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A B S T R A C T  
Cowpea (Vigna unguiculata) is a vital legume crop valued for its 
nutritional benefits and role in enhancing soil fertility; however, 
traditional farming practices often result in inconsistent yields due to 
environmental stresses and inefficiencies. This study explores how 
integrating Internet of Things (IoT), smart farming, and machine 
learning (ML) can optimize cowpea yield prediction and promote 
sustainable agriculture. The research focuses on implementing IoT-
enabled smart farming systems with ML algorithms specifically 
Random Forest and AdaBoost to improve yield forecasting. IoT 
sensors were deployed to collect real-time data on critical 
parameters such as soil moisture, temperature, and nutrient levels, 
which were then used to train the predictive models. Performance 
evaluation using MAE, MSE, RMSE, and R² metrics revealed that 
Random Forest achieved perfect predictive accuracy (MAE, MSE, 
RMSE = 0.00; R² = 1.00), indicating strong generalization capability, 
while AdaBoost performed slightly less accurately (MAE = 0.05; MSE 
= 0.01; RMSE = 0.09; R² = 0.75), suggesting high accuracy but 
potential overfitting. The findings underscore the importance of soil 
nutrients and environmental variables in yield prediction and 
demonstrate that integrating IoT, smart farming, and ML particularly 
Random Forest holds great promise for advancing precision 
agriculture, increasing productivity, and fostering sustainable 
farming practices.  

 
INTRODUCTION 
Cowpea (Vigna unguiculata) is a vital legume known for its 
nutritional value and nitrogen-fixing properties, but global 
yields remain low due to climate change, pests, and 
inefficient farming practices. Traditional methods struggle 
to address these challenges, highlighting the need for 
data-driven solutions like the Internet of Things (IoT), smart 
farming, and machine learning (ML).  
The Internet of Things (IoT) refers to a network of 
interconnected physical devices embedded with sensors, 
software, and connectivity that enable them to collect and 
exchange data in real time. In agriculture, IoT systems 

allow continuous monitoring of environmental parameters 
such as soil moisture, temperature, and nutrient levels, 
enabling timely and data-driven farming interventions 
(Mishra et al., 2024). 
Smart farming is the application of modern technologies 
such as IoT, data analytics, artificial intelligence (AI), and 
precision agriculture tools to improve decision-making, 
increase productivity, and reduce resource waste. It 
enables automated and optimized control of irrigation, 
fertilization, pest management, and crop monitoring, 
resulting in more sustainable and efficient farming 
systems (Alsayaydeh et al., 2024). 
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Machine learning is a subset of artificial intelligence that 
enables systems to learn from data, identify patterns, and 
make predictions or decisions without explicit 
programming. In agriculture, ML algorithms can analyze 
large datasets collected from sensors and other sources 
to predict crop yields, detect diseases, optimize input 
usage, and support resource management (Reshma et al., 
2020). IoT sensors enable real-time monitoring of soil 
moisture, temperature, and nutrients, allowing precise 
interventions. ML algorithms analyze agricultural data to 
predict yields, detect diseases, and optimize resources, 
helping farmers make informed decisions that reduce 
waste and boost productivity. 
Smart farming integrates IoT-based precision agriculture, 
continuously collecting data to enhance irrigation, 
fertilization, and pest control while minimizing 
environmental impacts. AI-driven automation further 
improves decision-making, replacing traditional trial-and-
error approaches. Research underscores the economic 
benefits of these technologies, showing that IoT and ML 
improve yield predictions, optimize market planning, and 
increase profitability. Additionally, smart fertilizers and 
IoT-based monitoring significantly enhance cowpea yields. 
The integration of IoT, ML, and smart farming in cowpea 
cultivation offers a sustainable path to increased 
production, reduced resource waste, and improved food 
security. These innovations empower farmers to optimize 
growth conditions, mitigate risks, and ensure economic 
stability. 
Machine learning (ML) algorithms play a crucial role in crop 
yield prediction, with gradient-based methods, K-Nearest 
Neighbors (KNN), Support Vector Machines (SVM), 
Decision Trees, Random Forest, and Deep Learning 
techniques being widely used (Iliyasu, et al). These models 
leverage agricultural datasets to enhance predictive 
accuracy, optimize farming practices, and improve food 
security. 
Gradient-based techniques, such as CatBoost, LightGBM, 
and XGBoost, have gained popularity for their efficiency in 
minimizing prediction errors. CatBoost, designed to 
handle categorical features effectively, has demonstrated 
the highest precision, achieving an accuracy of 99.123% 
(Mahesh & Soundrapandiyan, 2024). LightGBM, known for 
its speed and efficiency, uses histogram-based learning to 
reduce training time while maintaining competitive 
accuracy (R² = 0.33). XGBoost, valued for its scalability and 
ability to prevent overfitting through regularization, 
achieved an R² score of 0.31 in yield prediction. 
Comparative analyses indicate that CatBoost excels in 
accuracy, LightGBM is optimal for real-time applications, 
and XGBoost remains a robust choice for complex 
datasets (Shahhosseini et al., 2021). 
KNN and SVM have been extensively studied for yield 
prediction based on soil and climate data. KNN predicts 
yield by comparing new data with past instances, making it 

effective for small datasets but computationally expensive 
for large ones. SVM, in contrast, performs well with high-
dimensional data and captures complex relationships 
using kernel functions. While SVM is highly accurate, it 
requires careful tuning of hyperparameters such as kernel 
type and regularization. 
Decision trees use hierarchical structures to segment 
datasets based on feature importance. However, they are 
prone to overfitting when used individually. Random 
Forest, an ensemble learning approach, mitigates this 
limitation by averaging multiple decision trees to enhance 
accuracy and reduce variance. Study like Pande, (2020) 
indicate that Random Forest outperforms other models, 
achieving 91.62% accuracy in yield prediction. 
Additionally, it provides feature importance rankings, 
identifying key yield influences such as soil moisture, 
temperature, and rainfall. In Nigerian agriculture, Decision 
Tree Regressor demonstrated a 72% accuracy rate 
(Shuaibu et al., 2024), reinforcing its relevance in yield 
prediction. 
Koduri et al. (2019) developed a predictive model for crop 
production using AdaBoost regression, leveraging 
historical agricultural data from India. The study analyzed 
factors like rainfall, soil composition, temperature, and 
crop yield history. Data preprocessing included cleaning, 
normalization, and feature selection to improve accuracy. 
AdaBoost regression, using decision trees as weak 
learners, significantly enhanced prediction performance, 
achieving a high R-squared score, indicating reduced error 
and better generalization. However, the study lacked an 
extensive feature importance analysis, limiting 
interpretability for agricultural decision-making. 
Chandraprabha & Dhanaraj (2023) integrated AdaBoost 
with Convolutional Neural Networks (CNN) and optimized 
performance using the Horse Herd Optimization Algorithm 
(HOA) to improve rice yield forecasting. The model used 
soil nutrient data and historical production statistics, 
achieving 95% accuracy, with precision and recall of 87% 
and 85%, respectively. The approach minimized error rates 
and optimized classifier weights. However, it did not 
incorporate climate factors like temperature and humidity, 
lacked real-time data integration, and did not assess 
computational efficiency for large-scale applications. 
The study by Olanrewaju et al. (2024) presents an 
innovative approach to predicting maize yield by leveraging 
plant attributes and machine learning algorithms. 
Conducted at the Federal University Dutsin-Ma in Katsina 
State, Nigeria, the research focused on developing 
predictive models using Random Tree (RT), Random Forest 
(RF), and Artificial Neural Networks (ANN) to enhance 
agricultural planning and food security. The researchers 
collected maize yield data from experimental farms, 
emphasizing plant attributes as predictive features. They 
trained and evaluated three machine learning models RT, 
RF, and ANN using performance metrics such as Mean 
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Absolute Error (MAE), Root Mean Square Error (RMSE), 
Relative Absolute Error (RAE), and Root Relative Squared 
Error (RRSE) to assess predictive accuracy. Among the 
models tested, the Random Tree algorithm outperformed 
the others, achieving: MAE: 0.093, RMSE: 0.096, RAE: 
19.7%, RRSE: 19.2%. 
Renju & Brunda (2024) employed a stacking ensemble 
learning approach integrating AdaBoost Regressor, 
Decision Tree, and Linear Regressor for crop yield 
prediction. Using Indian agricultural datasets, they 
optimized hyperparameters and handled missing data. 
Their ensemble model achieved an R² value of 98.92%, 
outperforming single-model techniques. AdaBoost 
Regressor contributed significantly to improving 
robustness. However, the study did not address scalability 
for broader agricultural applications. 
Deep learning models, including Convolutional Neural 
Networks (CNNs) and Multilayer Perceptrons (MLPs), have 
shown promising results in yield estimation. CNNs, widely 
used in image processing, analyze satellite imagery to 
detect crop health variations, soil moisture levels, and 
growth patterns. Recurrent Neural Networks (RNNs) and 
Long Short-Term Memory (LSTM) networks excel in time-
series forecasting, making them valuable for predicting 
seasonal yield fluctuations. Studies suggest that MLP and 
XGBoost perform exceptionally well in precision 
agriculture, enhancing decision-making through data-
driven insights (Shawon et al., 2023). 
Jiya et al, (2023)., in the research titled “Rice Yield 
Forecasting: A Comparative Analysis of Multiple Machine 
Learning Algorithms” gathered information on rice yield for 
the state of Katsina from 1970 to 2017 from the Nigeria 
Bureau of Statistics. Using logistic regression (LR), artificial 
neural networks (ANN), random forests (RF), random trees 
(RT), and naïve bayes (NB), models for predicting rice yield 
were developed using this dataset. The results showed 
that random forests and random trees fared better in yield 
prediction categorization tests.  The TP rates of Naïve 
Bayes (NB), Neural Network (ANN), and Logistic 
Regression (LR) were 0.75, 0.19, and 0.75, respectively.   

This study however explores how integrating Internet of 
Things (IoT), smart farming, and machine learning (ML) can 
optimize cowpea yield prediction and promote sustainable 
agriculture. The research focuses on implementing IoT-
enabled smart farming systems with ML algorithms 
specifically Random Forest and AdaBoost to improve yield 
forecasting. IoT sensors were deployed to collect real-time 
data on critical parameters such as soil moisture, 
temperature, and nutrient levels, which were then used to 
train the predictive models. 
 
MATERIALS AND METHODS 
The methods adopted in this work include data collection, 
data preprocessing, choosing learning algorithm and 
training them to produce cowpea yield prediction model. 
Briefly, the diagram in Figure 1 captures the method 
conceptually. 
 
Data source 
The study was conducted at the Federal College of 
Agricultural Produce Technology, Kano, Nigeria, within the 
Northern Guinea Savannah ecological zone. The 
experimental site is located at an elevation of 686 meters 
above sea level, experiencing two distinct seasons: the dry 
season (November–April) and the rainy season (May–
October). The region has a mono-modal rainfall pattern, 
with an annual mean precipitation of 1,110 mm, ranging 
between 950 mm and 1,270 mm. The average yearly 
temperature is approximately 25°C.  
An experimental farm was established, consisting of plots 
of cowpea, each equipped with IoT sensors to monitor 
real-time environmental and soil conditions. The sensors 
measured soil nutrient levels (N, P, K), soil moisture, 
temperature, and climate factors such as wind speed, 
humidity, and rainfall. The structured dataset provided 
comprehensive records of soil conditions, climate 
variables, and cowpea growth parameters, ensuring 
accurate machine-learning analysis for yield prediction. 
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Figure 1: The conceptual model of yield forecasting 

 
Feature selection 
The features considered were Plant Height, Number of 
Leaves, Number of Flowers, Dry Weight (g), Fresh Weight 

(g), Average Temperature, Average Nitrogen, Average 
Phosphorus, Average potassium, Average Moisture and  
No of Pod(Yield). 

 
Table 1: Statistical description of the data 

 Plant 
height 

Number 
of 
leaves 

Number 
of 
flowers 

Dry 
weight(g) 

Fresh 
weight 
(g) 

Average 
temp 

Average 
N 

Average 
P 

Average 
K 

Average 
moisture 

Yield 

count 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 
mean 0.978 0.926 0.747 0.897 0.875 0.982 0.962 0.952 0.982 0.897 0.748 
std 0.016 0.042 0.187 0.083 0.110 0.012 0.023 0.012 0.009 0.034 0.174 
min 0.944 0.828 0.375 0.641 0.600 0.943 0.936 0.934 0.960 0.828 0.500 
25% 0.965 0.897 0.625 0.872 0.800 0.975 0.946 0.947 0.978 0.884 0.571 
50% 0.979 0.931 0.750 0.897 0.900 0.982 0.954 0.950 0.982 0.897 0.714 
75% 0.995 0.966 1.000 0.974 1.000 0.994 0.984 0.955 0.988 0.905 0.875 
max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 
Data preparation 
The collected data was pre-processed to remove any 
missing values, outliers, and unnecessary information. 
The mean, median, or mode technique were used to 
impute missing values, depending on the distribution of 
the data. The rationale behind removing outliers was that 
their existence would significantly affect the accuracy of 
the prediction model. The remaining data was used for 
further analysis. Data standardization was also done to 
ensure that each variable had similar ranges and 

distributions. 25% of the data was used for testing, while 
the remaining 75% was used for training. The number of 
pods per plot was used to calculate the yield of the plots. 
The maximum yield was 14 pods in a plot. The data was 
normalized by dividing the yield by 14. All other fields were 
normalized using the maximum value in the field. 
Normalization helps in scaling the features to a common 
range, which is crucial for models sensitive to the 
magnitude of input data.  Table two contains IOT data 
collected. 
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Table 2: Data Collected 
Plant 
height  

Number 
of leaves 

Number 
of 
flowers 

Dry 
weight (g) 

fresh 
weight(g) 

Average 
Temp 

Average 
N 

Average 
P 

Average 
k 

Average 
moisture 

yield 

0.944 0.862 0.375 0.692 0.6 0.961 0.953 1.000 0.990 1.000 0.500 
0.958 0.897 0.625 0.795 0.6 0.943 0.998 0.985 1.000 0.951 0.929 
0.965 0.931 0.500 0.897 0.7 0.969 0.960 0.955 0.982 0.896 0.714 
0.965 0.862 0.500 0.641 0.7 0.967 1.000 0.969 0.960 0.828 0.643 
1.000 0.966 1.000 0.974 1.0 0.994 0.936 0.950 0.982 0.905 1.000 

 
Model development environment 
The models were implemented using python 
programming. Python package and libraries such as Scikit-
learn, Pandas, NumPy, Matplotlib & Seaborn were used. 
Along with other features for transforming data into the 
right format for mining, the software includes several tools 
for data pretreatment and visualization. 
 
Prediction Algorithms 
Two machine learning algorithms were used for yield 
prediction: random forest and adaboost. These classifiers 
have their strength and weakness.  
RF is a form of learning algorithm that generates a tress 
based on the attributes from the dataset, where each tree 
is itself a classification tree. Several random samples are 
generated from which randomized trees are developed. It 
initially randomly samples the complete data set, 
following which many decision trees are generated. Each 
tree is trained using a random sample from which it was 
built. All of the decision trees' predictions are then 
combined into a single tree for a single output. If multiple 
trees are trained and a greater number of them predict that 
an object belongs to class Y, and one says no, the final 
random forest prediction will be class Y.  
AdaBoost (Adaptive Boosting) is a machine learning 
algorithm that enhances the performance of weak 
classifiers by combining them into a strong classifier. It 
works by training multiple weak classifiers sequentially, 
where each new classifier focuses more on the samples 
that previous classifiers misclassified. The final model is a 
weighted sum of these weak classifiers (Cao et al., 2013). 

The AdaBoost algorithm follows these steps: Assign equal 
weights to all training samples. 
The algorithm trains a weak classifier on the data, 
Compute the error of the classifier and increase the 
weights of misclassified samples so that the next classifier 
focuses on them. It follows the produce repeatedly until a 
number of iterations are reached. As the final stage, it 
combines the weak classifiers into a final strong classifier 
using a weighted majority vote (Charlin, 2004). 
 
Model Evaluation 
A good number of metrics methods exist to measure the 
accuracy of machine learning model. The metric used in 
this work that measure the error rate of the model include 
RMSE, MSE, MAE and R-squared (R²) Score. Mathematical 
equations of the matrices are given in the following 
equations 1 to 4. 
𝑀𝐴𝐸 =

1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|
𝑛
𝑖=1       (1) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑛
𝑖=1 𝑦𝑖 − �̂�𝑖)

2    (2) 

𝑅𝑆𝑀𝐸 = √
1

𝑛
∑ (𝑛
𝑖=1 𝑦𝑖 − �̂�𝑖)

2     (3) 

𝑅2 = 1 −
∑(𝑦𝑖−�̂�𝑖)

2

∑(𝑦𝑖−�̄�)
2        (4) 

 
RESULTS AND DISCUSSION 
Figure 2 presents the graph of the yield in all the plots. 
Figure 3 shows the Adaboost model of the yield prediction 
while figure 4 shows the Random Forest model of the yield 
prediction. The AdaBoost model was trained using a stump 
as the base learner with 70% of the dataset used for 
training and 30% for testing.   
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Figure 2: Yield of all the plots in the farms 

 

 
Figure 3: Adaboost model for prediction of cowpea  

 

 
Figure 4: The Random Forest model of cowpea yield forecasting 

 
Figure 2 represents the plot of all cowpea yield from all the 
plots. In the said figure, the yield was not uniform across 
the various plots, though the same fertilizer and treatment 
were provided. The result showed that out of 40 records of 
the yield, about 11 of the plots produced maximum yield of 
1 (14 pods), 4 plots produced moderate yield (half of the 

maximum yield) while the majority were between 0.6 to 
0.9. This shows the impact of the IOT in application of 
needed nutrients. The employment of IOT in application of 
needed fertilizer based on the needs of the plant resulted 
in many of the plots yielding very high. 
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Table 3: Yield Data 
Pot 
 

Plant 
Height 
 

Number 
of 
Leaves 

Number 
of 
Flowers 

Dry 
Weight 
(g) 

Fresh 
Weight 
(g) 

Average 
Temp 
 

Average 
N 
 

Average 
P 
 

Average 
K 
 

Average 
Moisture 

No of 
Pod(Yield) 
 

1 13.4 25 3 2.7 9.7 31 17.39 23.27 54.11 38.6 7 
2 13.6 26 5 3.1 10.5 30.42 18.22 22.92 54.63 36.71 13 
3 13.7 27 4 3.5 11.9 31.27 17.52 22.23 53.67 34.57 10 
4 13.7 25 4 2.5 11.3 31.21 18.25 22.54 52.46 31.98 9 
5 13.7 26 5 3.4 12.6 30.38 17.65 22.48 53.58 35.38 9 
6 13.7 24 6 3.1 12.8 31.42 18.03 22.29 53.18 35.02 7 
7 13.7 26 5 3.5 13.2 32.12 17.22 21.81 52.5 36.48 10 
8 13.7 25 6 3 13.5 32.26 17.36 22.23 53.25 35.57 9 
9 13.7 26 6 3.1 14.1 31.74 18.17 22.14 53.91 32.08 11 
10 13.9 27 5 3.4 15.1 31.43 17.41 22.13 53.69 32.93 7 
11 13.7 26 5 3.5 13.1 31.67 17.26 22.03 54.01 34.51 8 
12 13.7 28 6 3.9 12.8 31.12 17.69 22.33 53.44 33.4 10 
13 13.7 27 5 3.6 14.4 31.9 17.35 22.15 53.59 34.63 8 
14 13.9 26 4 3.5 14.7 31.62 17.95 21.73 53.07 34.48 11 
15 14.1 29 5 3.4 14.4 31.81 18.22 21.98 54.46 34.67 13 
16 13.9 26 6 3.4 15.6 31.49 18.16 21.89 54.55 34.14 10 
17 14.1 29 9 3.2 16.2 32.08 17.86 22.15 53.85 34.89 12 
18 14.2 26 7 3.4 15.7 31.45 17.68 22.33 53.25 38.39 10 
19 14.1 29 7 3.9 16.9 32.18 18.21 22.47 53.63 32.54 12 
20 14.2 28 8 3.8 16.8 32.07 17.08 22.11 53.66 34.94 14 

 
Figure 3 shows the result of Adaboost model predicting the 
yield of cowpea based on fertilizer applicable. The model 
was able to track the dynamic changes in the yield across 
the plots. The model had minor errors in the third data and 
the last 2 values. The same result was observed in figure 4, 
where the model of yield prediction using Random Forest 
produced an excellent result similar to the Adaboost, with 

lower error observed in the last two data. The 2 models 
were able to track the actual yield across farms in all the 
plots, with slight prediction errors in predicted values 
surpassing actual yield in the last 2 plots, though the error 
of random forest is lower than the Adaboost.  The accuracy 
of each model is presented in table 4. 

 
Table 4: Model accuracy  

 MAE MSE RMSE R² 
Random Forest 0.00 0.00 0.00 1.00 
AdaBoost 0.05 0.01 0.09 0.75 

 
In table 4, the result of accuracy measure of the models in 
terms of MAE, MSE, RMSE, and R² were 0.00, 0.00, 0.00, 
1.00 and 0.05, 0.01, 0.09, 0.75 for Random Forest and 
AdaBoost respectively. 
 
Discussion 
This study examines the performance of two distinct 
models for predicting cowpea yield based on climatic 
variables. The models were evaluated using error-based 
metrics to assess their accuracy in predicting numerical 
values. The developed models were each evaluated based 
on performance metrics of   MAE, MSE, RMAE, and R2. 
From the analysis of the metrics, Random Forest 
demonstrated better performance than the other model 
results by achieving the lowest error rate.  The error rate 
was all 0 when calculated using 2 decimal figures while the 
error rate of Adaboost was 0.05 for MAE.  
Random Forest achieved perfect predictive accuracy (R² = 
1.00) compared Adaboost R² of 0.75. this performance 

Random Forest can be due to its ability to handle complex 
relationships within the dataset. AdaBoost performed well 
but exhibited slight overfitting tendencies, particularly for 
outlier samples. These findings highlight the effectiveness 
of ensemble learning in agricultural yield prediction and 
emphasize the importance of feature selection and model 
tuning for optimal results. 
The result of the two models suggests that both models 
were able to predict cowpea yield based on fertilizer 
application with an acceptable level of accuracy.  
This study highlights the potential of machine learning in 
precision agriculture, particularly for cowpea yield 
prediction, by applying Random Forest and AdaBoost 
algorithms to IoT-generated climatic data. Random Forest 
emerged as the more accurate and stable model, 
outperforming AdaBoost, though both demonstrated 
usefulness in predictive tasks. The integration of smart 
farming technologies supports improved decision-making, 
efficient resource management, and increased 
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agricultural productivity. The developed models are 
recommended for use in Nigeria to assist government 
planning and enhance food security. Future research 
should focus on expanding datasets, incorporating real-
time data, optimizing hyperparameters, evaluating 
economic feasibility for large-scale deployment, and 
exploring hybrid models to further improve predictive 
performance. our study centers on cowpea yield 
prediction using climatic variables and evaluates Random 
Forest (RF) and AdaBoost models. It found that RF 
outperformed AdaBoost, achieving perfect predictive 
accuracy (R² = 1.00) and zero error (MAE, MSE, RMSE = 
0.00) when rounded to two decimal places, while 
AdaBoost showed a MAE of 0.05 and R² of 0.75, with slight 
overfitting on outliers. This suggests RF’s robustness in 
handling complex relationships in climatic data and 
supports ensemble learning as effective for agricultural 
prediction. 
In contrast, the study by Olanrewaju et al. (2024) focuses 
on maize yield prediction based on plant attributes 
collected from experimental farms in Nigeria. It compares 
Random Tree (RT), Random Forest (RF), and Artificial 
Neural Networks (ANN). Here, Random Tree achieved the 
best performance, with MAE = 0.093 and RMSE = 0.096, 
indicating its superiority over RF and ANN in that context. 
The metrics used MAE, RMSE, RAE, and RRSE suggest 
moderate predictive accuracy, emphasizing the value of 
plant-based features. 
 
CONCLUSION 
This study demonstrates the potential of machine learning 
in precision agriculture, specifically for cowpea yield 
prediction. Random Forest and AdaBoost models were 
applied to IoT-generated data, with Random Forest 
emerging as the superior model. The results support the 
integration of smart farming technologies to enhance 
decision-making, improve resource management, and 
increase agricultural productivity. Future research should 
focus on expanding datasets, incorporating real-time data, 
and evaluating economic feasibility for large-scale 
adoption. This paper developed cowpea yield prediction 
model, using climatic data. The work used two (2) machine 
learning algorithms: Random Forest (RF) and Adaboost. 
We therefore recommend that our models (Random Forest 
(RF) and Adaboost) can be used alongside to predict 
cowpea yield in Nigeria. This will help the government to 
plan and will also ensure food security for the people of the 
state. Overall, the comparative results suggest that while 
AdaBoost can be useful, Random Forest outperforms it in 
terms of accuracy and stability. Future work could involve 
optimizing hyperparameters and exploring hybrid models 
for enhanced performance. 
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