 
Security Dataset, a realistic ICS dataset that includes various attack 
scenarios. The hybrid model demonstrates strong performance, 
achieving an accuracy of 92%, an Area Under the Curve (AUC) of 0. 
97, and a perfect recall score in detecting cyberattacks, indicating its 
potential effectiveness in real- world applications.To improve the 
transparency and trustworthiness of the detection outcomes, the 
framework incorporates explainable AI (XAI) techniques, including 
SHAP (Shapley Additive exPlanations) and LIME (Local Interpretable 
Model- agnostic Explanations). These tools provide insights into 
model decisions and help operators understand the reasoning 
behind anomaly classifications. The paper discusses practical 
deployment challenges such as scalability, latency, and integration 
with existing ICS architectures. It also explores promising future 
research directions, including the application of federated learning 
for decentralized data privacy, digital twin technology for dynamic 
system modeling, and the development of resilient models tailored 
for real-time industrial cybersecurity operations. 
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INTRODUCTION 
The proliferation of Industry 4.0 technologies and the 
convergence of Information Technology (IT) and 
Operational Technology (OT) have significantly 
transformed Industrial Control Systems (ICS), including 
Supervisory Control and Data Acquisition (SCADA) and 
Distributed Control Systems (DCS) (Balla et al., 2022). 
While these advancements have improved process 
automation, efficiency, and remote monitoring 
capabilities, they have also exposed critical infrastructure 
to an increasingly complex and dynamic cybersecurity 
threat landscape (Oyedotun et al., 2025). Unlike 
conventional IT environments, ICS operates under strict 
real-time constraints, legacy hardware limitations, and 
proprietary communication protocols, making it 
particularly vulnerable to targeted cyberattacks that can 
have severe physical, economic, and environmental 
consequences (Gao et al., 2021). Traditional intrusion 
detection systems (IDS), largely signature-based, are 
inadequate in these settings due to their inability to detect 
zero-day attacks, data-driven intrusions, or behaviorally 
subtle threats that mimic legitimate operations. This has 
necessitated a paradigm shift toward intelligent, adaptive, 
and context-aware security solutions (Anandita Iyer & 
Umadevi, 2023). In this context, deep learning, particularly 
multimodal architectures capable of processing 
heterogeneous data sources, has emerged as a promising 
direction for anomaly detection in ICS environments. 
Industrial Process Control and Monitoring Systems 
(PCMS), encompassing Supervisory Control and Data 
Acquisition (SCADA), Distributed Control Systems (DCS), 
and Programmable Logic Controllers (PLCs), form the 
operational backbone of critical infrastructures 
worldwide, managing essential services from energy 
distribution to manufacturing (Alladi et al., 2020). The 
ongoing integration of these operational technology (OT) 
systems with information technology (IT) networks, driven 
by Industry 4.0 initiatives and the Industrial Internet of 
Things (IIoT), has introduced unprecedented efficiencies, 
remote accessibility, and data-driven optimization (Alimi 
et al., 2021). However, this convergence simultaneously 
exposes these vital systems to an escalating and 
increasingly complex landscape of cyber threats. The 
unique operational characteristics of PCMS, such as 
stringent real-time requirements, pervasive legacy 
infrastructure, and specialized communication protocols, 
render conventional IT-centric cybersecurity frameworks 
largely ineffective, creating significant vulnerability gaps 
(Devi et al., 2023). The repercussions of successful 
cyberattacks on PCMS extend far beyond data 
compromise, potentially leading to severe physical 
damage, environmental catastrophes, widespread 
economic disruption, and even loss of human life. 
Historical incidents, notably the Stuxnet attack, have 
unequivocally demonstrated the capacity of targeted 

malware to manipulate industrial processes, resulting in 
equipment failure and operational paralysis (‘Graph–
Based Anomaly Detection Using Fuzzy Clustering’, 2020). 
As the attack surface continuously expands with the 
proliferation of interconnected devices and cloud 
integration within industrial settings, the development of 
robust, adaptive, and intelligent threat detection 
mechanisms has become an urgent imperative (Lin et al., 
2020). Traditional signature-based intrusion detection 
systems (IDS), while effective against known threats, are 
inherently reactive and struggle to identify novel, zero-day 
attacks or subtle, stealthy intrusions that mimic legitimate 
operational behavior (Alimi et al., 2021). Furthermore, the 
sheer volume, velocity, and variety of data generated by 
modern PCMS, coupled with the intricate 
interdependencies of their components, necessitate 
advanced analytical capabilities capable of discerning 
malicious anomalies from normal operational 
fluctuations. In this context, deep learning emerges as a 
pivotal and transformative solution (Oise & Konyeha, 
2024). Deep learning, a subfield of machine learning 
inspired by the hierarchical structure and function of the 
human brain's neural networks, offers unparalleled 
capabilities in pattern recognition, feature extraction, and 
anomaly detection from vast, unstructured, and high-
dimensional datasets (Khan et al., 2022). Its inherent 
ability to automatically learn intricate representations 
from raw data, without explicit programming for every 
conceivable threat scenario, makes it uniquely suited to 
address the dynamic and evolving nature of cyber threats 
in PCMS (Varma et al., 2023). By leveraging deep neural 
networks, it becomes feasible to construct intelligent 
systems that can continuously monitor industrial network 
traffic, sensor data, control commands, and system logs, 
identifying deviations that signify potential compromises, 
insider threats, or sophisticated external attacks with a 
high degree of accuracy and minimized false positives 
(Abdelaty et al., 2020). This article provides an in-depth 
analysis of the application of deep learning for 
cybersecurity threat detection within PCMS, detailing the 
unique challenges, relevant architectural paradigms, and 
future research directions. PCMS, including SCADA, DCS, 
and PLCs, represent a unique cyber-physical nexus where 
digital commands translate directly into physical actions, 
making their security paramount. Unlike conventional IT 
networks, PCMS environments are characterized by 
several critical distinctions that pose significant 
challenges to traditional cybersecurity approaches (Oise 
et al., 2025). Firstly, Real-time Determinism is paramount, 
as many industrial processes demand sub-millisecond 
response times, making the introduction of latency by 
security measures unacceptable. Any security solution 
must operate with minimal overhead to ensure 
uninterrupted control and monitoring (Nosova et al., 
2024). Secondly, a significant portion of installed PCMS 
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hardware and software constitutes Legacy Infrastructure, 
often decades old, lacking modern security features and 
operating on proprietary, non-routable protocols such as 
Modbus, DNP3, and OPC-UA. This historically "air-
gapped" environment is now increasingly porous due to 
ongoing IT/OT convergence, introducing new attack 
vectors without the inherent security mechanisms of 
modern IT systems. 
Furthermore, Operational Continuity Over Security is a 
fundamental principle in PCMS; the primary objective is 
continuous, safe operation, which often leads to a 
conservative approach to patching, software updates, and 
system modifications to avoid any potential disruption or 
downtime (Oise, 2023). This prioritization can leave 
systems vulnerable to known exploits for extended 
periods. Another critical challenge is Resource 
Constraints, as many edge devices within PCMS have 
limited computational power, memory, and energy, 
precluding the deployment of computationally intensive 
security agents or complex algorithms directly on these 
devices. Beyond typical IT vulnerabilities, PCMS are also 
susceptible to Unique Attack Vectors that directly 
manipulate physical processes. These include false data 
injection, where sensor readings are manipulated to 
induce incorrect control actions, or command injection 
leading to overpressure, overspeed, or incorrect valve 
actuation, which can result in physical damage or safety 
incidents. Finally, these systems exhibit Data 
Heterogeneity and Imbalance, generating diverse data 
types like sensor readings, control commands, network 
packets, and system logs, often with highly imbalanced 
datasets where malicious events are extremely rare 
compared to normal operations. This imbalance poses a 
significant challenge for supervised machine learning 
models, which tend to be biased towards the majority 
class. These inherent factors render traditional signature-
based Intrusion Detection Systems (IDS) and even 
conventional machine learning approaches insufficient. 
Signature-based systems are inherently reactive, failing 
against polymorphic or zero-day attacks for which no prior 
signatures exist. Supervised machine learning, while 
powerful, requires extensive labeled datasets of both 
normal and anomalous behavior, which are often 
unavailable or difficult to generate for novel industrial 
attacks due to the sensitive nature of live PCMS 
environments and the rarity of successful breaches. 
Deep learning's strength lies in its ability to automatically 
learn hierarchical features from raw, high-dimensional 
data, making it particularly adept at identifying subtle 
anomalies indicative of sophisticated attacks without 
explicit feature engineering. Several deep learning 
architectures demonstrate significant promise for PCMS 
threat detection. Convolutional Neural Networks (CNNs) 
are primarily applied for analyzing time-series data such as 
sensor readings, network traffic flows, and control 

sequences, by treating them as 1D or 2D "images." Their 
core mechanism involves convolutional layers applying 
learnable filters to extract local patterns, such as sudden 
spikes, sustained deviations, specific byte sequences in 
network packets, or transient changes in process 
variables. Pooling layers then downsample these 
extracted features, making the model robust to minor 
variations and reducing computational complexity (Zhang 
et al., 2022). In PCMS, CNNs are highly relevant for 
detecting anomalous patterns in sensor data (e.g., 
pressure, temperature, flow rates) that deviate from 
expected physical models or for identifying unusual byte 
sequences and protocol violations in network packets that 
might indicate sophisticated protocol manipulation or 
malware communication (Ben Fredj et al., 2020). For 
instance, a 1D CNN could process a sliding window of 
sensor values to detect subtle changes in process 
dynamics that are indicative of an attack. Recurrent Neural 
Networks (RNNs) and their advanced variants, notably 
Long Short-Term Memory (LSTM) and Gated Recurrent Unit 
(GRU) networks, are ideally suited for sequential data 
where temporal dependencies are crucial (Xiong et al., 
2021). This includes network traffic logs, sequences of 
control commands, and system event logs. RNNs possess 
internal memory, allowing them to retain information from 
previous steps in a sequence, which is critical for 
understanding the context of current events. LSTMs and 
GRUs specifically address the vanishing/exploding 
gradient problem inherent in vanilla RNNs, enabling them 
to learn and remember long-range dependencies within 
sequences. In PCMS, these models can effectively learn 
the normal sequence of control commands or the typical 
progression of network events within an operational cycle. 
Deviations from these learned sequences, such as an 
unexpected command at a specific stage of a process, an 
unauthorized state transition in a PLC, or a sudden burst of 
unusual protocol messages, can be accurately flagged as 
anomalies (Ganesh et al., 2021). For example, an LSTM 
could learn the typical sequence of PLC states during a 
batch process and detect unauthorized or out-of-order 
state transitions, indicating a malicious intervention. 
Autoencoders (AEs) and Variational Autoencoders (VAEs) 
are excellent for unsupervised anomaly detection, a 
crucial capability when labeled attack data is scarce, 
which is often the case in PCMS environments. AEs are 
neural networks trained to reconstruct their input. They 
consist of an encoder that compresses the input into a 
lower-dimensional "latent space" representation, 
capturing the most salient features of the data, and a 
decoder that reconstructs the input from this compressed 
representation (Yang et al., 2025). During training, the AE 
learns to efficiently encode and decode "normal" data. 
Consequently, anomalous data, which differ significantly 
from the learned normal patterns, will result in high 
reconstruction errors when passed through the trained AE. 
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VAEs further enhance this by introducing a probabilistic 
approach to the latent space, enabling not only anomaly 
detection but also controlled generative capabilities (Pan 
et al., 2025). Their relevance in PCMS lies in their ability to 
establish a robust baseline of normal behavior across 
various data streams (e.g., network telemetry, sensor 
data, control signals). Any input yielding a high 
reconstruction error is considered anomalous, making this 
approach particularly useful for detecting novel, zero-day 
attacks that do not conform to any known malicious 
patterns. Generative Adversarial Networks (GANs) are 
primarily utilized for two critical purposes in PCMS 
cybersecurity: generating synthetic, realistic attack data to 
augment sparse datasets and for adversarial attack 
simulation to test the robustness of detection models 
(Berardehi et al., 2024). GANs consist of two competing 
neural networks: a generator that creates synthetic data 
samples and a discriminator that attempts to distinguish 
between real and synthetically generated data. Both 
networks are trained iteratively in a zero-sum game, 
leading to the generator producing increasingly realistic 
data and the discriminator becoming more adept at 
detection. In the context of PCMS, GANs can generate 
highly realistic attack scenarios, such as false data 
injection mimicking legitimate sensor readings or 
sophisticated command sequences, which can then be 
used to train more robust deep learning detection models 
or to stress-test existing defenses without risking live 
systems (Xiahou et al., 2024). They can also be employed 
in an adversarial setting to discover vulnerabilities in deep 
learning-based IDS by generating "adversarial examples" 
designed to evade detection. While deep learning holds 
immense promise for PCMS cybersecurity, its practical 
application presents several advanced challenges that are 
active areas of research. 
One significant hurdle is Data Scarcity and Labeling. 
Obtaining large, diverse, and accurately labeled datasets 
of cyberattacks on real-world PCMS is extremely difficult 
due to the operational sensitivity of these systems, the 
proprietary nature of their data, and the rarity of 
successful, documented breaches (Bindra & Aggarwal, 
2024). This necessitates ongoing research into few-shot 
learning, where models can learn from very limited labeled 
examples; semi-supervised learning, which leverages both 
labeled and unlabeled data; and transfer learning 
techniques, where models pre-trained on larger, related 
datasets can be fine-tuned for PCMS-specific tasks. 
Another crucial aspect is Explainability (XAI). Deep 
learning models are often perceived as "black boxes" due 
to their complex, non-linear internal representations 
(Meydani et al., 2024). In critical PCMS environments, 
understanding why a model flagged an anomaly is crucial 
for operators to confidently take appropriate action, 
diagnose the root cause, and build trust in the automated 
system. Consequently, research into explainable AI 

techniques, such as LIME (Local Interpretable Model-
agnostic Explanations), SHAP (SHapley Additive 
exPlanations), and the integration of attention 
mechanisms within neural networks, is vital to provide 
actionable insights. 
Furthermore, Real-time Performance and Resource 
Constraints demand that deep learning models process 
vast amounts of data with minimal latency on potentially 
resource-constrained edge devices within the PCMS 
(Abdullahi et al., 2024). This drives research into model 
compression techniques (e.g., pruning, quantization), 
knowledge distillation, and the development of efficient 
inference engines and hardware accelerators specifically 
designed for industrial edge computing. Adversarial 
Attacks on Deep Learning Models themselves are also a 
growing concern (Abdi et al., 2024). Deep learning models, 
despite their robustness, are susceptible to adversarial 
attacks, where small, often imperceptible, perturbations 
to input data can cause misclassification or evasion of 
detection. Developing robust and resilient deep learning 
models that can withstand such sophisticated attacks, 
perhaps through adversarial training or certified 
robustness techniques, is an active and critical research 
area. Researchers are also actively exploring Hybrid 
Approaches, which combine the strengths of deep 
learning with domain knowledge (e.g., physical process 
models, engineering constraints, safety interlocks) or 
traditional security techniques (e.g., rule-based systems, 
state machines). Such hybrid models can leverage the 
data-driven insights of deep learning while incorporating 
expert knowledge to improve accuracy, reduce false 
positives, and provide context-aware detection (Pan et al., 
2025). For distributed PCMS architectures, Federated 
Learning offers a promising solution to enable 
collaborative model training across multiple 
geographically dispersed sites without requiring the 
sharing of raw, sensitive data. This approach addresses 
critical privacy, data sovereignty, and bandwidth 
concerns, allowing each site to train a local model on its 
data, with only model updates (weights) being aggregated 
centrally (Bakker et al., 2023). Lastly, Digital Twin 
Integration is gaining traction. Leveraging high-fidelity 
digital twins of industrial processes can provide synthetic 
data for training and validation of deep learning models, 
enable "what-if" analysis of potential cyberattacks in a 
safe, simulated environment, and facilitate the 
development of proactive defense strategies by predicting 
the impact of attacks on physical systems  (Koay et al., 
2023). The rise of Industry 4.0 has significantly increased 
the frequency and severity of cyberattacks on Industrial 
Control Systems (ICS), making them prime targets for 
cybercriminals and nation-state actors due to their 
potential to cause critical disruptions. Despite numerous 
cyber-attack detection systems being developed, ICS 
environments present unique challenges that 
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conventional methods often fail to address. This paper 
seeks to better understand the evolving vulnerability 
landscape of ICS, review recent advances in Machine 
Learning (ML)-based detection methods, particularly the 
use of ML classifiers, and assess their strengths and 
limitations in terms of detection accuracy and the range of 
attacks they can handle. The study concludes by outlining 
key open challenges that present promising directions for 
future research in securing industrial infrastructures. 
(Balla et al., 2022), As Industrial Control Systems (ICS) and 
SCADA systems increasingly integrate technologies like 
the Internet of Things (IoT), they become more efficient but 
also more vulnerable to cyberattacks. Such attacks can 
lead to severe consequences, including physical damage 
and loss of life. To safeguard these critical infrastructures, 
various security approaches hardware, software, and 
managerial, must be considered. This paper presents a 
multimodal deep learning framework that integrates 
Convolutional Neural Networks (CNNs), Long Short-Term 
Memory (LSTM) networks, and Autoencoders to detect 
cyber anomalies in SCADA and DCS systems. Trained on 
the HAI Security Dataset, the model demonstrates high 
detection performance, achieving 92% accuracy and 
perfect recall for attack detection. Furthermore, the 
integration of Explainable AI (XAI) techniques, including 
SHAP and LIME, enhances model transparency, a critical 
requirement for deployment in high-stakes, operator-
driven industrial environments. This research contributes 
to the development of trustworthy, real-time, and 
interpretable cybersecurity solutions tailored to the 
unique operational characteristics of ICS. 
 
MATERIALS AND METHODS 
This research adopts a multimodal deep learning 
approach for anomaly detection in Industrial Control 
Systems (ICS), particularly focusing on SCADA and DCS 
environments. The methodology is designed to address 
the unique challenges in ICS, such as data heterogeneity, 
class imbalance, legacy infrastructure constraints, and 
real-time operational demands. This methodological 
framework supports a scalable, real-time, and 
interpretable anomaly detection system for ICS 
cybersecurity. It ensures robustness against novel threats 
and is tailored for the operational realities of industrial 
environments, bridging cutting-edge AI with practical 
deployment readiness. The core stages of the 
methodology include data acquisition, preprocessing, 
model architecture design, training and evaluation, and 
explainability integration, as outlined below. 
 
Data Acquisition 
The model was trained and tested using the HAI Security 
Dataset, a realistic benchmark dataset developed in a 
Hardware-in-the-Loop (HIL) industrial testbed. The 
dataset includes both normal and attack scenarios across 

various industrial processes, such as water treatment, 
boilers, and turbines. It contains labeled time-series data 
representative of actual ICS environments, including 
instances of cyberattacks like set point manipulation, logic 
tampering, and false data injection. 
 
Data Preprocessing 
Given the raw nature of the collected data, preprocessing 
steps were essential to ensure suitability for deep learning 
models. These steps included: 

1. Data Cleaning: Removal of missing values and 
irrelevant features. 

2. Normalization: Feature scaling using Min-Max or Z-
score normalization to ensure uniform input ranges. 

3. Label Encoding: All data instances were labeled as 
either "normal" (Class 0) or "attack" (Class 1). 

4. Class Balancing Consideration: Since attacks are 
rare, the dataset exhibits class imbalance, which was 
accounted for using macro-averaged evaluation 
metrics to ensure fair performance assessment 
across both classes. 

5. Segmentation: Time-series data was segmented into 
windows of fixed length (e.g., 50 time steps), each 
with 61 features. 

 
Model Architecture 
The core of the proposed approach is a hybrid multimodal 
deep learning model consisting of three parallel neural 
network modules: 

1. 1D Convolutional Neural Network (CNN): Extracts 
spatial features from time-series inputs, capturing 
local patterns such as sudden spikes or signal 
deviations. 

2. Long Short-Term Memory (LSTM) Network: Captures 
temporal dependencies and sequence dynamics 
inherent in control commands and sensor signals. 

3. Autoencoder (AE): Learns a compressed 
representation of normal behavior and flags inputs 
with high reconstruction errors as anomalies. 

Each module independently processes the input data and 
outputs feature vectors of size 3072 (CNN), 2048 (LSTM), 
and 64 (Autoencoder), respectively. These vectors are 
concatenated into a combined 3264-dimensional feature 
vector, followed by a series of fully connected dense layers 
with Batch Normalization and Dropout to prevent 
overfitting. The final output layer uses a sigmoid activation 
function for binary classification. The total parameter 
count is approximately 1.84 million, allowing the model to 
balance expressiveness with computational efficiency. 
 
Model Training and Evaluation 
The model was trained using the following settings: 

1. Loss Function: Binary Cross-Entropy 
2. Optimizer: Adam with adaptive learning rates 
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3. Batch Size: Experimentally tuned for memory 
efficiency 

4. Epochs: Set based on convergence behavior 
observed in training curves 

To validate performance, multiple metrics were used: 
1. Accuracy: 92% 
2. Recall for Attack Class: 1.00 (no false negatives) 
3. Precision for Attack Class: 0.49 
4. F1-Score (Attack Class): 0.66 
5. AUC (ROC Curve): 0.97 
6. Average Precision (PR Curve): 0.82 

These metrics reflect the model’s strong generalization 
ability and robustness in identifying both known and 
unknown attack patterns, despite class imbalance. 
 
Explainability Integration 
To enhance trust and interpretability in operational 
settings, the model was supplemented with Explainable AI 
(XAI) techniques: 

1. SHAP (SHapley Additive exPlanations): Used to 
attribute feature importance and understand the 
model's output in terms of feature contributions. 

2. LIME (Local Interpretable Model-Agnostic 
Explanations): Offers localized explanations for 
individual predictions, aiding operators in making 
informed security decisions. 

 
RESULTS AND DISCUSSION 
The proposed multimodal deep learning model was 
evaluated using the HAI Security Dataset, which 
encompasses both normal and attack scenarios 
representative of real- world Industrial Control Systems 
(ICS). The architecture, designed for binary classification, 
processes input data through three parallel feature 
extraction paths with output dimensions of 3072, 2048, 
and 64, respectively. These feature vectors are then 
concatenated and passed through a series of dense layers, 
enhanced with batch normalization and dropout for 
regularization. The complete model comprises 
approximately 1. 84 million parameters, indicating its 

ability to handle complex, high-dimensional data. Training 
and validation metrics demonstrated robust performance: 
the model achieved a validation accuracy of approximately 
90%, while the training accuracy stabilized around 80%. 
Loss curves for both training and validation decreased 
steadily, with final losses falling below 0. 0.4, indicating 
effective learning and minimal overfitting due to 
regularization techniques. The confusion matrix revealed 
strong classification capabilities, as the model correctly 
identified all 24 attack instances, achieving perfect recall 
(1. 00) for the minority class. However, it misclassified 25 
normal instances as attacks, resulting in a slight decrease 
in precision for the attack class. Out of 142 normal 
instances, 117 were accurately classified. This outcome 
illustrates the model' s tendency to prioritize threat 
detection, minimizing the risk of false negatives while 
accepting some false positives. The Receiver Operating 
Characteristic (ROC) curve further confirmed the model' s 
strong performance, with an Area Under the Curve (AUC) 
of 0. 97. This high AUC indicates excellent discrimination 
between attack and normal instances. Similarly, the 
Precision- Recall (PR) curve yielded an average precision 
(AP) of 0. 82, a noteworthy result given the class 
imbalance. This demonstrates the model's reliability in 
identifying true positives while maintaining confidence in 
its predictions. The detailed classification report highlights 
the performance disparity between classes. For the 
normal class (Class 0), the model achieved perfect 
precision (1. 00), a recall of 0. 82, and an F 1- score of 0. 90. 
For the attack class (Class 1), it reached perfect recall (1. 
00) but a lower precision of 0. 49, resulting in an F 1- score 
of 0. 66. The overall accuracy of the model was 92%, with 
a macro average F 1- score of 0. 78 and a weighted average 
F 1- score of 0. 87. The model demonstrated high 
effectiveness in identifying cyberattacks in ICS 
environments, particularly excelling in scenarios where 
missing an attack would be critical. The results validate the 
use of multimodal deep learning for robust, real- time 
anomaly detection, with a balanced trade-off between 
sensitivity and precision. 
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Table 1: Multimodal deep learning architecture  

 
 
The model is a multimodal deep learning architecture 
designed for binary classification. It takes a single input of 
shape (50, 61), which is processed in parallel by three 
separate functional blocks, likely pre-trained or custom 
feature extractors, with output dimensions of 3072, 2048, 
and 64, respectively. These extracted features are 
concatenated into a combined feature vector of size 3264, 

which is then passed through fully connected layers with 
intermediate batch normalization and dropout for 
regularization. The final dense layer outputs a single value, 
indicating that the model is optimized for binary decision 
tasks. With approximately 1.84 million parameters (mostly 
trainable), the model is well-suited for complex pattern 
recognition tasks in structured or time-series data.  

 

 
Figure 1: Model Accuracy and Loss Performance Graph 

 
The training curves for the hybrid model show promising 
performance. In the Model Accuracy plot (left), both 
training and validation accuracy steadily increase over 
epochs, with validation accuracy reaching approximately 
0.9, while training accuracy stabilizes around 0.8. This 
indicates strong generalization, with the model performing 
slightly better on the validation set potentially due to 
regularization techniques like dropout. In the Model Loss 

plot (right), both training and validation loss decrease 
consistently, with training loss dropping more sharply and 
stabilizing below 0.4, while validation loss follows a similar 
trend and ends just above 0.4. The absence of significant 
divergence between training and validation curves 
suggests that the model is well-trained with minimal 
overfitting, making it suitable for robust deployment in 
real-world tasks. 
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Figure 2: Confusion Matrix 

 
The confusion matrix of the hybrid model reveals strong 
performance, particularly in identifying class 1 instances 
with perfect recall, correctly predicting all 24 positive 
cases without any false negatives. The model also 
correctly classified 117 out of 142 class 0 instances, 
resulting in 25 false positives where class 0 was 

misclassified as class 1. This indicates a slight bias toward 
predicting the positive class, which may affect precision 
but ensures high sensitivity. Overall, the model 
demonstrates reliable classification capability, especially 
in scenarios were missing a positive instance (false 
negative) could be critical. 

 

 
Figure 3: Receiver Operating Characteristic (ROC) curve 

 
The image displays a Receiver Operating Characteristic 
(ROC) curve for a "Hybrid Model," a standard visualization 
for evaluating binary classifier performance. The x-axis 
represents the False Positive Rate (FPR), while the y-axis 
shows the True Positive Rate (TPR). The orange curve 
illustrates the model's performance, indicating its ability to 
correctly identify positive cases while minimizing false 
alarms. A crucial metric, the Area Under the Curve (AUC), 

is reported as 0.97, signifying excellent discriminatory 
power of the model, as an AUC of 1.0 is perfect and 0.5 is 
equivalent to random guessing. The blue dashed diagonal 
line represents a random classifier, and the significant 
distance of the model's curve from this line towards the 
top-left corner further reinforces the "Hybrid Model's" 
superior performance. 

 



Oyedotun et al.,  JOSRAR 2(3) MAY-JUN 2025 20-31 
 

28 

 
Figure 4: Precision-Recall (PR) curve 

 
The provided image displays a Precision-Recall (PR) curve 
for a "Hybrid Model," a key tool for evaluating binary 
classifiers, particularly with imbalanced datasets. The x-
axis represents Recall (the proportion of actual positives 
correctly identified), while the y-axis shows Precision (the 
proportion of positive predictions that are truly positive). 
The blue curve illustrates the model's performance, and its 

associated Average Precision (AP) of 0.82 indicates strong 
performance. This high AP suggests the model effectively 
identifies a significant portion of true positive cases while 
maintaining high confidence in its positive predictions. PR 
curves are favored over ROC curves in imbalanced 
scenarios as they offer a more realistic assessment of a 
model's ability to handle the positive class. 

 
Table 2: Classification Report of Hybrid Model 

 Precision Recall F1-Score Support 
0 1.00 0.82 0.90 142 
1 0.49 1.00 0.66 24 
     
Accuracy   0.92 166 
Macro Avg 0.74 0.91 0.78 166 
Weighted Avg 0.93 0.85 0.87 166 

This classification report for the "Hybrid Model" details its 
performance on a dataset with imbalanced classes, where 
Class 0 (142 instances) is the majority and Class 1 (24 
instances) is the minority. The model demonstrates 
excellent performance on Class 0, achieving perfect 
precision (1.00) and high recall (0.82), resulting in a strong 
F1-score of 0.90. Conversely, for Class 1, while it achieves 
perfect recall (1.00), correctly identifying all instances, its 
precision is significantly lower (0.49), indicating a notable 
number of false positives for this class. The overall 
accuracy of 0.92 is high, but the weighted average F1-score 
of 0.87 provides a more balanced view of the model's 
effectiveness across both classes, reflecting its strength 
on the majority class while acknowledging the precision 
challenges with the minority class. 

This study demonstrates the potential of a multimodal 
deep learning framework in addressing the growing 
cybersecurity threats faced by Industrial Control Systems 
(ICS), particularly within SCADA and DCS environments. 
The use of CNNs, LSTMs, and Autoencoders in a hybrid 
architecture enables the model to effectively handle the 
heterogeneous nature of ICS data, which ranges from 
time-series sensor data to system logs and control 
commands. The results confirm that this approach is not 
only feasible but also highly effective in real-time anomaly 
detection, as evidenced by the model's outstanding 
accuracy (92%) and recall (1.00) for attack detection, even 
in an imbalanced dataset setting. A critical strength of this 
research lies in its holistic approach to the unique 
challenges of ICS cybersecurity (Oise et al., 2025c). Unlike 
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traditional IDS solutions that rely on static rule sets or 
signatures, this model adapts to complex and evolving 
attack vectors, particularly zero-day attacks and stealthy 
intrusions (Humphreys et al., 2024). The model’s ability to 
learn representations from raw data without requiring 
manual feature engineering significantly reduces 
dependency on domain-specific heuristics (Oise et al., 
2025b) and enhances its adaptability across various ICS 
platforms. The integration of different deep learning 
modules ensures the system captures both spatial and 
temporal anomalies, which are essential in distinguishing 
between normal fluctuations and malicious behavior in 
process control environments (Buçinca et al., 2021). 
Moreover, the incorporation of explainable AI (XAI) 
mechanisms such as SHAP and LIME addresses a critical 
barrier in industrial deployment—the trust and 
interpretability of AI models. ICS operators must 
understand the rationale behind model predictions to take 
timely and informed actions. By providing interpretable 
insights into the decision-making process, the model 
bridges the gap between black-box learning systems and 
human-centered control environments. This is particularly 
significant in high-stakes environments where operational 
continuity and safety are prioritized, and false alarms can 
lead to costly disruptions or delayed responses. 
However, the model does exhibit a trade-off between 
precision and recall for the minority class (attack 
instances). While the perfect recall (1.00) ensures no 
attacks are missed a crucial criterion in ICS security the 
lower precision (0.49) indicates a tendency toward false 
positives. This cautious bias is acceptable in scenarios 
where false negatives are far more critical, but it may 
necessitate additional layers of validation or alert filtering 
to reduce alarm fatigue among operators. Future work 
could explore ensemble models or hybrid decision 
systems that combine statistical and rule-based filters 
with deep learning outputs to mitigate false positives 
without sacrificing sensitivity. Another noteworthy 
contribution is the model’s performance under data 
scarcity conditions. The use of Autoencoders and the 
multimodal framework allowed effective learning from 
limited attack data, a common issue in ICS datasets due to 
operational constraints and the rarity of labeled intrusions. 
This advantage is further complemented by the model’s 
robustness, as indicated by consistent performance 
across training and validation sets and minimal overfitting, 
thanks to regularization techniques such as dropout and 
batch normalization. 
This paper lays a forward-looking foundation by identifying 
critical future directions, including federated learning, 
digital twin integration, and adversarial robustness. 
Federated learning offers a privacy-preserving path for 
collaborative model improvement across distributed ICS 
environments, while digital twins can facilitate realistic 
simulation of attack scenarios and improve model 

generalization. Furthermore, exploring defense 
mechanisms against adversarial inputs will be essential to 
securing the very deep learning systems meant to defend 
critical infrastructure. This research not only 
demonstrates the technical viability of multimodal deep 
learning for ICS cybersecurity but also addresses 
operational, interpretability, and scalability concerns 
crucial for real-world deployment. It advances the state of 
the art in intelligent intrusion detection and provides a 
strong foundation for future innovations in securing 
industrial cyber-physical systems. 
 
CONCLUSION 
The digital transformation of Industrial Control Systems 
(ICS), particularly SCADA and DCS platforms, has 
significantly increased their vulnerability to cyber threats 
due to Industry 4.0 integration. This study proposes a 
multimodal deep learning framework that combines 
Convolutional Neural Networks (CNNs), Long Short-Term 
Memory (LSTM) networks, and Autoencoders for intelligent 
anomaly detection tailored to these complex 
environments. Evaluated on the HAI Security Dataset, the 
model achieved an overall accuracy of 92%, perfect recall 
(1.00) for attack detection, a precision of 0.49 for the attack 
class, and an Area Under the Curve (AUC) of 0.97, 
indicating excellent discrimination between normal and 
malicious events. The integration of Explainable AI tools 
like SHAP and LIME enhances interpretability, enabling 
actionable insights for operators. The paper also outlines 
key implementation strategies, including edge 
optimization, seamless integration, and federated 
learning, as well as policy recommendations that call for 
explainability mandates and investments in digital twin 
infrastructure. Together, these contributions offer a 
robust, interpretable, and policy-aligned cybersecurity 
solution for protecting modern industrial systems. 
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