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A B S T R A C T  
We propose a new family of distributions called the Rayleigh-
Exponentiated odd Generalized-Weibull Distribution with two 
positive parameters, which generalizes the Cordeiro and de Castro's 
family. Some special distributions in the new class are discussed. 
We derive the validity and some mathematical properties of the 
proposed distribution including explicit expressions for the quantile 
function, ordinary moments, Moment generating function, hazard 
and Survival function. The method of maximum likelihood is used to 
estimation of REOG-Weibull distributions. These functions are 
illustrated with graphs, since REOGWD was evident through 
graphics.  

 
INTRODUCTION 
In recent years, statistical distributions have become 
fundamental tools in modelling complex real- world 
phenomena across various fields, including survival 
analysis, reliability engineering, and financial risk 
management (Johnson et al., 1994). Classical distributions 
such as the Weibull and Rayleigh distributions have been 
widely used in these areas due to their simplicity and 
interpretability (Lawless, 2003). However, these 
conventional models sometimes fail to capture the heavy 
tails and skewness found in practical data, limiting their 
effectiveness (Mudholkar et al., 1996). 
To address these limitations, several generalized families 
of distributions have been proposed to improve the 
flexibility of these classical models. Among them, the 
Exponentiated-Weibull and Odd Generalized-Weibull 
distributions provide additional shape parameters, 
allowing greater adaptability to various data patterns 
(Gupta & Kundu, 1999; Al-Babtain et al., 2020). These 

flexible distributions have proven effective in fitting 
skewed and kurtotic data, which is common in survival and 
reliability studies, but they still sometimes lack flexibility in 
capturing diverse tail behaviours (Louzada-Neto et al., 
2001). 
The Rayleigh distribution, initially developed for modelling 
energy dissipation in physical systems, has shown 
versatility in various applications but lacks the flexibility of 
higher-order distributions (Rayleigh, 1880). Extending this 
distribution through exponentiation and further 
generalization can enhance its suitability for broader 
applications, especially where data exhibit heavy tails 
(Akinsete et al., 2008). The development of the Rayleigh-
Exponentiated Odd Generalized-Weibull (REOGW) 
distribution is, therefore, a promising extension. This 
distribution combines the properties of the Rayleigh and 
Odd Generalized-Weibull families, aiming to offer 
increased adaptability for survival analysis and real-life 
datasets. 
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The primary objective of this study is to develop the PDF 
and CDF of the REOGW distribution, addressing the need 
for more adaptable models in fields that require precise 
modelling of survival times and reliability (Pham, 2006). 
This involves not only deriving the core functions but also 
establishing essential mathematical properties, such as 
moments, which can reveal critical distributional features 
relevant to data patterns observed in survival studies 
(Cohen & Whitten, 1988). 
Parameter estimation through maximum likelihood 
estimation (MLE) will further solidify the practical efficacy 
of this model, as MLE is widely regarded as a reliable 
method for parameter estimation in complex distributional 
structures (Azzalini, 1985). MLE’s consistency and 
asymptotic properties align well with the model’s goal of 
accurately capturing the distribution’s behaviour over 
different datasets (Bishop, 2006). 
The study’s comparative analysis with existing models will 
help determine the REOGW distribution’s relative 
performance across diverse datasets. This step is 
essential for validating its effectiveness and understanding 
its practical limitations and strengths (Mendenhall et al., 
2016). Conducting simulations for parameter consistency 
will also be critical, as simulation studies are widely used 
to assess the robustness of new distributions in the 
statistical literature (Lee, 2010). 
On Theoretical Study of Rayleigh-Exponentiated Odd 
Generalized-X Family of Distributions, Yahaya and Doguwa 
(2021) developed the Rayleigh-Exponentiated Odd 
Generalized (REOG-X) family by deriving new theoretical 
properties and establishing a versatile framework 
applicable across multiple distributional forms. This study 
delves into the mathematical development of the REOG-X 
family, providing detailed derivations of its probability 
density function (PDF), cumulative distribution function 
(CDF), moments, and hazard functions. The authors 
showcase the REOG-X family’s ability to model diverse 
data patterns, including skewed and heavy-tailed 
distributions, and validate its adaptability through 
practical applications. By using the method of maximum 
likelihood estimation (MLE) for parameter estimation, the 
study affirms the REOG-X family's capacity to fit data with 
greater precision compared to conventional models. This 
work advances statistical modelling by offering a highly 
flexible family of distributions that can accurately capture 
complex real-world phenomena, with significant 
implications for fields like survival analysis and reliability 
engineering. This research is a noteworthy contribution, 
providing a robust statistical tool for modelling datasets 
with intricate structures and extreme events. 
The study by (Yahaya and Doguwa, 2022), titled On 
Rayleigh-Exponentiated Odd Generalized- Pareto 
Distribution with its Applications, presents a novel 
statistical distribution aimed at enhancing flexibility in 
modelling complex data patterns, particularly those 

exhibiting skewness, heavy tails, and varying hazard rates. 
The authors introduce the Rayleigh-Exponentiated Odd 
Generalized-Pareto (REOGP) distribution, extending 
traditional models to better capture a wider range of real-
world behaviours. Key mathematical properties, including 
the probability density function (PDF), cumulative 
distribution function (CDF), moments, and hazard 
functions, are rigorously derived, demonstrating the 
distribution's robustness and adaptability. Through 
parameter estimation via the maximum likelihood method, 
the study confirms the distribution’s ability to fit data more 
effectively than several traditional distributions, especially 
in fields such as survival analysis and reliability 
engineering. Their simulation studies provide evidence of 
the consistency and accuracy of the parameter estimates, 
further solidifying the REOGP’s applicability. The study 
contributes to statistical literature by proposing a highly 
adaptable distribution that can address the limitations of 
existing models, with broad implications for data analysis 
in practical applications requiring precise modelling of 
extreme events. 
In the study “On the Properties and Applications of a New 
Extension of Exponentiated Rayleigh Distribution”, 
(Abdulsalam et al., 2021) introduce an innovative 
extension of the Exponentiated Rayleigh (ER) distribution, 
designed to improve flexibility in modelling diverse data 
types. The authors rigorously derive key properties, 
including the probability density function (PDF), 
cumulative distribution function (CDF), moments, and 
reliability measures, illustrating the distribution’s 
enhanced capacity to capture skewness and heavy tails 
compared to traditional models. 
The study employs maximum likelihood estimation (MLE) 
for parameter estimation, establishing the consistency 
and robustness of the model in various applications. 
Through simulation and real-world data applications, the 
extended distribution outperforms standard models in 
fitting complex datasets, especially in reliability analysis 
and survival studies. This research contributes a powerful, 
flexible tool to the statistical literature, expanding the 
applicability of the Exponentiated Rayleigh family in fields 
requiring accurate modelling of non-standard data 
behaviours. 
The study “Applications of Inverse Weibull Rayleigh 
Distribution to Failure Rates and Vinyl Chloride Data Sets” 
by Adamu et al. (2021) explores the Inverse Weibull 
Rayleigh (IWR) distribution’s application in modelling 
failure rates and chemical exposure data. The authors 
present a thorough analysis of the IWR distribution, 
deriving essential properties, including the probability 
density function (PDF), cumulative distribution function 
(CDF), and hazard function, to demonstrate its suitability 
for modelling heavy-tailed data with complex failure rates. 
Through maximum likelihood estimation (MLE) for 
parameter fitting, the study assesses the IWR 
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distribution's performance on vinyl chloride exposure and 
failure rate datasets, showing improved accuracy over 
traditional models. This research contributes meaningfully 
to reliability and environmental studies by offering a robust 
alternative for analyzing extreme events and risk 
behaviours, broadening the practical applications of the 
Inverse Weibull Rayleigh model in real- world datasets. 
In “Generalized Rayleigh Distribution: Different Methods of 
Estimations”, Kundu and Raqab (2005) provide an in-depth 
exploration of estimation techniques for the Generalized 
Rayleigh Distribution (GRD), a model known for its 
flexibility in representing reliability and life data. The 
authors systematically compare estimation methods, 
including maximum likelihood estimation (MLE), method 
of moments, and Bayes estimators, assessing each 
method’s efficiency, bias, and mean square error through 
simulation studies. Their findings reveal MLE as the most 
robust technique for GRD parameter estimation, 
especially for large samples, while Bayes estimators offer 
advantages with smaller datasets or prior information. This 
work is significant in statistical modelling, presenting the 
GRD as a powerful alternative to traditional models for 
data with non- standard shapes, such as skewed or heavy-
tailed distributions. By evaluating estimation accuracy 
across methods, Kundu and Raqab provide a practical 
guide for applying the GRD in real-world scenarios, 
particularly in reliability engineering and survival analysis 
In “Rayleigh Distribution and Its Generalizations”, 
Beckmann (1964) explores the foundational Rayleigh 
distribution and introduces generalized forms to extend its 
application across various scientific domains. Beckmann 
presents mathematical properties and distributional 
behaviour, emphasizing the versatility of the Rayleigh 
model in representing wave intensities and scattered 
signal amplitudes, particularly in radio science. By 
generalizing the Rayleigh distribution, Beckmann opens 
avenues for more accurate modelling of complex, real-
world phenomena, such as environmental noise and signal 
processing in communications. This early work is pivotal, 
as it establishes the Rayleigh distribution’s adaptability, 
setting a foundation for later developments in statistical 
distributions used in reliability engineering, survival 
analysis, and environmental science. Beckmann’s study 
remains influential, highlighting the Rayleigh distribution’s 
robustness and the potential of its generalizations to 
improve data modelling accuracy across scientific fields. 
In Two-Parameter Rayleigh Distribution: Different Methods 
of Estimation, Dey et al., (2014) examine various 
estimation techniques for the two-parameter Rayleigh 
distribution, which is widely used in modelling reliability 
and life data. The authors compare methods including 
maximum likelihood estimation (MLE), method of 
moments, and percentile-based estimations, assessing 
each for efficiency, bias, and mean square error through 
extensive simulation studies. Their results indicate MLE as 

the most effective method for parameter estimation in 
larger samples, while percentile-based methods offer a 
viable alternative for small datasets. This study makes a 
valuable contribution to statistical modelling by detailing 
practical approaches to estimating parameters in the two-
parameter Rayleigh model, which has applications in 
fields like engineering and environmental sciences. By 
offering a comprehensive comparison of estimation 
methods, the authors provide essential insights for 
researchers and practitioners needing precise data 
modelling with the Rayleigh distribution. 
In The Theory of the Rayleigh Distribution and Some of Its 
Applications”, Hoffman and Karst (1975) provide a 
thorough exploration of the Rayleigh distribution, 
highlighting its theoretical basis and practical 
applications, particularly in marine and ship research. The 
authors detail the distribution’s mathematical properties, 
including its probability density function, moments, and 
estimation techniques, underscoring its relevance in 
modelling wave heights, signal processing, and load 
distributions in marine environments. Their application-
focused approach demonstrates the Rayleigh 
distribution’s utility in describing stochastic phenomena 
typical in ship and ocean engineering. This study is 
influential, establishing the Rayleigh distribution as a 
robust model for analyzing random and complex data 
patterns encountered in maritime contexts. Hoffman and 
Karst's work remains a key reference, showcasing the 
distribution’s versatility and its critical role in advancing 
research and applications in marine science and 
engineering. 
In An Extension of Rayleigh Distribution and Applications, 
Ateeq et al., (2019) introduce an extended Rayleigh 
distribution designed to enhance modelling flexibility for 
datasets with diverse characteristics, including skewed 
and heavy-tailed distributions. The authors derive critical 
mathematical properties, such as the probability density 
function, cumulative distribution function, and moments, 
and validate the distribution’s applicability through real-
world datasets in fields like reliability engineering and 
survival analysis. Parameter estimation is carried out using 
maximum likelihood estimation (MLE), demonstrating the 
extended model’s effectiveness in fitting complex data. 
This study contributes significantly to statistical modelling 
by offering a robust alternative to the traditional Rayleigh 
distribution, with improved adaptability for non-standard 
data patterns. The findings emphasize the extension’s 
practical value across disciplines that require precise 
modelling of variability, making it a useful tool in applied 
statistics. 
 
MATERIALS AND METHODS 
Here, we present the methodology for extending the 
Weibull distribution using the REOG-X family of 
distribution developed by Yahaya and Doguwa (2021). The 



Salisu et al.,  JOSRAR 2(2) MAR-APR 2025 115-125 
 

118 

extended Weibull model is called the REOG-Weibull 
distribution. The statistical properties related to this new 
distribution are derived and presented. The method of 
estimating the parameters of this family is presented. 
Usman et al. (2021) defined a random variable T and is said 
to have Weibull distribution with shape parameter𝛽 and 
scale parameter𝜆 if its CDF and pdf are given as, 
𝐺(𝑡; 𝜆, 𝛽) = 1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽} ; 𝑡, 𝛽, 𝜆 < 0  (1) 
𝑔(𝑡; 𝜆, 𝛽) = 𝛽𝜆𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽} ; 𝑡, 𝛽, 𝜆 < 0  (2) 
Yahaya and Doguwa (2021) defined a random variable T 
which is said to have a Rayleigh Exponentiated Odd 
Generalized-T family of distribution with two shape 
parameters𝜃 and𝛼if its pdf and CDF are given as, 

𝐹(𝑡; 𝛼, 𝜃) = 1 − 𝑒𝑥𝑝 {−
𝜃

2
(

𝐺𝛼(𝑡;𝜉)

(1−𝐺𝛼(𝑡;𝜉))
)
2

} ; 𝑡, 𝜃, 𝛼 > 0  (3) 

𝑓(𝑡; 𝛼, 𝜃) =
𝛼𝜃𝑔(𝑡;𝜉)𝐺2𝛼−1(𝑡;𝜉)

(1−𝐺𝛼(𝑡;𝜉))3
𝑒𝑥𝑝 {−

𝜃

2
(

𝐺𝛼(𝑡;𝜉)

(1−𝐺𝛼(𝑡;𝜉))
)
2

}

; 𝑡, 𝜃, 𝛼 > 0       (4) 
 
The Proposed REOG-Weibull Distribution 
We developed a new distribution called the Rayleigh 
Exponentiated Odd Generalized-Weibull  
(REOG-W) distribution by substituting equation (2) into 
equation (4) to obtain the CDF given by; 

𝐹(𝑡; 𝛼, 𝛽, 𝜆, 𝜃) = 1 − 𝑒𝑥𝑝 {−
𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
−

1)
−2
} ; 𝑡, 𝜃, 𝛼 > 0        (5) 

 

 
Figure 1: CDF Plot of REOG-Weibull Distribution 

 
The corresponding pdf of equation (5) is obtained by differentiating the CDF with respect to 𝑡 as; 

𝑓(𝑡; 𝛼, 𝛽, 𝜆, 𝜃) =
𝛼𝛽𝜆𝜃𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽}(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})

2𝛼−1

(1−(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
𝛼
)
3 𝑒𝑥𝑝 {−

𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
}     (6) 

 
Figure 2: PDF Plot of REOG-Weibull Distribution 
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Validity Test of the PDF 
∫ 𝑓(𝑡)𝑑𝑡 = 1
∞
−∞   
𝑓(𝑡; 𝛼, 𝛽, 𝜆, 𝜃)𝑑𝑡 = 1  
From the LHS, we have; 

= ∫
𝛼𝛽𝜆𝜃𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽}(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})

2𝛼−1

(1−(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
𝛼
)
3 𝑒𝑥𝑝 {−

𝜃

2
((1 −

∞
−∞

𝑒𝑥𝑝{−𝜆𝑡𝛽})
−𝛼

− 1)
−2
} 𝑑𝑡     (7) 

From equation 7 

Let  ((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})
−𝛼

− 1)
−2

 
Using the chain rule, we have; 
𝑑𝑦

𝑑𝑚
= −2𝑚−3 ⇒ 𝑚 = ((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)  

𝑑𝑚

𝑑𝑡
= −𝛼(1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼−1
𝛽𝜆𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽}  

𝑑𝑦

𝑑𝑡
=

𝑑𝑦

𝑑𝑚
×

𝑑𝑚

𝑑𝑡
  

= −2𝑚−3 (−𝛼(1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})
−𝛼−1

𝛽𝜆𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽})

  

= 2𝛼𝛽𝜆𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽} (1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})
−𝛼−1

𝑚−3  
But, 𝑚 = ((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1) 

𝑑𝑦

𝑑𝑡
=

2𝛼𝛽𝜆𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽}(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
−𝛼−1

((1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
−𝛼

−1)
3   

But, ((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})
−𝛼

− 1)
3
=

(1−(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
𝛼
)
3

(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
3𝛼  

𝑑𝑦

𝑑𝑡
=

2𝛼𝛽𝜆𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽}(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
−𝛼−1

(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
3𝛼

(1−(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
𝛼
)
3

  

=
2𝛼𝛽𝜆𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽}(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})

2𝛼−1

(1−(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
𝛼
)
3   

𝑑𝑡 =
(1−(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})

𝛼
)
3
𝑑𝑦

2𝛼𝛽𝜆𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽}(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
2𝛼−1     (8) 

 
Substituting equation (8) into equation (7) we have; 
𝜃

2
∫ 𝑒𝑥𝑝 {−

𝜃

2
𝑦}

∞
0

𝑑𝑦  
 
Let 𝑧 = 𝜃

2
𝑦 ⇒

𝑑𝑧

𝑑𝑦
=

𝜃

2
⇒ 𝑑𝑦 =

2𝑑𝑧

𝜃
 

=
𝜃

2
∫ 𝑒𝑥𝑝{−𝑧}
∞
0

2𝑑𝑧

𝜃
  

=
𝜃

2
∫ 𝑒𝑥𝑝{−𝑧}
∞
0

= −[𝑒𝑥𝑝{−𝑧}]0
∞ = −[𝑒𝑥𝑝{−∞} −

𝑒𝑥𝑝{0}]0
∞ = −[0 − 1] = 1  

 
Validity Test of the CDF 
For 𝑡 = 0 we have 
𝑙𝑖𝑚
𝑡→0

𝐹(𝑡) = 0  

𝑙𝑖𝑚
𝑡→0

𝐹(𝑡; 𝛼, 𝛽, 𝜆, 𝜃) = 0  

 
From equation (3.8) 

𝑙𝑖𝑚
𝑡→0

(1 − 𝑒𝑥𝑝 {−
𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
}) = 0

  
For 𝑡 = ∞ we have 
𝑙𝑖𝑚
𝑡→∞

𝐹(𝑡) = 1  

 
𝑙𝑖𝑚
𝑡→∞

𝐹(𝑡; 𝛼, 𝛽, 𝜆, 𝜃) = 1  

 
From equation (3.5) 

𝑙𝑖𝑚
𝑡→∞

(1 − 𝑒𝑥𝑝 {−
𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
}) = 1

  
Survival and Hazard Rate Function of the OR-G Family  
The survival function, and hazard function of a random 
variable T which follows the REOG- Weibull distributions 
are respectively given as, 
𝑆(𝑡; 𝛼, 𝛽, 𝜆, 𝜃) = 1 − 𝐹(𝑡; 𝛼, 𝛽, 𝜆, 𝜃)  

= 1 − (1 − 𝑒𝑥𝑝 {−
𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
})  

   = 𝑒𝑥𝑝 {−
𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
}   (9) 

The hazard function is given as; 

ℎ(𝑡; 𝛼, 𝛽, 𝜆, 𝜃) =
𝑓(𝑡;𝛼,𝛽,𝜆,𝜃)

𝑆(𝑡;𝛼,𝛽,𝜆,𝜃)
  

=

𝛼𝛽𝜆𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽}(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
2𝛼−1

(1−(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
𝛼
)
3
𝑒𝑥𝑝{−

𝜃

2
((1−𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
−1)

−2
}
𝑒𝑥𝑝 {−

𝜃

2
((1 −

𝑒𝑥𝑝{−𝜆𝑡𝛽})
−𝛼

− 1)
−2
}  

=
𝛼𝛽𝜆𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽}(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})

2𝛼−1

(1−(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
𝛼
)
3     (10) 
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Figure 3: Survival Function Plot of REOG-Weibull Distribution 

 
Quantile Function of REOG-Weibull Distribution 
To derive the quantile function of the Rayleigh-
Exponentiated Odd Generalized Weibull (REOGW) 
distribution from its cumulative distribution function 
(CDF), we follow these steps: 
Step 1: Start with the CDF 
Given the CDF of the REOGW distribution in equation (5): 

𝐹(𝑡; 𝛼, 𝛽, 𝜆, 𝜃) = 1 − 𝑒𝑥𝑝 {−
𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
}

  
Step 2: Set the CDF Equal to a Probability 
To find the quantile function 𝑄(𝑝) , set the CDF equal to 𝑝 
where 0 < 𝑝 < 1: 

𝑝 = 1 − 𝑒𝑥𝑝 {−
𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
}  

 
Steps 3: Solve for 𝑡 
Rearrange to isolate the exponential term: 

𝑒𝑥𝑝 {−
𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
} = 𝑝 − 1  

Take the natural logarithm of both sides: 

−
𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
= 𝐼𝑛(𝑝 − 1)  

Simplify to isolate the expression involving 𝑡 

[(1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})
−𝛼

− 1]
−2

=
2𝐼𝑛(𝑝−1)

𝜃
  

Invert the power of−2  to simplify 

(1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})
−𝛼

− 1 = √
2𝐼𝑛(1−𝑝)

𝜃
  

Solve for (1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})
−𝛼
: 

(1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})
−𝛼

= 1 + √−
2𝐼𝑛(1−𝑝)

𝜃
  

Invert to isolate [𝑒𝑥𝑝{−𝜆𝑡𝛽}]: 

1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽} = (1 + √−
2𝐼𝑛(1−𝑝)

𝜃
)

−
1

𝛼

  

Solve for 𝑒𝑥𝑝{−𝜆𝑡𝛽}: 

𝑒𝑥𝑝{−𝜆𝑡𝛽} = 1 − (1 + √−
2𝐼𝑛(1−𝑝)

𝜃
)

−
1

𝛼

  

Take the natural logarithm: 

−𝜆𝑡𝛽 = 𝐼𝑛 [1 − (1 + √−
2𝐼𝑛(1−𝑝)

𝜃
)

−
1

𝛼

]  

Solve for 𝑡: 

𝑡 = (−
1

𝜆
𝐼𝑛 [1 − (1 + √−

2𝐼𝑛(1−𝑝)

𝜃
)

−
1

𝛼

])

1

𝛽

  

Finally, the Quantile Function is given as:  

𝑄(𝑝) = (−
1

𝜆
𝐼𝑛 [1 − (1 + √−

2𝐼𝑛(1−𝑝)

𝜃
)

−
1

𝛼

])

1

𝛽

   (11) 

Equation (3.11) is the quantile function 𝑄(𝑝)of the REOGW 
distribution. 
 
Moments of REOG-Weibull Distribution 
To derive the moments of the Rayleigh-Exponentiated 
Odd Generalized Weibull (REOGW) distribution, we 
need to evaluate the rth moment E(T r ) using the given 
probability density function (PDF) in equation (6). The rth 
moment is defined by: 
𝐸(𝑇𝑟) = ∫ 𝑡𝑟

∞
0

𝑓(𝑡; 𝛼, 𝛽, 𝜆, 𝜃)𝑑𝑡     (12) 
Where 𝑓(𝑡; 𝛼, 𝛽, 𝜆, 𝜃) is the PDF of the REOGW distribution 
given in equation (6): 
Steps we follow to derive the Moments: 
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Substitute the PDF into the Moment Definition in equation (12): 

𝐸(𝑇𝑟) = ∫ 𝑡𝑟
∞
0

𝛼𝛽𝜆𝜃𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽}(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
2𝛼−1

(1−(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
𝛼
)
3 𝑒𝑥𝑝 {−

𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
} 𝑑𝑡  

Simplify the integral: 

𝐸(𝑇𝑟) = 𝛼𝛽𝜆𝜃 ∫ 𝑡𝑟+𝛽−1
∞
0

𝑒𝑥𝑝{−𝜆𝑡𝛽}(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
2𝛼−1

(1−(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
𝛼
)
3 𝑒𝑥𝑝 {−

𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
} 𝑑𝑡  

Transformation for Simplification: 
Let 𝑢 = 𝑒𝑥𝑝{−𝜆𝑡𝛽} ⇒ 𝑑𝑢 = −𝜆𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽} 𝑑𝑡 
Solve for 𝑑𝑡: 
𝑑𝑡 = −

𝑑𝑢

𝜆𝑡𝛽−1𝑢
  

Substitute and re-express the Moment integral   𝑡𝛽 = −
𝐼𝑛𝑢

𝜆
𝑎𝑛𝑑𝑡𝛽−1 = (−

𝐼𝑛𝑢

𝜆
)

𝛽−1

𝛽  

𝐸(𝑇𝑟) = 𝛼𝛽𝜆𝜃 ∫ (−
𝐼𝑛𝑢

𝜆
)

1

0

𝑟+𝛽−1

𝛽 𝑢(1−𝑢)2𝛼−1

(1−(1−𝑢)𝛼)3
𝑒𝑥𝑝 {−

𝜃

2
((1 − 𝑢)−𝛼 − 1)−2} (−

𝑑𝑢

𝜆𝛽(−
𝐼𝑛𝑢

𝜆
)

𝛽−1
𝛽 𝑢

)  

We simplify the above expression by cancelling and rearranging terms: 

𝐸(𝑇𝑟) = 𝛼𝜃 ∫ (−
𝐼𝑛𝑢

𝜆
)

1

0

𝑟

𝛽 𝑢(1−𝑢)2𝛼−1

(1−(1−𝑢)𝛼)3
𝑒𝑥𝑝 {−

𝜃

2
((1 − 𝑢)−𝛼 − 1)−2}

𝑑𝑢

𝑢
          (13) 

 
Moment-generating Function of REOG-Weibull Distribution 
To derive the moment-generating function (MGF) MT s  of the REOGW distribution, we start from the definition: 
𝑀𝑇(𝑠) = 𝐸(𝑒𝑠𝑡) = ∫ 𝑒𝑠𝑡

∞
0

𝑓(𝑡; 𝛼, 𝛽, 𝜆, 𝜃)𝑑𝑡          (14) 
Where 𝑓(𝑡; 𝛼, 𝛽, 𝜆, 𝜃) is the PDF of the REOGW distribution given in equation (6): 
We follow step-by-step Derivation as: 
Substitute the PDF into the MGF definition: 

𝑀𝑇(𝑠) = ∫ 𝑒𝑠𝑡
∞
0

𝛼𝛽𝜆𝜃𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽}(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
2𝛼−1

(1−(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
𝛼
)
3 𝑒𝑥𝑝 {−

𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
} 𝑑𝑡  

Simplify the exponential term 𝑒𝑠𝑡  
The term 𝑒𝑠𝑡  remains as in the integrand. The integral now becomes: 

𝑀𝑇(𝑠) = 𝛼𝛽𝜆𝜃 ∫ 𝑡𝛽−1𝑒𝑠𝑡
∞
0

𝑒𝑥𝑝{−𝜆𝑡𝛽}
(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})

2𝛼−1

(1−(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
𝛼
)
3 𝑒𝑥𝑝 {−

𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
} 𝑑𝑡   (15) 

 
Order Statistics of REOG-Weibull Distribution 
We derive the distribution of the order statistics for the REOGW (Rayleigh-Exponentiated Odd Generalized Weibull) 
distribution, we need to find the PDF of the 𝑘𝑡ℎ order statistic from a sample of size n. The distribution's PDF and CDF are 
provided as follows: 
The PDF of the kth order statistic X k  in a sample of size n is given by: 

𝑓𝑋(𝑘)(𝑡) =
𝑛!

(𝑘−1)!(𝑛−𝑘)!
[𝐹(𝑡)]𝑘−1[1 − 𝐹(𝑡)]𝑛−𝑘𝑓(𝑡),            (16) 

Substitute the CDF and PDF of the REOGW distribution in equation (5) and (6) into the order  
Order statistic formula in equation (16) we have; 

𝑓𝑋(𝑘)(𝑡) =
𝑛!

(𝑘−1)!(𝑛−𝑘)!
[1 − 𝑒𝑥𝑝 {−

𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
}]

𝑘−1

[𝑒𝑥𝑝 {−
𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
}]

𝑛−𝑘

 𝛼𝛽𝜆𝜃𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽}(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
2𝛼−1

(1−(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
𝛼
)
3 𝑒𝑥𝑝 {−

𝜃

2
((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
}          (17) 

 
MLE Estimation of REOG-Weibull Distribution 
To derive the log-likelihood function of the Rayleigh-Exponentiated Odd Generalized Weibull  (REOGW) distribution, we 
start from the given PDF in equation (6). Given a sample of size 𝑛, {𝑡1, 𝑡2, . . . . . 𝑡𝑛}, the log-likelihood function ℓ(𝛼, 𝛽, 𝜆, 𝜃) 
is defined as: 
ℓ(𝛼, 𝛽, 𝜆, 𝜃) = ∑ 𝑙𝑜𝑔

𝑛∑(𝑡;𝛼,𝛽,𝜆,𝜃)
𝑖=1             (18) 

Substituting the PDF in the equation (6) into the log-likelihood function, we have; 
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ℓ(𝛼, 𝛽, 𝜆, 𝜃) = ∑ 𝑙𝑜𝑔

𝑛∑[
𝛼𝛽𝜆𝜃𝑡𝛽−1 𝑒𝑥𝑝{−𝜆𝑡𝛽}(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})

2𝛼−1

(1−(1−𝑒𝑥𝑝{−𝜆𝑡𝛽})
𝛼
)
3 𝑒𝑥𝑝{−

𝜃

2
((1−𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
−1)

−2
}]

𝑖=1
  

Separating the terms inside the logarithm we have; 
ℓ(𝛼, 𝛽, 𝜆, 𝜃) = [∑ 𝑙𝑜𝑔(𝛼) + 𝑙𝑜𝑔(𝛽) + 𝑙𝑜𝑔(𝜆) + 𝑙𝑜𝑔(𝜃) + (𝛽 − 1) 𝑙𝑜𝑔(𝑡𝑖) − 𝜆𝑡𝑖

𝛽 + (2𝛼 − 1)𝑛
𝑖=1 −3 log(1 − (1 −

exp{−λtiβ})α) −
θ

2
((1 − exp{−λtβ})−α − 1)−2]  

 
The log-likelihood function can be written as: 

(𝛼, 𝛽, 𝜆, 𝜃) = 𝑛 𝑙𝑜𝑔(𝛼) + 𝑙𝑜𝑔(𝛽) + 𝑙𝑜𝑔(𝜆) + 𝑙𝑜𝑔(𝜃) + (𝛽 − 1)∑ 𝑙𝑜𝑔(𝑡𝑖) − 𝜆𝑛
𝑖=1 ∑ 𝑡𝑖

𝑛
𝑖=1 + (2𝛼 − 1)∑ 𝑙𝑜𝑔

𝑛∑(1−𝑒𝑥𝑝{−𝜆𝑡𝑖
𝛽})

𝑖=1 −

3∑ 𝑙𝑜𝑔(1 − (1 − 𝑒𝑥𝑝{−𝜆𝑡𝑖
𝛽})

𝛼
) −𝑛

𝑖=1
𝜃

2
∑ ((1 − 𝑒𝑥𝑝{−𝜆𝑡𝛽})

−𝛼
− 1)

−2
𝑛
𝑖=1       (19) 

This equation (19) can be used for further analysis or numerical estimation of the parameter  
𝛼, 𝛽, 𝜆, 𝜃. 
 
RESULTS AND DISCUSSION 
Monte Carlo Simulation  
We present the results and discussion of the Monte Carlo 
Simulations for the REOG-Weibull model, applications to 
real-life datasets for the model and competing models. 
Given the three competing models, the Weibull model, the 
exponential Weibull model, and the power Rayleigh model 
we can carry out the model fitting and comparison using 
the real-life datasets. 

The Monte Carlo simulation results in Table 1 provide a 
comprehensive evaluation of the estimation process for 
the REOG-Weibull distribution across different sample 
sizes. The results show that as the sample size increases, 
the estimates for parameters 𝛼, 𝛽, 𝜆,  𝑎𝑛𝑑 𝜃 approach the 
true values more closely, which is reflected in the 
decreasing bias and RMSE values. 

 
Table 1: Results of the simulated data from the REOG-Weibull Distribution 

Sample Size Parameters Estimates |Bias| RMSE 
20 α 0.2238 0.2762 0.2793 

β 0.2674 0.2250 0.2353 
λ 0.2740 0.2003 0.2075 
𝜃 0.3247 0.2476 0.2541 

     

50 α 0.2314 0.2686 0.2717 
β 0.2808 0.2192 0.2250 
λ 0.2743 0.1888 0.1988 
𝜃 0.3373 0.2464 0.2526 

     

100 α 0.2338 0.2662 0.2691 
β 0.2860 0.2140 0.2212 
λ 0.2796 0.1843 0.1963 
𝜃 0.3429 0.2462 0.2521 

     

200 α 0.2410 0.2590 0.2616 
β 0.3051 0.1949 0.2060 
λ 0.2843 0.1796 0.1950 
𝜃 0.3462 0.2429 0.2510 

     

250 α 0.2432 0.2568 0.2590 
β 0.3243 0.1757 0.1933 
λ 0.2888 0.1743 0.1869 
𝜃 0.3464 0.2373 0.2469 

     

500 α 0.2498 0.2502 0.2516 
β 0.3793 0.1207 0.1666 
λ 0.3003 0.1740 0.1859 
𝜃 0.3476 0.2247 0.2363 
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This pattern indicates that the estimators for these 
parameters are consistent, as they converge to the true 
parameter values with increasing sample size and lower 
RMSE and bias at larger sample sizes show that the 
estimates are not only close to the true values but also 
exhibit less dispersion. 
Application to Real-Life Datasets 
We used some of the existing datasets to compare the 
performance of the developed distribution and other 

related distributions. To fit our developed distribution and 
comparator distributions, the competing models are: the 
Weibull-Weibull (WW) distribution developed by 
Bourguinon et al. (2014); the New Weibull-Weibull (NWW) 
distribution developed by Tahir et al. (2016); the 
Generalized Odd Frechet-Weibull (GOFW) distribution 
developed by Margapool et al. (2020).  

 
Table 2: Goodness of Fit Measures for AAML Dataset 

Model Log-Likelihood AIC P-value 
REOGW -90.27824 188.5565 2.78e-80 
WW -98.36816 204.7363 3.00e-65 
NWW -95.65894 199.3179 3.84e-68 
GOFW -390.26233 786.5247 4.54e-73 

 
Table 2 presents the goodness-of-fit measures for four 
different survival regression models applied to the AAML 
dataset. The models are evaluated using Log-Likelihood, 
Akaike Information Criterion (AIC), and p-values from a 
goodness-of-fit test. 
Based on the log-likelihood, AIC, and p-value: The REOGW 
model is the best fit for the AAML dataset. The GOFW 
model is the worst fit, performing significantly worse than 
the others. Between WW and NWW, NWW fits slightly 
better than WW due to its higher log-likelihood and lower 
AIC. 
 
CONCLUSION 
This study introduced the Rayleigh-Exponentiated Odd 
Generalized Weibull (REOGW) distribution as a new model 
for survival data analysis. We explored its fundamental 
statistical properties and employed the Maximum 
Likelihood Estimation (MLE) method for parameter 
estimation. Through extensive simulation studies, we 
demonstrated the efficiency and consistency of the 
estimators. 
The performance of the REOGW distribution was assessed 
using real-life survival datasets, including remission times 
of bladder cancer patients and survival times of patients 
with Advanced Acute Myelogenous Leukemia (AAML-1). 
The goodness-of-fit measures, including Log-Likelihood, 
Akaike Information Criterion (AIC), and P-values, showed 
that the REOGW model outperformed the Weibull-Weibull 
(WW), New Weibull-Weibull (NWW), and Generalized Odd 
Frechet Weibull (GOFW) distributions. These results 
confirmed that the REOGW distribution provides a 
superior fit for survival data, demonstrating flexibility in 
capturing different hazard rate structures. Overall, the 
REOGW model presents a significant advancement in 
survival analysis, offering a more robust and accurate tool 
for modelling survival data in medical research and 
reliability studies. Future studies may explore extensions 
of the REOGW distribution and its applications in broader 

fields, such as engineering reliability and financial risk 
analysis. 
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