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A B S T R A C T  
This paper presents an effective conjugate gradient method via 
hybridization approach of classical Newton direction and conjugate 
gradient search direction, the method scheme satisfies the sufficient 
decent condition. Under mild condition, the global convergence 
result for the method is established. Preliminary numerical results 
for some large-scale benchmark test problems reported in this work, 
demonstrate that, the method is practically effective and 
competitive to some existing methods.  

 
INTRODUCTION 
Consider the general form of system of nonlinear 
equations: 
𝐹(𝑥) = 0       (1) 
Where 𝐹: ℝ𝑛 → ℝ𝑛  is a nonlinear map which assumed to 
be continuously differentiable functions. The system of 
nonlinear equations arises in many areas of scientific 
computing and engineering applications. A variety of 
different iterative methods have been developed for 
solving problem (1), for example, Newton's method, quasi-
Newton method, Gauss-Newton Method Abubakar, (2018) 
and their variants. However, they are not particularly 
suitable for solving large-scale problems, because they 
need to solve linear system of equations using Jacobian 
matrix or its approximation at each iteration. It is vital to 
mention that, the conjugate gradient (CG) methods are 
among the popular methods used to solve large-scale 
system of nonlinear equations, due to their rapid 

convergence property, simple to implement and low 
storage requirement Yu-Hong, (1999) and Zhen-Jun, (2008) 
In fact, conjugate gradient method has played a vital role in 
solving optimization problems.  
However, it generates a sequence of iterative points {𝑥𝑘} 
from an initial guess 𝑥0 ∊ ℝ𝑛, using the iterative formula in 
Can, (2013) 
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ,        𝑘 = 0,1,2, …        (2) 
Where 𝑥𝑘  is the previous iterative point, 𝑥𝑘+1 is the current 
iterative point, 𝛼𝑘 > 0  is the step-length computed via any 
suitable line search technique and 𝑑𝑘  is the search 
direction defined by: 

𝑑𝑘 = {
−𝐹(𝑥𝑘),                                                      𝑖𝑓  𝑘 = 0,

−𝐹(𝑥𝑘) + 𝛽𝑘𝑑𝑘−1,      𝑖𝑓  𝑘 ≥ 1                                   
  

      (3) 
Where 𝐹𝑘 = 𝐹(𝑥𝑘) and 𝛽𝑘  is termed as conjugate gradient 
parameter. Conjugate gradient methods differ in their way 
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of defining the CG update parameter 𝛽𝑘   because different 
choices of 𝛽𝑘  give rise to distinct conjugate gradient 
methods with quite different computational efficiency and 
convergence properties. 
Moh'd et al., (2014) presents a Hybrid Broyden-Fletcher-
Goldfab-Shanno (HBFGS) method which used the search 
direction of the conjugate gradient methods with quasi-
Newton update where their numerical result provides 
strong evidence that the proposed HBFGS method is more 
efficient than the ordinary BFGS method. Furthermore, 
Mustapha et al. (2014) followed the approach in 
Mohammad, (2014) to present a Hybrid BFGS CG method 
for solving unconstrained optimization problems; the 
method has been presented based on combining search 
directions between conjugate gradient method and quasi-
Newton method where the methods have shown some 
significant improvement for solving large-scale problems 
with less number of iterations and CPU time respectively. 
However, Hamed et al. (2019) equally modified the work in 
Mohammad et al (2014) and Mustapha et al. (2014) and 
presented a new algorithm for convex Nonlinear 
Unconstrained optimization problems by proposing the 
search direction as defined in Mohammad et al (2014) and 
Mustapha et al. (2014). The new search direction is defined 
as: 
𝑑𝑘+1 = −𝜆𝑘𝑔𝑘+1 + 𝜌𝑘𝐻𝑘+1𝑔𝑘+1        (4) 
Where 𝐻𝑘+1 is the approximation matrix of BFGS updated 
matrix and 𝜆𝑘 is a positive constant. And the parameters 𝜆𝑘  
and 𝜌𝑘  are respectively defined as: 

𝜆𝑘 =
(1+𝑡)𝑠𝑘

𝑇𝑔𝑘+1

𝑦𝑘
𝑇𝑔𝑘+1

 ,      (5) 

and 

𝜌𝑘 =
𝜆𝑘𝑦𝑘

𝑇𝑔𝑘+1−𝑡𝑠𝑘
𝑇𝑔𝑘+1

𝑠𝑘
𝑇𝑔𝑘+1

 .     (6) 

Where 𝑡 > 0 and the conjugate gradient (CG) parameter is 
obtained as: 

𝛽𝑘 =
𝜓𝑘𝜌𝑘𝑦𝑘

𝑇𝑔𝑘+1+𝑠𝑘
𝑇𝑦𝑘𝑔𝑘+1𝑠𝑘

𝑇−𝜆𝑘𝑠𝑘
𝑇𝑦𝑘𝑔𝑘+1

𝑇 𝑠𝑘

||𝑠𝑘||2𝑠𝑘
𝑇𝑦𝑘

   (7) 

Therefore, it is very important to state that, solving BFGS-
CG methods is severally used in unconstrained 
optimization problems, they are particularly efficient due 
to their rapid Convergence properties, simple to 
implement and low storage requirement Waziri, (2015) and 
Hamed, (2019). However, they are very scanty in solving 
system of nonlinear equations, this is what motivated us to 
write this paper. Furthermore, (1) can come from an 
unconstrained optimization problem, a saddle point and 
equality constrained problem Li, (1999). Let f be a norm 
function defined by; 
𝑓(𝑥) =

1

2
||𝐹(𝑥)||2.       (8) 

Then the nonlinear equation in problem (1) is equivalent to 
the following global optimization problem Waziri, (2015) 
and Sun, (2006). 
𝑚𝑖𝑛𝑓(𝑥),       𝑥 ∊ ℝ𝑛 .      (9) 

We organize the paper as follows. In the next section, we 
present the details of our proposed method, convergence 
result is presented in section 3. Some numerical results 
are reported in section 4. Finally, conclusions are made in 
section 5. 
 
MATERIALS AND METHODS 
Derivation of the method 
In this section, we present new hybrid conjugate gradient 
(CG) update parameter 𝛽𝑘, via two other parameters 𝜆𝑘  
and 𝜌𝑘. This is made possible by combining the search 
direction proposed by Hamed et al. (2019), given by: 
𝑑𝑘+1 = −𝜆𝑘𝐹(𝑥𝑘+1) + 𝜌𝑘𝐽𝑘+1

−1 𝐹(𝑥𝑘+1),    (10) 
together with the classical Newton direction given by: 
𝑑𝑘+1 = −𝐽𝑘+1

−1 𝐹(𝑥𝑘+1) + 𝜆𝑘𝑑𝑘 .     (11) 
Where 𝐽𝑘+1

−1  is the inverse Jacobian matrix. Multiplying 
equation (10) and (11) by 𝑦𝑘

𝑇  we have; 
𝑦𝑘

𝑇𝑑𝑘+1 = −𝜆𝑘𝑦𝑘
𝑇𝐹(𝑥𝑘+1) + 𝜌𝑘𝑦𝑘

𝑇𝐽𝑘+1
−1 𝐹(𝑥𝑘+1),   (12) 

and  
𝑦𝑘

𝑇𝑑𝑘+1 = −𝑦𝑘
𝑇𝐽𝑘+1

−1 𝐹(𝑥𝑘+1) + 𝜆𝑘𝑦𝑘
𝑇𝑑𝑘 .     (13) 

By conjugacy condition; 
𝑦𝑘

𝑇𝑑𝑘+1 = 0 .        (14) 
And also from weak secant condition, i.e 
𝑦𝑘

𝑇𝐽𝑘+1
−1 = 𝑠𝑘

𝑇.     (15) 
We assume 𝐽𝑘+1

−1  is symmetric. By applying (14) and (15) in 
(12) we obtain: 

𝜆𝑘 =
𝑠𝑘

𝑇𝐹(𝑥𝑘+1)

𝑦𝑘
𝑇𝑑𝑘

.     (16) 

  Also, substituting equations (14) and (15) in (12) we have; 

𝜌𝑘 =
𝜆𝑘𝑦𝑘

𝑇𝐹(𝑥𝑘+1)

𝑠𝑘
𝑇𝐹(𝑥𝑘+1)

      (17) 

Recall that the classical CG direction is defined to obtain 
an updated version of the conjugate gradient method 
associated with new parameter 𝛽𝑘, we compare the 
standard CG direction; 
𝑑𝑘+1 = −𝐹(𝑥𝑘+1) + 𝛽𝑘𝑠𝑘 ,     (18) 
with 
𝑑𝑘+1 = −𝜆𝑘𝐹(𝑥𝑘+1) + 𝜌𝑘𝐽𝑘+1

−1 𝐹(𝑥𝑘+1).   (19) 
Therefore, form (18) and (19) we have; 
−𝜆𝑘𝐹(𝑥𝑘+1) + 𝜌𝑘𝐽𝑘+1

−1 𝐹(𝑥𝑘+1) = −𝐹(𝑥𝑘+1) + 𝛽𝑘𝑠𝑘. (20) 
Multiplying (20) by 𝑦𝑘

𝑇  we have; 
−𝜆𝑘𝑦𝑘

𝑇𝐹(𝑥𝑘+1) + 𝜌𝑘𝑦𝑘
𝑇𝐽𝑘+1

−1 𝐹(𝑥𝑘+1) = −𝑦𝑘
𝑇𝐹(𝑥𝑘+1) +

𝛽𝑘𝑦𝑘
𝑇𝑠𝑘         (21) 

After some algebraic simplifications, we obtain our 
proposed parameter 𝛽𝑘  as; 

𝛽𝑘 =
𝜌𝑘𝑠𝑘

𝑇𝐹(𝑥𝑘+1)+𝑦𝑘
𝑇𝐹(𝑥𝑘+1)−𝜆𝑘𝑦𝑘

𝑇𝐹(𝑥𝑘+1)

𝑦𝑘
𝑇𝑠𝑘

.   (22) 

(22) further simplifies to: 

𝛽𝑘 =
𝜌𝑘𝑠𝑘

𝑇𝐹(𝑥𝑘+1)+(1−𝜆𝑘)𝑦𝑘
𝑇𝐹(𝑥𝑘+1)

𝑦𝑘
𝑇𝑠𝑘 

.     (23) 

Finally, substituting (16) and (17) in (23), our CG parameter 
𝛽𝑘  becomes: 

𝛽𝑘 =
𝑦𝑘

𝑇𝐹(𝑥𝑘+1)

𝑦𝑘
𝑇𝑠𝑘 

,           (24) 

and our search direction is given by: 
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𝑑𝑘+1 = −𝐹(𝑥𝑘+1) + (
𝑦𝑘

𝑇𝐹(𝑥𝑘+1)

𝑦𝑘
𝑇𝑠𝑘 

) 𝑠𝑘     (25) 

 
Remark 1 
For our search direction to satisfy the sufficient decent 
condition; 
𝐹𝑘

𝑇𝑑𝑘 ≤ −𝑐||𝐹𝑘||2,        c>0      (26) 
we re-define our search direction as follows; 

𝑑𝑘+1 = −𝜃𝐹(𝑥𝑘+1) + (
𝑦𝑘

𝑇𝐹(𝑥𝑘+1)

𝑦𝑘
𝑇𝑠𝑘 

) 𝑠𝑘,    (27) 

  where 𝜃 is a parameter to be determined in such a way the 
search direction satisfies the decent condition in (26). 
Multiplying equation (27) by 𝐹𝑘+1

𝑇  gives: 

𝐹𝑘+1
𝑇 𝑑𝑘+1 = −𝜃||𝐹𝑘+1||2 + (

𝑦𝑘
𝑇𝐹(𝑥𝑘+1)

𝑦𝑘
𝑇𝑠𝑘  

) 𝐹𝑘+1
𝑇 𝑠𝑘  

≤ −𝜃||𝐹𝑘+1||2 +|𝑦𝑘
𝑇𝐹(𝑥𝑘+1)

𝑦𝑘
𝑇𝑠𝑘 

||𝐹𝑘+1
𝑇 𝑠𝑘|      (28) 

  ≤ −𝜃||𝐹𝑘+1||2 +
||𝑦𝑘||||𝐹𝑘+1||2

𝑦𝑘
𝑇𝑠𝑘 

||𝑠𝑘||  

The second inequality follows from Cauchy-Schwartz 
inequality. But   𝑚||𝑠𝑘|| ≤ ||𝑦𝑘|| ≤ 𝑀||𝑠𝑘||  (see Lemma 3.2 
of [9]), i.e 𝑦𝑘

𝑇𝑠𝑘 ≥ 𝑚||𝑠𝑘|| =
1

𝑦𝑘
𝑇𝑠𝑘

≤
1

𝑚||𝑠𝑘||2   𝑓𝑜𝑟 𝑀 > 𝑚 > 0. 

Inequality (28) implies that: 

𝐹𝑘+1
𝑇 𝑑𝑘+1 ≤ −𝜃||𝐹𝑘+1||2 +

𝑀||𝑠𝑘||2

𝑚||𝑠𝑘||2
||𝐹𝑘+1||2 

≤ −𝜃||𝐹𝑘+1||2 +
𝑀

𝑚
||𝐹𝑘+1||2        (29) 

≤ − (𝜃 −
𝑀

𝑚
) ||𝐹𝑘+1||2. 

For the search direction to satisfy (26), we need; 
 𝜃 ≥ 𝑐 +

𝑀

𝑚
,               (30) 

where c is a positive constant. Without loss of generality, 
we select: 
𝜃 = 𝑐 +

𝑀

𝑚
 .       (31) 

Hence, the inequality in (29) becomes; 

𝐹𝑘+1
𝑇 𝑑𝑘+1 ≤ − (𝑐 +

𝑀

𝑚
−

𝑀

𝑚
) ||𝐹𝑘+1||2 = −𝑐||𝐹𝑘+1||2.  (32) 

 Which clearly shows that, our conjugate gradient search 
direction satisfies the sufficient decent condition in (26). 
Furthermore, to compute the step-length 𝛼𝑘, we apply the 
derivative-free line search procedure proposed by Li and 
Fukushima in Li, (1999).  
Let 𝜔1 > 0, 𝜔2 > 0 𝑎𝑛𝑑 𝑟 ∊ (0,1) be constants and let {𝜂𝑘} 
be a given positive sequence such that: 
∑ 𝜂𝑘 <∞

𝑘=0  𝜂 < ∞       (33) 
𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓(𝑥𝑘) ≤ −𝜔1||𝛼𝑘𝐹(𝑥𝑘)||2 −

𝜔2||𝛼𝑘𝑑𝑘||2 + 𝜂𝑘𝑓(𝑥𝑘),      (34) 
where 𝛼𝑘 = 𝑟𝑖𝑘  and 𝑖𝑘  is the smallest non-negative integer 
𝑖 such that (34) holds with 𝛼𝑘 replaced by 𝑟𝑖𝑘 . 
We can describe the algorithm of our method as follows: 
 
 
 

Algorithm 1: (Spectral Hybrid Conjugate Gradient 
Algorithm) 

tep 1:   Given 𝑥0 ∊ ℝ𝑛 , 𝜀 > 0, 𝑑0 = −𝐹(𝑥0), 𝑠𝑒𝑡  𝑘 = 0.  
Step 2:   Compute 𝐹(𝑥𝑘). 
Step 3:   If || 𝐹(𝑥𝑘)|| ≤ 𝜀, 𝑡ℎ𝑒𝑛 𝑠𝑡𝑜𝑝, 𝑒𝑙𝑠𝑒, 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 4. 
Step 4:   Compute the step-length 𝛼𝑘 using (34). 
Step 5:   Set  𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘. 
Step 6:   Compute 𝐹(𝑥𝑘+1). 
Step 7:   Compute 𝑦𝑘 = 𝐹(𝑥𝑘+1) − 𝐹(𝑥𝑘). 
Step 8:   Compute 𝜆𝑘  𝑎𝑛𝑑 𝜌𝑘  from (16) and (17). 
Step 9:   Compute 𝛽𝑘 using (23). 
Step 10: Update 𝑑𝑘+1 using (27). 
Step 11: Set 𝑘 = 𝑘 + 1 and go back to step 2. 

 
Convergence Analysis 
This section is devoted to a study of the global 
convergence of our method (SHCGA). To begin with, let us 
define the level set: 
Ω = {𝑥: ||𝐹(𝑥)|| ≤ ||𝐹(𝑥0)||}    (35) 
The following basic assumptions are required in order to 
analyze the convergence of our algorithm 1. 
Assumptions: 
There exists 𝑥∗ ∊ ℝ𝑛 such that 𝐹( 𝑥∗) = 0. 
F is continuously differentiable in a neighborhood of  𝑥∗. 
The level set Ω as defined by (35) is bounded. 
CG direction is a good approximation to Newton direction, 
i.e 
||𝐹′(𝑥𝑘+1)𝑑𝑘+1 − (𝑑𝑘+1 − 𝛽𝑘𝑠𝑘)|| ≤ 𝜀||𝐹(𝑥𝑘+1)||,   (36) 
where 𝜀 𝜖(0,1) is a small quantity [12], [22] and [24]. 
The Jacobian of F is bounded and positive definite on N. i.e 
there exists positive constants 𝑀 > 𝑚 > 0 such that: 
||𝐹′(𝑥)|| ≤ 𝑀        ∀𝑥𝜖𝑁, 𝑎𝑛𝑑         (37) 
𝑚||𝑑2|| ≤ 𝑑𝑇𝐹′(𝑥)𝑑         ∀𝑥 𝑥𝜖𝑁,      𝑑𝜖ℝ𝑛.   (38) 
Lemma 1   Suppose assumption 1 holds. Let {𝑥𝑘}  be 
generated by the SHCGA algorithm, then 
lim
𝑘→∞

||𝛼𝑘𝑑𝑘 || = lim
𝑘→∞

||𝑠𝑘|| = 0,    (39) 

and 
lim
𝑘→∞

||𝛼𝑘𝐹(𝑥𝑘) || = 0      (40) 

Proof:  From the line search in equation (34) and for all 𝑘 >
0,  we obtain: 

 𝜔2||𝛼𝑘𝑑𝑘||
2

≤ 𝜔1||𝛼𝑘𝐹𝑘||
2

+ 𝜔2||𝛼𝑘𝑑𝑘||
2

 
≤ ||𝐹𝑘||2 − ||𝐹𝑘+1||2 + 𝜂𝑘||𝐹𝑘||2.     (41) 
And by summing up the above k inequality, we obtain: 

𝜔2 ∑ ||𝛼𝑘𝑑𝑘||
2

≤ ∑ (||𝐹(𝑥𝑖)||
2

− ||𝐹(𝑥𝑖+1)||
2

) +𝑘
𝑖=0

𝑘
𝑖=0

∑ 𝜂𝑖||𝐹(𝑥𝑖)
2𝑘

𝑖=0   
= ||𝐹(𝑥0)||2 − ||𝐹(𝑥𝑘+1)||2 + ∑ 𝜂𝑘||𝐹(𝑥𝑖)||2𝑘

𝑖=0           
≤ ||𝐹(𝑥0)||2 + ||𝐹(𝑥0)||2 ∑ 𝜂𝑖

𝑘
𝑖=0   

≤ ||𝐹(𝑥0)||2 + ||𝐹(𝑥0)||2 ∑ 𝜂𝑖
∞
𝑖=0    

≤ 𝑀2 + 𝑀2 ∑ 𝜂𝑖
∞
𝑖=0      (42) 
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Therefore, from the level set and the fact that  {𝜂𝑘}  satisfies 
(33), then the series ∑ ||𝛼𝑘𝑑𝑘||2𝑘

𝑖=0   is convergent, which 
implies that (39) holds. using the same argument as above, 

with 𝜔1||𝛼𝑘𝐹𝑘||
2

 on the left hand side, we obtain (40). 
Lemma 2  Suppose assumption 1 holds. Let the sequence 
{𝑥𝑘}  be generated by the SHCGA algorithm with update 
parameter 𝛽𝑘, then there exists a constant 𝑚2 > 0 such 
that for k>0, 
||𝑑𝑘

𝑆𝐻𝐶𝐺𝐴|| ≤ 𝑚2      (43) 
Proof:  From (27) we have 

||𝑑𝑘+1|| = | |−𝜃𝐹(𝑥𝑘+1) + (
𝑦𝑘

𝑇𝐹(𝑥𝑘+1)

𝑦𝑘
𝑇𝑠𝑘

) 𝑠𝑘| |.   (44) 

Applying triangular inequality we’ve; 

||𝑑𝑘+1|| ≤ |𝜃|||𝐹(𝑥𝑘+1)|| + ||
𝑦𝑘

𝑇𝐹(𝑥𝑘+1)

𝑦𝑘
𝑇𝑠𝑘

|| ||𝑠𝑘||   (45) 

≤ |𝜃|||𝐹(𝑥𝑘+1)|| +
|𝑦𝑘

𝑇𝐹(𝑥𝑘+1)|||𝑠𝑘||

𝑦𝐾
𝑇𝑠𝑘

   (46) 

≤ |𝜃|||𝐹(𝑥𝑘+1)|| +
||𝑦𝑘||||𝐹(𝑥𝑘+1)||||𝑠𝑘||

𝑦𝑘
𝑇𝑠𝑘

    (47) 

≤ |𝜃|||𝐹(𝑥𝑘+1) +
||𝑦𝑘||||𝐹(𝑥𝑘+1)||||𝑠𝑘||

𝑚||𝑠𝑘||2       (48) 

≤ |𝜃|||𝐹(𝑥𝑘+1)|| +
𝑀||𝑠𝑘||2||𝐹(𝑥𝑘+1)||

𝑚||𝑠𝑘||2       (49) 

Inequality (46) follows from Cauchy-Schwartz inequality. 
From the level set and (31) we have; 

||𝑑𝑘+1|| ≤ (𝑐 +
𝑀

𝑚
) ||𝐹(𝑥0)|| +

𝑀||𝐹(𝑥0)||

𝑚
   (50) 

≤ ||𝐹(𝑥0)|| +
𝑀||𝐹(𝑥0)||

𝑚
       (51) 

≤ (𝑐 +
2𝑀

𝑚
) ||𝐹(𝑥0)|| = 𝑚2.     (52) 

Therefore, (52) shows that (43) holds. 
We are now going to establish the global convergence of 
our method, in order to show that under some suitable 
conditions, there exists an accumulation point of 
sequence 𝑥𝑘  which is a solution of problem (1). 
Theorem:  Suppose assumption 1 holds and that the 
sequence { 𝑥𝑘} is generated by the SHCGA algorithm. Also, 
assume that for all k>0, 

𝛼𝑘 ≥ 𝑐
|𝐹(𝑥𝑘)𝑇𝑑𝑘|

||𝑑𝑘||2 ,      (53) 

where c is some positive constant. Then { 𝑥𝑘} converges 
globally to a solution of problem (1); i.e., 
lim
𝑘→∞

||𝐹(𝑥𝑘)|| = 0.     (54) 

Proof:  By the boundedness of 𝑑𝑘, we have; 
lim
𝑘→∞

𝛼𝑘||𝑑𝑘||2 = 0.       (55) 

From (53) and (55) we have 
lim
𝑘→∞

|𝐹(𝑥𝑘)𝑇𝑑𝑘| = 0.      (56) 

From our proposed direction, we have; 
𝑑𝑘+1 = −𝐹(𝑥𝑘+1) + 𝛽𝑘𝑠𝑘      (57) 
Therefore, by multiplying (57) by 𝐹(𝑥𝑘+1)𝑇 , we obtain: 
𝐹(𝑥𝑘+1)𝑇𝑑𝑘+1 = −𝐹(𝑥𝑘+1)𝑇𝐹(𝑥𝑘+1) + 𝛽𝑘𝐹(𝑥𝑘+1)𝑇𝑠𝑘.(58) 
||𝐹(𝑥𝑘+1)||2 = −𝐹(𝑥𝑘+1)𝑇𝑑𝑘+1 + 𝛽𝑘𝐹(𝑥𝑘+1)𝑇𝑠𝑘 .   (59) 
 
||𝐹(𝑥𝑘+1)||2 ≤ |−𝐹(𝑥𝑘+1)𝑇𝑑𝑘+1| + |𝛽𝑘𝐹(𝑥𝑘+1)𝑇𝑠𝑘|.  (60) 
||𝐹(𝑥𝑘+1)||2 ≤ |−𝐹(𝑥𝑘+1)𝑇𝑑𝑘+1| + |𝛽𝑘||| 𝐹(𝑥𝑘+1)𝑇||||𝑠𝑘||.  
      (61) 
But (53) implies that; 
𝛼𝑘||𝑑𝑘||2 ≥ 𝑐|𝐹(𝑥𝑘)𝑇𝑑𝑘|,        (62) 
Since ||𝑑𝑘|| is bounded and lim

𝑘→∞
|𝐹(𝑥𝑘)𝑇𝑑𝑘| = 0, we have 

lim
𝑘→∞

𝛼𝑘||𝑑𝑘||2 = 0. Thus, 

0 ≤ 𝑐|𝐹(𝑥𝑘)𝑇𝑑𝑘| ≤ 𝛼𝑘||𝑑𝑘||
2

→ 0.     (63) 
 Then we have; 
||𝐹(𝑥𝑘)||2 ≤ |−𝐹(𝑥𝑘)𝑇𝑑𝑘| + |𝛽𝑘|||𝐹(𝑥𝑘)𝑇||||𝑠𝑘|| → 0.  (64) 
Therefore, 
lim
𝑘→∞

𝛼𝑘||𝑑𝑘||2 = 0.       (65) 

The proof is completed. 
 
RESULTS AND DISCUSSION 
Numerical Results 
In this section, the performance of our method for solving 
systems of nonlinear equations compared with NHCG 
method for symmetric nonlinear equations [1] and NHCGP 
[18] is reported. 
SHCGA stands for our method and both cases, we set the 
following: 
𝜔1 = 𝜔2 = 10−4, 𝑟 = 0.2.  
The codes were written in MATLAB 8.9.0 (R2014a) and run 
on a personal computer 2.00GHz CPU processor and 3GB 
RAM memory. We stopped the iterations if the total 
number of iterations exceeds 1000 or ||𝐹(𝑥𝑘)|| ≤ 10−4. We 
tested the three methods using twenty two (22) test 
problems with different initial starting points (𝑥0), and 
dimensions (n-values). We present here some of the 
benchmark test problems with dimensions 1,000, 
10,0000, 20,000, 50,000 and 100,000 respectively used to 
test our proposed method in this research (i.e SHCGA).  

 
Table 1: The Summary of Numerical Results  

 ALGORITHMS 
 SHCGA NHCG NHCGP Undecided 
Total number of problems 120 120 120  
Total number of problems 110 110 110  
Problems solved with less number of iterations 95 10 12 13 
Percentage 77.27% 4.54% 6.36% 11.83% 
Problems solved with less CPU time 90 10 8 12 
Percentage 72.72% 9.09% 7.27% 10.92% 
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To illustrate the performance of the three methods, a 
summary of the results is presented in table1. The 
summarized data shows the number of problems for which 
method is a winner, in terms of number of iterations and 
CPU time respectively. The corresponding percentages of 
number of problems solved by each method are also 
reported. The summary reported in table 1 indicates that 
the SHCGA scheme is a winner with respect to number of 
iterations and CPU time. The table shows that, the SHCGA 
method solves 77.27% (95 out of 120) of the problems with 
less number of iterations, compared to the NHCG method, 
which solves 4.54% (10 out of 120) 
and NHCGP method which solves 6.36% (12 out of 120). 
The summarized result also shows that both methods 

solve 13 problems with the same number of iterations, 
which translates to 11.83% and is reported as undecided. 
Also, the summary indicates that the SHCGA scheme 
outperforms 
the NHCG and NHCGP methods as it solves 72.72% (90 
out of 120) of the problems with less CPU time compared 
to 9.09% (10 out of 120) solved by the NHCG method and 
7.27% (8 out of 120) by the NHCGP method. Therefore, it is 
evident from figures 1 and 2 and the summarized result in 
table 1 that, our method is more effective than the NHCG 
and NHCGP methods, and therefore, more suitable for 
solving large-scale system of nonlinear equations. 

 

 
Figure 1: Performance profile of SHCGA, NHCG and 
NHCGP Algorithms with respect to the number of 
iterations for the problems  

 
Figure 2: Performance profile of SHCGA, NHCG and 
NHCGP Algorithms with respect to the CPU time (in 
seconds) for the problems  

 
Figures (1) and (2) show the performance of our method 
based on the number of iterations and CPU time 
respectively, which were evaluated using the profiles of 
Dolan, (2001). For each method, we plot the fraction 𝑝(𝜏) 
of the problems for which the method is within a factor 𝜏 of 
the best time. The top curve is the method that solved the 
most problems in a time that was within a factor 𝜏 of the 
best time. The summary of the numerical results of the 
three (3) methods are reported in Table 1. The summary of 
numerical results indicates that the proposed method, i.e 
SHCGA has minimum number of iterations and CPU time, 
compared to NHCG and NHCGP respectively. Except for 
problems 1 and 11 where the number of iterations in 
SHGCA of large dimension is more than that of NHCG and 
NHCGP. We can easily see that our claim is fully justified 
from the table, that is, less CPU time and number of 
iterations for each test problem with the exception of 
problems 1 and 11. Furthermore, on the average, our 
||𝐹(𝑥𝑘)|| is too small which signifies that the solution 
obtained is the true approximation of the exact solution 
compared to NHCG and NHCGP schemes. 
 

CONCLUSION 
In this paper, we presented a new spectral hybrid 
conjugate gradient algorithm (SHCGA), for solving large-
scale system of nonlinear equations and compared its 
performance with that of (NHCG and NHCGP) methods for 
symmetric nonlinear equations by performing some 
numerical experiments. We however proved the global 
convergence of our proposed method, using a derivative-
free line search proposed by Li and Fukushima, and the 
numerical results show that our method is very effective. 
This research can be extended to large-scale nonlinear 
monotone system of equations with applications to signal 
and image recovery problems. 
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