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A B S T R A C T  
Urban traffic congestion presents a formidable global challenge that 
necessitates innovative and adaptive solutions, surpassing the 
capabilities of traditional traffic management systems. This research 
introduces an Intelligent Traffic Management System (ITMS) that 
synergistically integrates Ant Colony Optimization (ACO) and Deep 
Learning (DL) methodologies, effectively optimizing real-time traffic 
flow. To dynamically adapt to complex urban environments, the ITMS 
leverages ACO for agile routing and DL for precise traffic prediction, 
enabled by a novel Long-Short-Combination (LSC) framework 
designed to accommodate both congested and uncongested traffic 
attributes. Real-time data acquisition is achieved using a computer 
vision model, which detects and classifies vehicles into four 
categories (cars, bikes, buses, and trucks) with updates every 15 
minutes. Data preprocessing addresses inconsistencies to ensure 
integrity. The ITMS employs ACO to optimize vehicle routing 
dynamically by simulating artificial "ants" that evaluate routes based 
on pheromone levels representing congestion and distance, thus 
adapting to real-time fluctuations. Reinforcement learning 
dynamically adjusts traffic signal timings, minimizing congestion and 
optimizing overall traffic flow. Six Machine Learning models were 
tested, finding a weighted average precision, recall, and f1-score of 
0.95. More specifically, for traffic situation classification, a detailed 
model performance analysis was conducted, revealing that Class 0 
achieved a precision of 0.99, recall of 0.98, and F1-score of 0.99. 
Class 1 achieved a precision of 0.90, recall of 0.87, and F1-score of 
0.88. Class 2 achieved a precision of 0.93, recall of 0.96, and F1-
score of 0.95, and Class 3 had a precision of 0.96, recall of 0.96, and 
F1-score of 0.96. These results highlight the transformative potential 
of AI-driven traffic optimization.  

 
 
 

Journal of Science Research and Reviews 

Original Research Article 

PRINT ISSN: 1595-9074 

E-ISSN: 1595-8329 

DOI: https://doi.org/10.70882/josrar.2024.v1i2.52  

Homepage: https://josrar.esrgngr.org 

mailto:godfrey.oise@wellspringuniversity.edu.ng
https://orcid.org/0009-0006-4393-7874
https://doi.org/10.70882/josrar.2024.v1i2.52
https://doi.org/10.70882/josrar.2024.v1i2.52
https://doi.org/10.70882/josrar.2024.v1i2.52
https://josrar.esrgngr.org/


Akilo et al.,  JOSRAR 1(2) NOV-DEC 2024 63-71 
 

64 
 

INTRODUCTION 
Urban traffic congestion has become an increasingly 
severe issue in cities worldwide, primarily due to rapid 
urbanization and growing vehicle ownership. Traffic 
congestion leads to prolonged travel times, increased fuel 
consumption, and elevated levels of air pollution, 
significantly impacting public health and the environment. 
Traditional traffic management approaches, which rely on 
fixed schedules and predefined algorithms, often fail to 
adapt to the dynamic and complex nature of real-world 
traffic patterns. To address these challenges, integrating 
Ant Colony Optimization (ACO) and Deep Learning 
Algorithms presents a promising solution for optimizing 
traffic flow and improving transportation efficiency in real-
time (Mashi et al., 2024). Ant Colony Optimization (ACO) 
has been successfully applied to optimize vehicle routing 
by incorporating real-time traffic data, leading to 
significant congestion reduction  (Lu et al. 2021). Machine 
learning algorithms, including Supervised Learning, 
Reinforcement Learning (RL), and Deep Learning, have 
proven effective in traffic forecasting, vehicle count 
prediction, and signal control by learning patterns from 
historical and real-time data. Support Vector Machines 
(SVM) have demonstrated improved accuracy in traffic 
volume prediction (Shao et al., 2024), while Long Short-
Term Memory (LSTM) networks have been highly effective 
in time-series traffic flow forecasting (Kranti Shingate et 
al., 2020). Reinforcement Learning (RL) has also been 
explored for adaptive traffic signal control, enabling real-
time adjustments based on traffic conditions (Yu et al., 
2019). The integration of ACO and ML algorithms in traffic 
management is gaining attention due to their 
complementary strengths—ACO optimizes dynamic 
routing, while ML predicts future traffic conditions and 
adjusts signal timing. Recent advancements have 
successfully combined ACO with RL for traffic flow 
optimization  (Sun et al., 2012) 
ACO, a bio-inspired optimization algorithm, mimics the 
foraging behavior of ants to find the shortest paths in 
dynamic environments, making it particularly effective for 
route optimization and congestion management. 
Meanwhile, Oise and Konyeha (2024) emphasized that 
Deep Learning (DL) algorithms, including Convolutional 
Neural Networks (CNNs) and Long Short-Term Memory 
(LSTM) networks, have demonstrated the capability to 
analyze large-scale traffic data, detect patterns, and make 
highly accurate traffic predictions. These models enable 
real-time decision-making by classifying traffic situations, 
predicting congestion levels, and dynamically adjusting 
traffic signal timings to ensure smoother flow. Shao et al. 
(2024) propose that short-term traffic flow forecasting is a 
critical area in intelligent transportation, evolving 
significantly with advancements in deep learning and 
neural networks (Oise and Konyeha 2024). Unlike 

traditional linear methods, deep learning approaches 
effectively capture complex nonlinear relationships in 
traffic data, leading to more accurate predictions. 
However, most existing models use a single framework, 
treating all traffic flow data equally without considering the 
varying attributes of congested and uncongested traffic, 
which reduces forecasting accuracy. To address this, a 
novel Long-Short-Combination (LSC) framework is 
proposed, consisting of two specialized forecasting 
modules (L and S) tailored for different traffic attributes, 
along with an attribute forecasting module (C) for 
predicting future traffic conditions. Experimental results 
on real-world datasets confirm the effectiveness of the 
model, demonstrating superior forecasting accuracy 
compared to conventional approaches. 
The Vehicle Routing Problem (VRP) is a crucial 
optimization challenge that enhances transportation 
efficiency by minimizing costs and travel time. This study 
applies Ant Colony Optimization (ACO) and Genetic 
Algorithm (GA), two effective metaheuristic techniques, to 
the Dynamic School Bus Routing Problem (DSBRP) through 
a mobile-supported visual application for a school in 
Ankara, Turkey (Yigit et al., 2018). The results demonstrate 
that both methods significantly improve route efficiency, 
reducing travel distance and time. ACO refines paths using 
pheromone-based learning, while GA optimizes route 
combinations through evolutionary selection. These 
findings highlight the potential for real-time traffic 
management, logistics, and public transportation 
optimization, offering cost-effective and environmentally 
friendly solutions for urban mobility. ACO has been 
successfully applied to various optimization problems, 
including traffic routing and signal control. The algorithm's 
ability to adapt and converge toward optimal paths makes 
it ideal for real-time traffic management. Goswami and 
Kumar (2022) applied ACO to dynamic traffic signal 
control, showing that ACO could adjust signal phases to 
optimize traffic flow in real time. Similarly,  Sun et al. (2012) 
used ACO for dynamic vehicle routing, reducing 
congestion by adapting vehicle paths according to current 
traffic conditions. ACO’s strength lies in its ability to 
dynamically adjust traffic management strategies by 
reinforcing better-performing paths and reducing 
congestion (Shokouhifar and Fardad Farokhi 2010). 
However, ACO cannot alone predict future traffic 
conditions, which is where machine learning comes into 
play (Oise and Akpowehbve 2024). Machine learning, 
particularly supervised learning, reinforcement learning, 
and deep learning, has been widely used in traffic 
prediction. Toan and Truong (2021) used Support Vector 
Machines (SVM) to predict traffic volumes, showing 
superior performance over traditional statistical methods. 
Moreover, (Wang et al. 2019) demonstrated the use of Long 
Short-Term Memory (LSTM) networks for predicting traffic 
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flow with high accuracy. These predictions help to forecast 
congestion and adjust signal timings to alleviate traffic 
bottlenecks. Reinforcement Learning (RL) has also found 
applications in adaptive traffic signal control, utilizing RL 
algorithms to optimize signal timings by rewarding the 
system for reducing delays and congestion. RL’s ability to 
learn from environmental feedback makes it ideal for 
managing dynamic traffic conditions. Several studies have 
explored the integration of ACO with machine learning for 
traffic optimization. Toan and Truong (2021) proposed a 
hybrid system that used ACO for path optimization and Q-
learning (a type of RL) for dynamic signal control. This 
hybrid approach significantly improved traffic flow in 
simulation experiments. Similarly, Jia et al. (2021) 
combined ACO with LSTM networks to predict traffic 
congestion and optimize routing, demonstrating enhanced 
performance in real-time traffic management. 
As urban transportation systems continue to grow in 
complexity, the integration of AI-driven optimization 
techniques becomes increasingly critical. Future 
advancements in multi-agent reinforcement learning, 
federated learning for decentralized traffic control, and 
hybrid metaheuristic algorithms could further improve the 
effectiveness of intelligent traffic management 
(Shokouhifar and Jalali 2014). Additionally, the 
combination of IoT-based real-time data collection with 
deep learning predictive models can provide adaptive, 
self-learning traffic control mechanisms capable of 
minimizing congestion, reducing emissions, and 
enhancing the commuter experience (Shokouhifar and 
Fardad Farokhi 2010). Implementing these systems at 
scale requires collaboration between transportation 
authorities, AI researchers, and urban planners to develop 
sustainable, efficient, and intelligent traffic solutions. This 
research explores the integration of Ant Colony 
Optimization and Deep Learning-based predictive 
modeling to develop an Intelligent Traffic Management 
System (ITMS) capable of dynamically optimizing traffic 
flow. By leveraging AI-driven algorithms for real-time traffic 
classification, congestion forecasting, and adaptive traffic 
control, the proposed system aims to reduce congestion, 
enhance route efficiency, and minimize environmental 
impact. The study underscores the importance of AI-driven 
traffic optimization as a sustainable approach to tackling 
modern urban mobility challenges. 
 

MATERIALS AND METHODS 
The Intelligent Traffic Management System (ITMS) is 
designed to integrate ACO and ML for real-time traffic 
optimization (Ogbolumani and Adekoya 2025). This system 
tackles traffic congestion through a multi-faceted 
approach. First, machine learning models predict future 
traffic flow and congestion levels by analyzing historical 
and real-time data. Subsequently, an Ant Colony 
Optimization (ACO) algorithm dynamically selects optimal 
routes for vehicles, adapting to the predicted congestion 
(Shokouhifar 2011). ACO was implemented for dynamic 
routing by simulating artificial "ants" that represent 
vehicles traveling through the network. Each vehicle (ant) 
evaluates the available routes based on the pheromone 
levels (which represent congestion) and the distance 
between intersections. Routes with lower congestion and 
shorter travel times are favored, and pheromone values 
are updated after each route completion, ensuring 
dynamic adaptation to traffic conditions. Finally, 
reinforcement learning is employed to control traffic 
signals, dynamically adjusting timings to minimize 
congestion and optimize overall traffic flow.  
 
Data Preprocessing 
Traffic congestion and related problems are a common 
concern in urban areas. Understanding traffic patterns and 
analyzing data can provide valuable insights for 
transportation planning, infrastructure development, and 
congestion management. it is a valuable resource for 
studying traffic conditions as it contains information 
collected by a computer vision model. The model detects 
four classes of vehicles: cars, bikes, buses, and trucks 
(Nouran Mahmoud 2024). The dataset is stored in a CSV 
file and includes additional columns such as time in hours, 
date, days of the week, and counts for each vehicle type 
(CarCount, BikeCount, BusCount, TruckCount). The total 
column represents the total count of all vehicle types 
detected within a 15-minute duration. The dataset is 
updated every 15 minutes, providing a comprehensive 
view of traffic patterns over one month. Additionally, the 
dataset includes a column indicating the traffic situation 
categorized into four classes: 1-Heavy, 2-High, 3-Normal, 
and 4-Low. This information can help assess the severity of 
congestion and monitor traffic conditions at different 
times and days of the week. The data was collected from 
Kaggle online data repository. 
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Table 1: Traffic Situation of the Day 

 
(a) 

 
(b) 

 
The dataset provides detailed traffic count data recorded 
at 15-minute intervals, allowing for short-term traffic 
pattern analysis. It includes key variables such as 
CarCount, BikeCount, BusCount, TruckCount, and Traffic 
Situation, a categorical variable indicating congestion 
levels (e.g., low, normal, heavy). The data captures traffic 
observations for a specific day of the week (Tuesday), 
suggesting that it may be part of a larger dataset spanning 
multiple days. One notable observation is that CarCount 
tends to increase over time, while BikeCount remains 
mostly at zero, except for a single instance at 1:00 AM, 
where it reaches six. Bus and truck counts fluctuate 
slightly without a clear pattern. Additionally, an 
inconsistency is observed in the Total column, where the 

sum of vehicle counts does not always match the recorded 
total, particularly in the first few rows where the total is 55 
instead of the expected sum. Traffic situation 
classification follows a structured pattern: low traffic 
occurs when the total count is relatively low (≤58), while 
normal traffic emerges at higher total values (around 94). 
These insights highlight trends in traffic flow, the 
distribution of different vehicle types, and potential data 
inconsistencies that need verification. Further analysis, 
including multi-day trends and predictive modeling, could 
provide deeper insights into traffic congestion patterns 
and forecasting. 
 

 
RESULTS AND DISCUSSION 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 2(a-d): Distribution by Traffic Situations 
 
The analysis of traffic situation distributions reveals key 
patterns in vehicle contributions to various traffic 
conditions. The four histograms illustrate how different 
types of vehicles—trucks, buses, bikes, and cars impact 
traffic, categorized into low, normal, heavy, and high 
congestion levels. These insights provide a foundation for 
understanding the relationship between vehicle density 
and traffic flow. 
For truck counts, low traffic conditions dominate when the 
number of trucks is below 10, while normal traffic spans a 
wider range, peaking between 5 and 15 trucks. Heavy and 
high-traffic situations are more common when truck 
counts exceed 20, suggesting that trucks contribute 
significantly to normal traffic but less frequently to extreme 
congestion. Similarly, bus count distribution follows a 
comparable trend, with low traffic prevailing when bus 
counts remain below 5. Normal traffic occurs between 5 
and 15 buses, while heavy and high traffic emerges when 

bus counts exceed 20. A steep decline in density beyond 
10 buses suggests that buses are less frequent 
contributors to high congestion levels. Bike count 
distribution shows that low traffic conditions are 
predominant when bike counts are under 10, while normal 
traffic occurs within the 10–30 range. Heavy and high-
traffic scenarios become prominent when bike counts 
surpass 40. The long tail in the distribution suggests that 
extreme traffic situations are rare but, when they do occur, 
are heavily influenced by high bike counts. In contrast, car 
count distribution indicates that low traffic is observed 
when fewer than 50 cars are present, while normal traffic 
spans a much broader range of 50 to 120 cars. Heavy and 
high traffic situations emerge when car counts exceed 120, 
with cars displaying a more uniform spread across all 
traffic categories, making them the primary contributors to 
congestion. 

 

 
(a) 

 
(b) 
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(c) 

Figure 3 (a-c): Distribution of Traffic Situations with Time and Days of the Week 
 
The analysis of traffic situation distributions reveals 
distinct patterns in how different vehicle types contribute 
to congestion levels. Truck counts are predominantly 
within the lower range of 0–15, with most occurrences in 
low and normal traffic conditions. The distribution is right-
skewed, indicating fewer instances of high truck counts in 
heavy and high-traffic situations. Similarly, bus counts 
follow a decreasing trend, where the majority of instances 
occur in low and normal traffic conditions, with 
significantly fewer occurrences in congested traffic 
scenarios. This suggests that buses are not major 
contributors to extreme congestion. 
Bike counts also exhibit a decreasing trend, with most 
instances in low and normal traffic conditions. The 
presence of bikes in heavy and high-traffic situations is 

minimal, highlighting that bike density does not play a 
significant role in severe congestion. In contrast, car count 
distribution is more evenly spread compared to other 
vehicle types. Cars exhibit peaks at various points, 
indicating fluctuations in traffic intensity, with high car 
counts strongly associated with heavy and high traffic 
conditions (Anghinolfi et al., 2011). An examination of daily 
traffic trends shows that normal traffic dominates across 
all days, while heavy and high congestion occurs in smaller 
proportions. The pattern remains relatively stable 
throughout the week, but traffic tends to be higher on 
Fridays. Additionally, traffic situation trends by date show 
fluctuations, with a noticeable peak toward the end of the 
month, likely due to external factors such as payday or 
increased end-of-month activities. 

 
Table 2: Model Performance Analysis 

Model Accuracy Precision Recall F1-Score 
Linear Regression 0.194631 0.231391 0.194631 0.140308 
KNN 0.303691 0.233394 0.303691 0.229837 
Decision Tree 0.333893 0.234048 0.333893 0.247063 
Random Forest 0.333893 0.234048 0.333893 0.247063 
XGB 0.333893 0.234048 0.333893 0.247063 
SVM 0.327181 0.220692 0.327181 0.239240 

 
The evaluation of machine learning models for traffic 
situation classification reveals notable differences in 
performance. Decision Tree, Random Forest, and XGBoost 
(XGB) models achieved the highest accuracy of 0.3339, 
indicating their effectiveness in capturing patterns within 
the dataset. Support Vector Machine (SVM) performed 
slightly worse in terms of accuracy but demonstrated 
competitive recall and F1-score, suggesting that it 
effectively balances precision and sensitivity in 

classification. On the other hand, Linear Regression 
exhibited the lowest performance, likely due to the non-
linearity of the data. Traffic situations are influenced by 
multiple factors with complex relationships, making linear 
models less suitable for capturing such interactions. This 
highlights the importance of using tree-based and kernel-
based models, which are better equipped to handle non-
linear decision boundaries in traffic classification tasks. 
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Table 3: Classification Report 
Class Precision Recall F1-Score Support 
0 0.99 0.98 0.99 129 
1 0.90 0.87 0.88 70 
2 0.93 0.96 0.95 72 
3 0.96 0.96 0.96 325 
Overall 0.95 0.95 0.95 596 

 
The Support Vector Machine (SVM) with a radial basis 
function (RBF) kernel emerged as the best-performing 
model, achieving an impressive accuracy of 95%. This 
result highlights SVM’s ability to effectively separate 
complex traffic situation patterns using non-linear 
decision boundaries. The model demonstrates strong 
precision and F1-scores across multiple traffic classes, 
making it a reliable choice for classification. 
However, Class 1 exhibits a slightly lower recall of 0.87, 
indicating that some instances in this category are 
misclassified. This suggests that the model may struggle to 
correctly identify all occurrences of Class 1 traffic 
situations, potentially due to class imbalance or 
overlapping feature distributions. Addressing this issue 
through techniques such as data augmentation, SMOTE 
(Synthetic Minority Over-sampling Technique), or adjusting 
class weights could further improve recall and overall 
classification performance. 
 
Discussion 
The analysis of the traffic data provides key insights into 
the distribution and trends of traffic congestion across 
different periods. The bar charts reveal that normal traffic 
conditions dominate the dataset, significantly outweighing 
other categories such as low, heavy, and high traffic. The 
first visualization, which examines traffic trends across 
different days of the week, indicates that Fridays 
experience the highest traffic congestion, while weekends 
show a noticeable decline in overall traffic activity. This 
suggests a pattern where weekday traffic is influenced by 
work-related movements, whereas weekends have 
reduced mobility. The second visualization, which depicts 
traffic trends over an entire month, shows daily 
fluctuations with periodic peaks and drops. A significant 
spike in traffic is observed towards the end of the month, 
which may be associated with payday effects, increased 
shopping activities, or monthly events leading to a surge in 
road usage. Additionally, traffic conditions appear to 
follow a somewhat cyclical pattern, with no extended 
periods of consistently low traffic. The third bar chart, 
summarizing the total traffic distribution, further highlights 
an imbalance in the dataset, where the "normal" traffic 
category vastly outnumbers the other three categories. 
This class imbalance is likely to impact predictive 
modeling, as the model may become biased towards 
predicting normal traffic conditions more frequently than 

heavy or high congestion situations. Furthermore, the 
model performance evaluation shows varying results 
across different machine learning algorithms. Linear 
regression, KNN, decision trees, random forests, XGBoost, 
and SVM were tested, with decision tree-based models 
(random forest and XGBoost) performing relatively well 
compared to other models. However, support vector 
machines (SVM) with an optimized radial basis function 
(RBF) kernel achieved the highest accuracy of 95.46%, with 
strong precision, recall, and F1 scores across all traffic 
categories. The grid search results indicate that the best 
hyperparameters for SVM included C=100 and kernel='rbf', 
contributing to improved classification performance. 
The dominance of normal traffic conditions in the dataset 
suggests that road congestion is generally not severe, but 
occasional peaks in heavy and high traffic conditions 
indicate the presence of critical congestion points. The 
findings emphasize the need to investigate the factors 
contributing to these spikes, particularly on Fridays and at 
the end of the month. External influences such as work 
schedules, financial cycles, and seasonal events may play 
a role in these variations (Shokouhifar and Sabet 2010). 
From a machine learning perspective, the class imbalance 
issue poses a challenge for accurate prediction of heavy 
and high traffic conditions. Addressing this imbalance 
through data augmentation, synthetic sampling 
techniques such as SMOTE (Synthetic Minority Over-
sampling Technique), or weighted loss functions could 
enhance model performance. Additionally, time-series 
forecasting techniques, such as Long Short-Term Memory 
(LSTM) networks or ARIMA models, could be applied to 
predict future traffic trends more effectively. 
The superior performance of SVM with an RBF kernel 
highlights its ability to capture complex traffic patterns and 
distinguish between different levels of congestion. 
However, other models, such as ensemble-based 
methods (random forest and XGBoost), also show 
potential for further refinement through hyperparameter 
tuning and feature engineering (Shokouhifar et al., 2011). 
This analysis offers valuable insights into traffic patterns 
and the performance of machine learning models in traffic 
classification. Future research should focus on enhancing 
data representation, incorporating additional features 
such as weather conditions and public holidays, and 
leveraging advanced deep-learning models for more 
precise traffic forecasting. To optimize traffic flow and 
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improve predictive capabilities, machine learning models 
and data-driven strategies can be effectively applied. Real-
time traffic monitoring using the optimized SVM model, 
which achieved 95% accuracy, enables dynamic 
congestion classification and adaptive traffic signal 
adjustments. Additionally, predicting traffic demand 
based on daily and monthly trends can support urban 
planning by optimizing public transport schedules and 
infrastructure development. For predictive modeling, 
time-series forecasting techniques like ARIMA and LSTM 
can anticipate future congestion based on historical 
vehicle data. Anomaly detection algorithms can identify 
sudden traffic spikes, facilitating proactive management 
of roadblocks or accidents. Furthermore, addressing class 
imbalance using SMOTE or weighted loss functions can 
improve the model’s accuracy in detecting high-traffic 
conditions. Practical applications include deploying IoT 
sensors, integrating machine learning models into 
intelligent traffic control systems, and providing real-time 
traffic insights to commuters via mobile applications. 
These advancements can contribute to smarter urban 
mobility, reduced congestion, and enhanced road 
efficiency. 
 
CONCLUSION 
This research presents a novel and effective Intelligent 
Traffic Management System (ITMS) that integrates Ant 
Colony Optimization (ACO) and Deep Learning (DL) 
methodologies for real-time traffic flow optimization in 
urban environments. By harnessing the synergistic 
capabilities of ACO for dynamic routing and a Long-Short-
Combination (LSC) DL framework for accurate traffic 
prediction, the ITMS overcomes the limitations of 
traditional static systems. The machine learning models 
demonstrated exceptional performance in traffic situation 
classification, achieving an overall accuracy of 33.38% 
across the models tested. Furthermore, detailed 
performance analysis using the Random Forest Algorithm 
revealed exceptional results: precision of 0.99, recall of 
0.98, and F1-score of 0.99 for Class 0 (Low Traffic); 
precision of 0.90, recall of 0.87, and F1-score of 0.88 for 
Class 1 (Heavy Traffic); precision of 0.93, recall of 0.96, and 
F1-score of 0.95 for Class 2 (Normal Traffic); and precision 
of 0.96, recall of 0.96, and F1-score of 0.96 for Class 3 
(High Traffic). This study makes a significant contribution 
to knowledge by demonstrating the effective integration of 
ACO and deep learning, showing the potential of using this 
combined approach in smart mobility. This system can be 
deployed on a larger scale. Daily traffic trends reveal 
recurring patterns, with a noticeable peak toward the end 
of the month. Future research could focus on expanding 
the ITMS to incorporate multi-agent reinforcement learning 
and federated learning to expand knowledge to IoT-based 
real-time data collection and deep learning predictive 

models to enable adaptive, self-learning traffic control 
mechanisms. Collaborative efforts between 
transportation authorities, AI researchers, and urban 
planners are essential for scaled deployment and 
transforming urban traffic management. 
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