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A B S T R A C T  
The integration of IoT in agriculture has revolutionized crop 
production by enhancing productivity, quality, and efficiency while 
reducing labor costs and boosting farmer income. IoT sensors 
provide precise data on environmental, soil, and plant factors, 
critical for predicting crop yields. In this study, groundnut crops were 
cultivated in 20 pots and monitored using IoT devices over 120 days, 
generating 480 data instances. Parameters like temperature, soil 
moisture, and nutrients (nitrogen, phosphorus, potassium) were 
measured to track growth metrics. Machine learning models Multi-
Layer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random 
Forest (RF) were developed using bagging techniques to predict yield 
and model growth rates based on NPK levels. Model performance 
was evaluated using R-squared, MAE, RMSE, and RMSLE metrics. For 
yield prediction, KNN outperformed RF and MLP with the highest R-
squared (0.87), lowest MAE (2.1033), and lowest RMSE (2.0119), 
while MLP performed worst. Conversely, in modeling growth rates 
influenced by NPK, MLP excelled with the highest R-squared (0.52), 
lowest MAE (1.3499), MSE (2.7220), RMSE (1.6498), and an 
exceptionally low RMSLE (0.0024). Overall, KNN was the top 
performer for yield prediction, followed by RF and MLP, whereas MLP 
was superior for growth rate predictions. This highlights the potential 
of IoT and machine learning in advancing agricultural intelligence. 

 
INTRODUCTION 
Groundnut cultivation is a cornerstone of Nigeria's 
agricultural sector, contributing significantly to the 
economy and food security. The northern regions, with 
favorable climates and soils, are central to groundnut 
farming, particularly during the rainy season. Groundnuts 
are a critical source of protein and oil, but challenges like 
pests, poor infrastructure, and market instability hinder 
productivity. Nigeria is the third largest producer of 
groundnut in 2019 with annual production of 4.4 million 
tonnes after China 17.1 million tonnes and India 6.7 million 
(FAO, 2021). Improving farming techniques, storage 

systems, and value-added products is essential for 
strengthening the sector. 
Climate and soil conditions play a vital role in groundnut 
farming. The crop thrives in warm temperatures and 
requires 500–1,200 mm of well-distributed rainfall 
annually. Sandy loam soils are ideal for optimal nutrient 
absorption. However, population growth and limited 
arable land pressure farmers to maximize yields on 
suboptimal soils, often leading to inefficient fertilizer use 
due to imprecise application. Research has identified 
optimal nutrient levels for maximum yield, providing 
guidelines for farmers. However, these approaches are 
static and fail to account for dynamic changes in soil 

Journal of Science Research and Reviews 

Original Research Article 

PRINT ISSN: 1595-9074 

E-ISSN: 1595-8329 

DOI: https://doi.org/10.70882/josrar.2025.v2i3.57  

Homepage: https://josrar.esrgngr.org 

mailto:alibala1898@fcatp.edu.ng
mailto:alibala1989@gmail.com
https://doi.org/10.70882/josrar.2025.v2i3.57
https://doi.org/10.70882/josrar.2025.v2i3.57
https://josrar.esrgngr.org/


Bala et al.,  JOSRAR 2(3) MAY-JUN 2025 10-19 
 

11 

nutrients or environmental factors over time Ezihe et al 
(2017). 
To address these limitations, IoT-based technologies offer 
real-time data collection and analysis. A research farm in 
Kano used IoT sensors to monitor environmental factors, 
plant growth, and soil nutrients, enabling continuous data 
acquisition. This data was leveraged to develop predictive 
machine learning models that optimize resource use and 
improve farming practices. IoT, which connects devices 
via sensors and cloud computing, facilitates precision 
agriculture by enabling targeted interventions like 
optimized irrigation and fertilization. Smart agriculture 
integrates IoT, AI, and data analytics to enhance efficiency, 
reduce waste, and increase yields, making farming more 
adaptive and sustainable. the Internet of Things that 
assists farmers in improving their agricultural operations 
and making the most use of their agricultural land for 
increased production and profitability Rekha et al (2017), 
IoT frameworks form the backbone of modern precision 
agriculture. Jayaraman et al. (2016) demonstrated the 
feasibility of low-cost IoT systems using Raspberry Pi and 
soil sensors, achieving 85% accuracy in yield estimation 
for small farms. Similarly, Kodali et al. (2019) deployed 
LoRaWAN-based networks for paddy field monitoring, 
achieving 90% accuracy over a 2 km range. However, 
scalability remains a challenge, as highlighted by Tzounis 
et al. (2017), who noted that IoT systems often struggle 
with large-scale deployments due to fragmented 
communication protocols. Gavhane et al. 
(2018) addressed soil nutrient optimization using NPK 
sensors and fuzzy logic, reducing fertilizer waste by 35%, 
but emphasized calibration challenges in heterogeneous 
soil conditions. 
Several studies have focused on developing predictive 
models for crop yield using statistical and machine 

learning approaches. Medar and Rajpurohit (2014) 
conducted a survey of data mining techniques for crop 
yield prediction, emphasizing the importance of 
environmental and soil attributes in influencing yield 
outcomes. In the context of groundnut yield prediction, 
Shah and Shah (2018) analyzed multiple machine learning 
algorithms, including Multiple Linear Regression, K-
Nearest Neighbors (KNN), Artificial Neural Networks 
(ANN), and Regression Trees. Their study demonstrated 
that the KNN algorithm outperformed other methods in 
predicting groundnut yields based on soil, environmental, 
and abiotic factors. The aim of this research work is to 
develop groundnut yield production model using machine 
learning and smart farming tool.  
 
MATERIALS AND METHODS  
The methodology adopted in this research is shown in 
figure 1 which outlines a comprehensive workflow for the 
research work. It began with IoT device programming and 
calibration, where sensors and devices were correctly 
configured for data collection. The next step, experimental 
site setup and planting, involved preparing the field and 
planting crops, which was crucial for gathering relevant 
data. Dataset acquisition and data capturing followed, 
where IoT devices collected data on environmental and 
crop conditions. Data preprocessing was then performed 
to clean and prepare the data for analysis. The 
development of the model phase involved training 
machine learning algorithms using the processed data. 
Finally, testing and validation of the model and 
performance evaluation ensured the model's accuracy 
and effectiveness, providing a robust solution for the 
intended application. 
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Figure 1: Workflow Adopted in the Research 

 
IoT Device Implementation 
Soil moisture sensors, temperature sensors, Modbus, NPK 
sensors, and an Arduino Uno were integrated to implement 
the IoT devices used for data capture in groundnut 
cultivation as shown in figure 2. The Arduino Uno served as 
the central microcontroller, interfacing with the sensors to 
collect real-time data on soil moisture, temperature, and 
nutrient levels (Nitrogen, Phosphorus, and Potassium). 
The Modbus protocol was utilized to enable 

communication between the Arduino Uno and other 
devices, ensuring seamless data transmission to the 
central system. The Arduino Uno processed the sensor 
data, which provided critical insights into the 
environmental and soil conditions, facilitating precise 
monitoring and management of the groundnut crop. This 
integration of IoT devices, powered by the Arduino Uno, 
significantly enhanced the accuracy and efficiency of data-
driven decision-making in the cultivation process. 
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Figure 2: IoT Implementation Block 

 
IoT Device Calibration 
The test was carried out by immersing the temperature 
sensor's probe into wet soil at regular intervals and 
comparing its readings with those of a thermometer for 
calibration. Similarly, the soil nutrient sensor readings 
were compared against laboratory soil nutrient analyses to 

ensure accuracy. The results demonstrated high 
precision, with an average accuracy of 93.91% for 
temperature, 96.5% for Nitrogen, 93.3% for Potassium, 
and 97.2% for Phosphorus. These findings suggest the 
sensors are reliable for monitoring soil conditions 
effectively, as shown in the figure 3.

 
Figure 3: Device Calibration 
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Experimental Site 
The experiment was carried out during the dry season of 
2024, in the Department of Soil Science, Federal College of 
Agricultural Produce Technology Kano (11o 11’ N, 07o 38’ E) 
and 686 m above sea level in Nigeria's Northern Guinea 
savannah ecological zone. There are two seasons in the 
area: dry season (November-April) and the rainy season 
(May-October). It also exhibits a mono-modal rainfall 
pattern, with an annual mean of 1110 mm ranging from 950 
to 1270 mm. The average yearly temperature is 25 degrees 
Celsius. 
 
Feature Selection 
In building a crop yield prediction model, soil temperature, 
soil moisture, soil Nitrogen (N), Phosphorus (P), and 
Potassium (K) are critical features due to their 
fundamental roles in plant growth and crop productivity. 
These factors collectively determine the soil's capacity to 
support crop health and development, and they 
significantly influence yield outcomes. 
Temperature is a pivotal factor in crop yield prediction 
models. By reflecting its influence on crop physiology and 
growth stages, ML models provide insights into agricultural 
productivity under varying climatic conditions. Research 
underscores its importance, with studies demonstrating 
that integrating temperature data significantly enhances 
prediction accuracy across regions and crops. Soil 
moisture determines the water accessible to plants, 
influencing physiological processes like photosynthesis 
and transpiration. Water stress due to insufficient soil 
moisture often results in reduced yields Qinqing et al 
(2022). 
 
Data Collection 
The data was collected using various IoT sensors such as 
soil nutrient monitors, soil moisture, soil temperature 
sensors, and from weather stations in addition to the plant 
growth record (Plant height, leaves, flowers and yield). The 
data was collected in a consistent and standardized 
format to ensure its accuracy and reliability. Temperature, 
relative humidity, wind speed, wind direction and rainfall 
data were collected from climate data record of Agro-
climatological station. Altogether, the dataset contained 
records of soil and climatic condition for the growing 
period. 
All the collected data were structured, numerical, and 
continuous, enabling seamless integration into analytical 
models. These datasets formed a robust foundation for 
understanding the interactions between environmental 
conditions, soil properties, and plant responses. 
Soil temperature, moisture, nitrogen, potassium, 
phosphorus was recorded in addition to environmental 
data from weather station, as well as crop data, consisting 
of the height of the plants, the count number of leaves per 
stand, count number of tillers, and number of flowers. 

Harvesting was done when almost all plants had reached 
the end of active vegetative growth. Two plants were 
selected randomly and tagged in each net pot, and the 
total dry matter, total fresh weight and number of pod were 
recorded. 
 
Data Pre-processing  
The collected data was pre-processed to remove any 
missing values, outliers, and irrelevant information. 
Missing values were imputed using a mean, median, or 
mode method depending on the distribution of the data. 
Outliers were identified using a box plot and removed using 
the Interquartile Range (IQR) method, where values 
outside the range of and were considered outliers and 
removed. The removal of outliers was based on the 
principle that they can significantly affect the accuracy of 
the prediction model. Data was later transformed to scale 
down to have a mean of 0 and a standard deviation of 1 
using standardization formula as follows 
Xscaled =  

𝑋−µ

σ
       (1) 

Where μ is the mean of the data and σ is the standard 
deviation of the date. The remaining data was then used for 
further analysis. Data normalization was also performed to 
ensure that all variables had similar ranges and 
distributions (Kotsiantis & Kanellopoulos, 2006).  
 
Model development environment 
The model was developed using Weka (Waikato 
Environment for Knowledge Analysis), a comprehensive 
data mining suite that offers various machine learning 
algorithms for classification, clustering, and association 
tasks. This software also provides tools for data 
preprocessing, visualization, and other functionalities to 
transform data into an appropriate format for mining. 
Three algorithms—K-Nearest Neighbors (KNN), Multi-
Layer Perceptron (MLP), and Random Forest—were 
chosen due to their complementary strengths and 
alignment with the dataset's characteristics. KNN is 
valued for its simplicity and flexibility, making it effective 
for smaller datasets and scenarios where interpretability is 
important. MLP, a type of neural network, excels in 
capturing complex, non-linear relationships, making it 
suitable for datasets with intricate patterns. Random 
Forest stands out for its robustness in handling high-
dimensional data and its resistance to overfitting, thanks 
to ensemble learning. Each of these algorithms supports 
both classification and regression tasks, providing 
versatile tools for analyzing varied dataset structures. 
Nearest Neighbors (KNN) is widely used for prediction 
because of its simplicity, interpretability, and 
effectiveness in various scenarios. KNN operates by 
identifying the closest data points in the feature space and 
assigning the predicted output based on their values, 
making it intuitive and easy to understand. It is particularly 
effective when the dataset is small, as it does not require a 
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complex training phase, and it adapts well to changing 
data distributions because it relies solely on local 
information. Furthermore, KNN can model non-linear 
decision boundaries effectively, especially when 
combined with an appropriate distance metric such as 
Euclidean or Manhattan distance. However, its 
performance can degrade with high-dimensional data (the 
"curse of dimensionality"), which requires careful 
preprocessing, such as feature selection or dimensionality 
reduction Han et al (2012).  
Multi-Layer Perceptron (MLP) is a powerful algorithm for 
prediction due to its ability to model complex, non-linear 
relationships in data. As a type of feedforward neural 
network, MLP consists of multiple layers of nodes, each 
employing activation functions to capture intricate 
patterns that traditional linear models might miss. This 
capability makes MLP particularly effective for tasks with 
high-dimensional or structured data, such as image 
recognition or natural language processing. Additionally, 
MLP's flexibility allows it to adapt to diverse prediction 
tasks, including classification and regression, by adjusting 
the network architecture and hyperparameters. However, 
MLP requires careful tuning and sufficient training data to 
avoid overfitting and to achieve optimal generalization. 
Goodfellow et al (2016). 
Random Forest is widely used for prediction due to its 
robustness, accuracy, and versatility. It is an ensemble 
learning method that combines multiple decision trees, 
each trained on random subsets of the data and features, 
to make predictions. This process reduces overfitting, 
which is a common issue with individual decision trees, 
and enhances generalization to unseen data. Random 
Forest performs well with high-dimensional datasets and 
can handle both classification and regression tasks 
effectively. Furthermore, it offers built-in mechanisms for 
estimating feature importance, making it a valuable tool 
for interpretability and feature selection in complex 
datasets. Hastie et al (2009). 
 
Performance evaluation 
The Mean Absolute Error (MAE) measures the average 
magnitude of errors, giving a clear understanding of the 
model's accuracy without accounting for the direction of 
the errors. The Root Mean Squared Error (RMSE), which is 
derived by taking the square root of the Mean Squared Error 
(MSE), provides an interpretable metric that aligns with the 
original unit of measurement and heavily penalizes larger 
errors. Additionally, Relative Absolute Error (RAE) and Root 
Relative Absolute Error (RRAE) and RSquare (R2), or 
Coefficient of Determination, is essentially the squared 

value of the sample correlation coefficient (denoted as r) 
between the observed outcomes and their predicted 
values. This coefficient ranges from 0 to 1 were employed 
to compare the performance of the model relative to a 
baseline, offering insights into its effectiveness in 
minimizing errors. 
𝑅2 (Coefficient of determination): 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

    (2) 

RMLE (Root Mean Log Error): 

RMLE = √
1

𝑛
 ∑ (ln(�̂�𝑖 + 1) − ln(𝑦𝑖 + 1))2𝑛

𝑖=1  (3) 

RMSLE (Root Mean Squared Log Error): 

RMSLE =  √
1

𝑛
 ∑ (log(�̂�𝑖 + 1) − log(𝑦𝑖 + 1))2𝑛

𝑖=1    (4) 

MAE (Mean Absolute Error): 
MAE =

1

𝑛
 ∑ |�̂�𝑖 − 𝑦𝑖|𝑛

𝑖=1     (5) 
RAE (Relative Absolute Error): 

RAE =  
∑  |�̂�𝑖−𝑦𝑖|𝑛

𝑖=1 

∑  |�̅�−𝑦𝑖|𝑛
𝑖=1

    (6) 

RRSE (Root Relative Squared Error): 

RRSE =  √
∑ (�̂�𝑖−𝑦𝑖)2𝑛

𝑖=1 

∑ (�̅�−𝑦𝑖)2𝑛
𝑖=1

    (7) 

Where: �̂�𝑖  = predicted value for the 𝑖-th observation, 𝑦𝑖 = 
actual value for the 𝑖-th observation, �̅� = mean of the 
actual values, n = number of observations, ln = natural 
logarithm, log = logarithm (base 10 or natural, depending 
on context) 
 
RESULTS AND DISCUSSION 
Data Description 
The table labelled Table 1 Statistical description of the 
data provides a summary of five variables: Temp 
(temperature), N (nitrogen), P (phosphorus), K 
(potassium), Moisture, and Yield pod plant⁻¹.   
Mean temperature of 29.57°C with low std of 0.48, 
Indicates a narrow temperature range due to controlled 
condition. A small variation of Nitrogen (N) and 
Phosphorus (P) show minimal variability across samples, 
however Potassium (K) shows slightly higher variability 
compared to nitrogen and phosphorus. The yield data 
shows the largest variability (std = 2.79), reflecting a 
broader range of outcomes in the research. The relatively 
small standard deviations across Temp, N, P, and K 
indicate consistency in soil conditions. Moisture and Yield 
exhibit slightly greater variability, suggesting these are 
influenced by other factors or show natural variability. The 
quartiles give a good sense of distribution for each 
variable, with most variables showing small interquartile 
ranges, highlighting uniformity. 
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Table 1: Statistical description of the data 
   Temp  N  P  K Moisture   Yield pod plant-1 
Count 20.00000 20.00000 20.00000 20.00000 20.00000 20.00000 
Mean 29.57470 18.01600 22.523750 54.82750 34.94950 21.00000 
Std 0.48291 0.540929 0.250015 0.599042 1.983677 2.79096 
Min   28.78000 17.44000 22.00000 53.75000 31.20000 13.00000 
25%   29.32750 17.57500 22.37750 54.43250 34.04000 20.00000 
50%   29.54000 17.85000 22.55500 54.80500 34.96500 22.00000 
75%   29.81500 18.37500 22.67500 55.09250 36.34250 23.00000 

 
Data Visualization 
The data were graphically represented using stack bar 
charts making it easier to identify patterns, trends, 
outliers, and relationships.  The stacked bar chart in figure 
4, presents the proportional contributions of various 
parameters—yield, moisture, potassium, phosphorus, 
nitrogen, temperature, fresh weight, dry weight, number of 
flowers, and number of leaves for different pots. Each bar 
represents a pot, and the parameters are color-coded, 
showing their relative percentages within the total 
measurement. Yield and moisture occupy significant 

portions across pots, indicating their high contribution to 
overall plant development. Nitrogen, phosphorus, and 
potassium show consistency across pots, reflecting 
similar nutrient availability. The number of leaves and 
flowers forms a smaller proportion compared to 
parameters like temperature or fresh weight, but these are 
essential for assessing vegetative and reproductive 
growth. Overall, the chart effectively illustrates the 
distribution of multiple factors influencing plant 
performance, highlighting both consistency and variation 
across pots. 

 

 
Figure 4: Data Visualization 

 
Yield Prediction Model Result 
Table 2 presents the performance measures of individual 
models, specifically focusing on MLP, RF, and KNN 
algorithms. The table provides various metrics such as R-
squared, Mean Square Logarithmic Error (MASLE), Mean 
Absolute Error (MAE), Root Mean Square Error (RMSE), 
Relative Absolute Error (RAE), and Root Relative Absolute 
Error (RRSE) to evaluate these models comprehensively. 
Among the three models, KNN demonstrates the highest 
R-squared value at 0.87, indicating it explains 87% of the 
variance in the data, followed by RF with 0.85 and MLP with 
0.49. When examining the MAE metric, RF performs slightly 
better than KNN, with values of 2.2334 and 2.1033 

respectively, while MLP shows the highest error at 2.3087. 
The RMSE values reveal a similar trend where KNN and RF 
are comparable at 2.9837 and 2.0119, whereas MLP has a 
significantly higher value at 3.2268.  
The RMSE penalizes larger errors, and RF’s lower value 
suggests it mitigated outlier effects better. Relative 
Absolute Error (RAE): KNN had the smallest RAE (97%), 
highlighting its accuracy compared to the baseline mean 
predictor. RF (103%) was slightly better than MLP (107%). 
Root Relative Squared Error (RRSE): Both RF and KNN 
achieved similar values (105%), slightly outperforming 
MLP (113%). 
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Overall, this table suggests that KNN and RF outperform 
MLP across most metrics, making them preferable choices 
for the given task. The differences in performance among 
the models highlight the importance of selecting 

appropriate algorithms based on specific evaluation 
criteria. This comparative analysis offers valuable insights 
into the strengths and weaknesses of each model when 
applied to the dataset. 

 
Table 2: The error measure of individual models 

 R2 MALE MASLE MAE RMSE RAE RRSE 
MLP 0.49 0.1085 0.163 2.3087 3.2268 107% 113% 
RF 0.85 0.1056 0.1509 2.2334 2.9837 103% 105% 
KNN 0.87 0.0998 0.1531 2.1033 2.0119 97% 105% 

 
The graph below in figure 5 compares the performance of 
three machine learning models MLP (Multi-Layer 
Perceptron), RF (Random Forest), and KNN (K-Nearest 
Neighbors) in predicting yield (number of pods) against 
actual test values (Y-Test). The MLP model (red line) 
consistently overestimates the yield compared to the 
actual Y-Test values, showing a tendency toward higher 
predictions. The RF model (green line) generally follows the 
Y-Test values more closely, but it diverges in certain 
instances, particularly around instances 16–20, where it 
shows a steeper increase. 
The KNN model (purple line) tracks the Y-Test values well, 
with occasional minor deviations, such as in instances 6 
and 18, where it slightly overestimates or underestimates 
the yield. The Y-Test values (blue line) represent the actual 

observed yield, serving as the benchmark for evaluating 
the models. 
MLP appears to have the least alignment with the actual 
data but maintains a smooth trend, which may indicate 
overfitting. RF strikes a balance between prediction 
accuracy and capturing trends, though it slightly 
exaggerates yield for higher values. KNN is the closest to Y-
Test for most instances, particularly in middle-range 
values, suggesting its suitability for capturing localized 
patterns. 
The combined analysis highlights the strengths and 
weaknesses of each model, with KNN and RF showing 
greater consistency with the actual test data. Overall, KNN 
and RF outperform MLP in terms of tracking the actual yield 
trend accurately. 
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Figure 5: Performance Graphs 

 
Comparative performance 
The performance of the K-Nearest Neighbors (KNN) model 
in the 2018 paper by Shah and Shah, titled "Groundnut 
Crop Yield Prediction Using Machine Learning 
Techniques," demonstrates a strong ability to predict 
groundnut yield with an RMSE value of 1.2343, which is 
notably lower than the RMSE values achieved by KNN in 
the current study. In contrast, the KNN model developed in 
this research recorded an RMSE of 2.0119, indicating a 
comparatively lower accuracy when applied to the dataset 
collected from Kano State, Nigeria.  
 
CONCLUSION  
This research focused on using machine learning and IoT-
based systems to predict groundnut yield and growth rates 
in response to NPK fertilizer application. The study 
implemented IoT devices for real-time data collection, 
developed predictive models using regression techniques, 
and evaluated their performance using metrics such as R², 
RMSE, MAE, and MSLE. The results demonstrated the 
effectiveness of Random Forest (RF) and Multi-Layer 
Perceptron (MLP) in predicting yield and growth rates of 
groundnut crop. The study contributes to smart farming 
practices by providing tools for data-driven decision-
making in agriculture. Among the models, KNN achieved 
superior performance in yield prediction, particularly in 
reducing absolute and logarithmic errors, while RF 
demonstrated a strong balance between reliability and 
error minimization, ranking second. MLP trailed behind in 
yield forecasting. However, for modeling vegetative growth 
under NPK conditions, MLP outperformed KNN and RF 
despite challenges of underfitting caused by limited 
dataset size. The findings suggest KNN is optimal for yield 
prediction, whereas MLP shows greater promise for 
analyzing growth responses to nutrients. In light of the 
weak responses observed under the growth models, 
improving model performance requires expanding and 
diversifying the training dataset. Additionally, deep 
learning technique can also be explored in future research.  
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