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A B S T R A C T  
Multicollinearity and overfitting are ubiquitous problems in 
predictive analysis, especially in linear regression models, which 
significantly hinder the precision and interpretability of predicted 
results providing critical insights for data-driven decision-making in 
diverse industries. This research examines a linear regression 
approach to address the dual challenges of multicollinearity and 
overfitting in predictive analysis. The dataset, sourced from the 
National Center for Disease Control (NCDC), was analyzed using 
multiple regression techniques, including Linear Regression, Ridge 
Regression, LASSO Regression, and Elastic Net Regression. The 
study aimed to assess and compare the efficacy of these methods in 
mitigating multicollinearity (measured by Variance Inflation Factor) 
and reducing overfitting through Mean Squared Error (MSE) and Root 
Mean Squared Error (RMSE) metrics. Data was analyzed both with all 
features and after applying feature selection. Results demonstrated 
that while all models effectively addressed multicollinearity and 
overfitting, Elastic Net Regression exhibited superior performance, 
offering the best generalization capabilities with minimal MSE and 
RMSE discrepancies between internal and external data. These 
findings highlight the potential of advanced regularization 
techniques in improving predictive accuracy and interpretability, 
particularly in high-dimensional data contexts such as those 
involving COVID-19 outcomes. The study underscores the 
importance of further research into enhanced machine learning 
techniques and the inclusion of broader datasets to refine predictive 
models for practical decision-making across sectors.  

 
INTRODUCTION 
Multicollinearity and overfitting are two critical challenges 
encountered in linear regression analysis. Linear 
regression is widely used in various fields, including 
economics, social sciences, and machine learning, to 
model the relationship between a dependent variable and 
a set of independent variables. However, the presence of 
multicollinearity and overfitting can undermine the 
accuracy and interpretability of regression models 

(Herawati et al., 2018). Multicollinearity refers to the high 
correlation among independent variables in a regression 
model. When multicollinearity is present, it becomes 
challenging to estimate the individual effects of each 
predictor accurately. This issue leads to unstable and 
unreliable coefficient estimates, making it difficult to 
interpret the impact of specific variables on the dependent 
variable (Fox, 2015). Multicollinearity can also lead to 
inflated standard errors and decreased statistical 
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significance, affecting the reliability of hypothesis tests 
(Herawati et al., 2018). Overfitting, on the other hand, 
occurs when a regression model becomes excessively 
complex and captures noise or random fluctuations in the 
data. An overfit model performs well on the training data 
but fails to generalize to new, unseen data. Overfitting can 
result in misleadingly high predictive accuracy during 
model evaluation, but its performance degrades when 
applied to real-world scenarios. Overfit models are 
excessively sensitive to the idiosyncrasies of the training 
data, leading to poor generalization and unreliable 
predictions. To address these issues, researchers and 
practitioners have developed various techniques, 
including Ridge regression and LASSO regression. These 
regularization techniques introduce a penalty term to the 
regression equation, which helps control the coefficients 
and mitigate the impact of multicollinearity and overfitting. 
Ridge regression adds a penalty term proportional to the 
square of the magnitudes of the coefficients, thereby 
shrinking them towards zero. This regularization constraint 
reduces the impact of correlated predictors and improves 
the stability of the coefficient estimates. LASSO 
regression, on the other hand, employs a penalty term 
proportional to the absolute values of the coefficient 
estimates. This penalty has the additional property of 
performing variable selection by forcing some coefficients 
to exactly zero, effectively identifying the most relevant 
predictors. Understanding the effectiveness of Ridge, 
LASSO and Elastic Net regression in addressing 
multicollinearity and overfitting is crucial for researchers 
and practitioners working with regression models. This 
study aims to analyze Linear Regression Approach to 
solving the problem of multicollinearity and overfitting in 
Predictive Analysis. The implications of this study extend 
to various industries, including finance, healthcare, and 
marketing, where data-driven decision-making is 
paramount. By providing insights into how these advanced 
regression techniques can enhance model performance, 
the research can inform practitioners on selecting the 
appropriate methods for predictive analytics. This is 
particularly relevant in environments with complex 
datasets, enabling organizations to improve accuracy in 
forecasts, optimize resource allocation, and ultimately 
drive better business outcomes. 
 
Related Works  
Shuaibu et al. (2024) explores machine learning 
techniques for predicting agricultural yields in Nigeria, 
finding that the Decision Tree Regressor achieves a 72% 
accuracy. It emphasizes feature selection's role in 
enhancing model performance, highlighting machine 
learning's potential for improving food security in similar 
agroecological contexts. 

Olatunde et al. (2024) explores the use of machine learning 
to analyze dietary patterns and their links to health 
outcomes, aiming to provide personalized dietary 
recommendations. By utilizing datasets from Kaggle and 
NHANES, the research emphasizes tailored dietary advice 
over generic guidelines. The findings advocate for 
personalized dietary management to mitigate chronic 
disease risks, showcasing machine learning's potential in 
improving nutritional science and public health. 
Iliyasu et al. (2023) compares Multiple Linear Regression 
and Artificial Neural Networks for rainfall prediction in 
Katsina State, Nigeria. The ANN model outperforms MLR in 
accuracy, precision, and recall, underscoring the 
significance of accurate rainfall predictions for agricultural 
planning. 
Chakraborty et al. (2023) using data from the U.S., this 
study applies ridge, LASSO, and elastic net modeling 
techniques to analyze human mobility factors. Ridge 
regression shows the best performance with the lowest 
RMSE, demonstrating its robustness against overfitting. 
Chan et al. (2022) explores methods for mitigating 
multicollinearity in data analysis, emphasizing variable 
selection and modified estimators, including ridge and 
Lasso regression. It highlights the advantages of machine 
learning approaches, which often outperform traditional 
methods in handling multicollinearity. The authors suggest 
that combining variable selection with modified 
estimators can enhance model performance and 
interpretability. 
Abdulmumini et al. (2022) presents a predictive model for 
child delivery modes using Random Forest, Neural 
Network, and Naïve Bayes. The Random Forest algorithm 
shows the best performance, indicating the potential of AI 
in improving maternal and child healthcare outcomes in 
Nigeria. 
Kumar (2022) employs machine learning to predict COVID-
19 trajectories in India, Brazil, Bangladesh, and Italy using 
LASSO regression. The model forecasts new deaths with 
an accuracy of 81.2% using Lasso and Ridge Regression, 
and 90% with linear regression. It suggests integrating 
support vector machines and ARIMA for improved 
outcomes. 
Noora (2020) investigates multicollinearity in regression 
analysis, highlighting its impact on statistical significance 
among predictor variables. It presents three primary 
detection methods: correlation coefficients, variance 
inflation factor, and eigenvalue analysis. The study 
concludes that product attractiveness significantly 
influences customer satisfaction, with no evidence of 
multicollinearity among the variables. 
Ogundokun et al. (2020) utilizing linear regression, 
analyzes the influence of travel history and contacts on 
COVID-19 cases in Nigeria. Findings indicate that travel 
history and contacts significantly increase infection rates, 
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reinforcing the importance of monitoring these factors in 
pandemic management. 
Khan et al. (2022) evaluates various regression models for 
COVID-19 flare-ups, including linear and polynomial 
regressions. It assesses model effectiveness through 
metrics like MSE and RMSE, establishing a foundation for 
future research in machine learning applications. 
The above reviewed literatures lack comprehensive 
exploration of how linear regression, a widely employed 
predictive modelling technique, can be strategically 
leveraged to effectively tackle both multicollinearity and 
overfitting. Existing researches often focus on singular 
aspects of these problems, leading to fragmented 
solutions that may not holistically address the intricate 
relationships between variables and the risk of overfitting. 
This research “Linear Regression Approach to Solving the 

Problem of Multicollinearity and Overfitting in Predictive 
Analysis” aims to bridge this gap by developing a novel 
linear regression approach that systematically addresses 
multicollinearity and overfitting concurrently. 
 
MATERIALS AND METHODS 
Data collection is the foundational step where relevant 
information is gathered from various sources to inform 
analysis. This is followed by Exploratory Data Analysis 
(EDA) to uncover patterns and insights, detecting 
multicollinearity to ensure the reliability of predictors, 
mitigating overfitting to enhance model generalization, and 
ultimately comparing different models to identify the most 
effective solution as maybe seen in Figure 1. 

 

 
Figure 1: Workflow data frame 

 
Materials  
Data was collected from the NCDC repository 
(https://covid19.ncdc.gov.ng/), covering COVID-19 cases 
from January 2021 to February 2023. The dataset consists 
of states, date reported, total confirmed cases, last week 
confirmed cases, total recovery cases, Last week recovery 

cases, total death, last week death, active cases, total 
testing and last week testing as maybe found in Table 1. 
The dataset has 2960 rows /instances and 11 
columns/features. Python and Jupyter Notebooks were 
employed as the software environment to conduct the 
analysis efficiently.  

 
Table 1: Features in the Dataset 

Feature Number Feature Name Data Type 
1 Date Reported datetime64 
2 State Object 
3 Total Confirmed Cases int64 
4 Last Week Confirmed Cases float64 
5 Total Recovered Cases float64 
6 Last Week Recovered Cases float64 
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7 Total Death Cases int64 
8 Last Week Death Cases float64 
9 Active Cases float64 
10 Total Tested Population  int64 
11 Last Week Tested Population  float64 

 
Methods  
Detect Multicollinearity  
Pairwise Scatterplot and Correlation Coefficients 
A scatterplot visually represents the linear relationship 
between pairs of independent variables, highlighting 
potential correlations, the high correlation coefficient 
(close to 0.8 or 0.9) suggests collinearity among the 
variables (Mason & Perreault 1991 in Chan et al 2022), 
graphical method that signifies the linear relationship 
between pairs of independent variables. The correlation 
coefficient is calculated using the formula in equation (1) 

𝑟 =
𝑛(∑ 𝑋𝑌)−(∑ 𝑋)(∑ 𝑌)

√[𝑛 ∑ 𝑋2−(∑ 𝑋)2][𝑛 ∑ 𝑌2−(∑ 𝑌)2]
    (1) 

Where, r = correlation coefficient, n = number of 
observations, X = first variable in the context, and Y = 
second variable in the context. 
 
Variance Inflation Factor (VIF) 
Variance inflation factor measures the impact of 
correlated independent variables on the variance of 
regression coefficient. VIF is calculated as shown in 
equation (2)  
𝑉𝐼𝐹 =

1

1−𝑅2 =
1

𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
      (2) 

Where 𝑅2 is the coefficient of determination, the tolerance 
is simply the inverse of the VIF, the lower the tolerance, the 
more likely is the multicollinearity among the variables. VIF 
values indicate correlation levels: VIF < 5 suggests 
moderate correlation, while VIF ≥10 signals significant of 
multicollinearity issues (Belsley, 1991 in Noora, 2020). 
 
Detect Overfitting    
Dataset was split into training and testing sets, scores of 
both the training sets (internal data) and testing sets 
(External data) was obtained and compare, the 
performance of the models using Mean Squared Error 
(MSE) and Root Mean Squared Error (RMSE) to evaluate the 
risk of overfitting across four regression models: linear 
regression, ridge regression, lasso regression, and elastic 
net regression. 
Once fine-tuned, the model can predict unseen data using 
various regression techniques, represented by the formula 
for Linear Regression: 
𝑦 =  𝛽0 +  𝛽1𝑥1  + ⋯ + 𝛽𝑝𝑥𝑝  +  𝜀      (3) 
where:  
𝑦: The dependent variable (what you're trying to predict). 
𝛽0: The y-intercept (the predicted value of 𝑦 when all 𝑥 
values are zero). 

𝛽1 + ⋯ +  𝛽𝑝: Coefficients for each independent variable 
(𝑥1  + ⋯ +  𝑥𝑝), representing the change in 𝑦 for a one-unit 
change in each 𝑥. 
𝜀: The error term (the difference between the actual and 
predicted values). 
Ridge regression modifies Linear Regression by adding a 
penalty term, shown as in equation (4): 
𝐿𝑜𝑠𝑠 =  ∑(𝑦𝑖 − �̂�𝑖)

2 + 𝜆 ∑ 𝛽𝑗
2     (4) 

Where:  
The first term ∑(𝑦𝑖 − �̂�𝑖)

2: Represents the residual sum of 
squares (RSS), measuring the fit of the model. 
The second term 𝜆 ∑ 𝛽𝑗

2: Adds a penalty for large 
coefficients, where 𝜆 is a regularization parameter. This 
helps reduce overfitting by shrinking coefficients toward 
zero. 
LASSO regression incorporates an absolute penalty, 
represented as in equation (5): 
𝐿𝑜𝑠𝑠 =  ∑(𝑦𝑖 − �̂�𝑖)

2 + 𝜆 ∑|𝛽𝑗|     (5) 
Where  
The first term is the same as in Ridge Regression (RSS). 
The second term 𝜆 ∑|𝛽𝑗| Adds a penalty based on the 
absolute values of the coefficients, promoting sparsity 
(driving some coefficients to zero). This aids in automatic 
feature selection.’ 
Elastic Net combines both penalties of Ridge and LASSO in 
equation (6): 
𝐿𝑜𝑠𝑠 =  ∑(𝑦𝑖 − �̂�𝑖)

2 + 𝜆1 ∑|𝛽𝑗| + 𝜆2 ∑ 𝛽𝑗
2   (6) 

Where: 
Combines the penalties from both Ridge and LASSO. 
The two regularization parameters 𝜆1and 𝜆2 control the 
strength of each penalty. This provides flexibility to handle 
multicollinearity and overfitting effectively. 
 
Performance Metrics 
To evaluate models, use Mean Squared Error (MSE): 
𝑀𝑆𝐸 =

1

𝑛
∑ (𝑦𝑖 − �̂�)2𝑛

𝑖=1        (7) 
where 𝑦𝑖  is the observed value of the 𝑖𝑡ℎ attribute, �̂� is the 
predicted value of the 𝑖𝑡ℎ observation, and N denotes the 
number of samples in the dataset. 
and Root Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�)2𝑛

𝑖=1          (8) 

where 𝑦𝑖  is the actual observation of the 𝑖𝑡ℎ attribute, �̂� is 
the estimated value of the 𝑖𝑡ℎ observation, and 𝑛 denotes 
the number of samples in the dataset. 
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RESULTS AND DISCUSSIONS 
Exploratory Data Analysis 
Key trends in total confirmed cases, recoveries, and 
deaths were visualized. High correlations were observed 
among independent variables, indicating multicollinearity 
in Figures 2 & 3. 
 

Multicollinearity Analysis 
A correlation matrix was generated to identify relationships 
between independent variables. Correlation coefficients 
revealed moderate to high correlations among several 
predictors. The Variance Inflation Factor (VIF) was 
calculated to quantify the severity of multicollinearity, with 
values exceeding 5 indicating potential issues. 

 
Table 2: Correlation coefficients analysis among independent variables  

Comfirmed 
LastWeek 

Recoveries 
Total 

Recoveries 
LastWeek 

Death 
Total 

Death 
LastWeek 

Active 
Cases 

Testing 
Total 

Testing 
LastWeek 

ComfirmedLastWeek 1.000000 0.378341 0.332257 0.371092 0.342553 0.243770 0.310684 0.565855 
RecoveriesTotal 0.378341 1.000000 0.264534 0.934213 0.192236 0.098724 0.941981 0.668652 
RecoveriesLastWeek 0.332257 0.264534 1.000000 0.242995 0.318526 0.182327 0.202022 0.335444 
DeathTotal 0.371092 0.934213 0.242995 1.000000 0.239091 0.092115 0.892433 0.662918 
DeathLastWeek 0.342553 0.192236 0.318526 0.239091 1.000000 0.218572 0.120349 0.302107 
ActiveCases 0.243770 0.098724 0.182327 0.092115 0.218572 1.000000 0.025108 0.094200 
TestingTotal 0.310684 0.941981 0.202022 0.892433 0.120349 0.025108 1.000000 0.638131 
TestingLastWeek 0.565855 0.668652 0.335444 0.662918 0.302107 0.094200 0.638131 1.000000 

 
 
 
 

 
Figure 2: Heat map of independent variables  

Figure 3: Cluster map of independent variables 
 
Table 3: Variance Inflation Factor showing multicollinearity 

 Feature         VIF 
0    ComfirmedLastWeek    1.711579 
1      RecoveriesTotal   13.998706 
2   RecoveriesLastWeek    1.270166 
3           DeathTotal    9.447172 
4        DeathLastWeek    1.344083 
5          ActiveCases    1.128090 
6         TestingTotal   11.755597 
7         TestingLastWeek 2.960876 

 
 
 



Otse et al.,  JOSRAR 2(1) JAN-FEB 2025 108-117 
 

113 
 

Table 4: Variance Inflation Factor showing multicollinearity after feature reduction 
 Feature         VIF 
0    ComfirmedLastWeek    1.689024 
1      RecoveriesLastWeek    1.250680 
2   DeathTotal    7.475411 
3           DeathLastWeek    1.342467 
4        ActiveCases    1.118190 
5          TestingTotal   6.954188 
6         TestingLastWeek 2.960116 

  
Overfitting Analysis  
Four regression models-Linear Regression, Ridge 
Regression, Lasso Regression, and Elastic Net Regression 
were used. Each model was analyzed using external data 

and internal data of MSE and RMSE in two phases; first on 
dataset with all features and features reduction. The 
comparative analysis of the four regression models was 
also carried out. 

 
Table 5: Mean Squared Error for models with all features 

Models (MSE) Internal data External data Difference 
Linear Regression  583590.3620 939947.2396 356356.8777 
Ridge Regression 583590.3620 939945.6569 356355.2950 
Lasso Regression 583590.5715 939800.4388 356209.8673 
Elastic Net Regression  583613.6920 938426.3681 354812.6761 

 

 
Figure 4: MSE for Linear, Elastic Net, Lasso and Ridge Regression with all features 

 
Table 6: Root Mean Squared Error of models with all features 

Models RMSE Internal data  External data  Difference 
Linear Regression  763.9309 969.5088 205.5779 
Ridge Regression 763.9309 969.5079 205.5771 
Lasso Regression 763.9310 969.4331 205.5021 
Elastic Net Regression  763.9461 968.7241 204.7780 
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Figure 5: RMSE for Linear, Elastic Net, Lasso and Ridge Regression with all features 

 
Table 7: Mean Squared Error of models After Feature reduction based on VIF 

Models MSE Internal data  External data  Difference 
Linear Regression  11860038.9601 12631695.0299 771656.0697 
Ridge Regression 11860038.9602 12631691.0249 771652.0646 
Lasso Regression 11860039.1383 12631508.8831 771469.7448 
Elastic Net Regression  11860136.7399 12627301.5711 767164.8312 

 

 
Figure 6: MSE for Linear, Elastic Net, Lasso and Ridge Regression after VIF 

 
Table 8: Root Mean Squared Error of models after Feature reduction based on VIF 

Models RMSE Internal data  External data  Difference 
Linear Regression  3443.8407 3554.1096 110.2689 
Ridge Regression 3443.8407 3554.1090 110.2683 
Lasso Regression 3443.8408 3554.0834 110.2427 
Elastic Net Regression  3443.8549 3553.4915 109.6365 

 



Otse et al.,  JOSRAR 2(1) JAN-FEB 2025 108-117 
 

115 
 

 
Figure 7: RMSE for Linear, Elastic Net, Lasso and Ridge Regression after VIF 

 
Discussion  
The findings of this study underscore the effectiveness of 
regression techniques in addressing multicollinearity and 
overfitting. Elastic Net Regression emerged as the most 
robust method, suggesting its utility in predictive 
modeling, particularly in public health contexts like 
COVID-19. 
In Table 2, the correlation coefficient of overall total 
recovered cases with total tested cases has high 
correlation (0.941981), followed by Total death cases with 
total recoveries cases (0.934213). this is in agreement with 
A heatmap and cluster map were also plotted for visual 
representation of these relationships (see figures 2 & 3). 
According to Mason & Perreault 1991 in Chan et al 2022, a 
correlation coefficient of 0.8 suggests a strong positive 
relationship, indicating that changes in one variable are 
closely associated with changes in the other. They further 
note that a coefficient 0.9 implies a even more robust 
connection, underscoring the reliability of the relationship 
in predictive modeling.   
A correlation matrix and VIF analysis revealed significant 
multicollinearity, particularly with total recovery and 
testing cases. Features with high VIF values were removed 
to improve model robustness. 
Total Recovery Cases 13.998706 and Total Testing Cases' 
11.755597 have high values of VIF, indicating that these 
two variables are highly correlated in Table 3. This is 
expected as the Total Recovery Cases does influence Total 
Testing Cases. Belsley (1991) in Noora (2020) explains that 
a variance inflation factor (VIF) exceeding 10 indicates 
significant multicollinearity among predictors, which 
distort regression estimates. Hence, considering these 
two features together still leads to a model with high 
multicollinearity. Since both correlation matrix and VIF 

indicate the presence of multicollinearity, we dropped the 
feature with the highest VIF values.  
Furthermore, the comparative analysis of the four 
regression models—Linear Regression, Ridge Regression, 
Lasso Regression, and Elastic Net Regression—reveals 
significant insights regarding their performance under 
varying conditions. As noted by Khan et al. (2022), various 
regression models for COVID-19 flare-ups have 
highlighted the need to evaluate model effectiveness 
through metrics like MSE and RMSE. This study 
corroborates those findings, showing that while all models 
were capable of addressing multicollinearity and 
overfitting, Elastic Net consistently outperformed the 
others. 
 
Performance with All Features 
Initially, when evaluating the models with all features, the 
analysis shows that while the internal data Mean Square 
Error (MSE) values are closely aligned, indicating that all 
models fit the training data adequately, the external data 
MSE values demonstrate a notable distinction (Table 5). 
The Elastic Net Regression outperforms the others with the 
lowest external data MSE (938426.3681), suggesting it 
generalizes better to unseen data (Table 5). This 
performance is further corroborated by the Root Mean 
Square Error (RMSE) metrics in Table 6, where Elastic Net 
also exhibits the lowest external data values (968.7241). 
The analysis highlights the presence of overfitting, as 
evidenced by the differences between internal data and 
external data MSE and RMSE values. However, the Elastic 
Net model shows the smallest discrepancies, indicating a 
better balance between fitting the training data and 
generalizing to new data. 
In line with the literature, existing studies have noted the 
significance of feature selection in enhancing model 
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performance. For instance, Shuaibu et al. (2024) 
emphasize how appropriate feature selection can improve 
prediction accuracy in agricultural yield assessments. 
Similarly, Iliyasu et al. (2023) highlight the importance of 
accurate rainfall predictions for effective agricultural 
planning, underscoring the necessity of robust modeling 
techniques. 
 
Impact of Feature Reduction 
Upon applying feature reduction based on Variance 
Inflation Factor (VIF) to eliminate multicollinearity, the 
models still exhibit similar internal data MSE values, 
underscoring their capability to capture the relevant 
patterns in the training dataset (Table 7). Nevertheless, the 
external data MSE values increase significantly, 
particularly for Linear and Ridge Regression, while Elastic 
Net maintains its advantage with the lowest external data 
MSE (12627301.5711). This trend indicates that the feature 
reduction process may have compromised the 
generalization capabilities of some models, although 
Elastic Net continues to demonstrate resilience. 
From Tables 7 and 8, the differences in MSE and RMSE 
values post-feature reduction reveal an increase in 
overfitting across all models, yet Elastic Net continues to 
show the smallest gap, reaffirming its robustness in 
handling new data. 
Kumar (2022) and Abdulmumini et al. (2022), have shown 
that feature selection can lead to improved model 
robustness. In our analysis, while models with all features 
demonstrated superior performance, the application of 
feature reduction led to increased external data MSE 
values, particularly for Linear and Ridge Regression. This 
aligns with the observations made by Chakraborty et al. 
(2023), who noted that model simplicity could sometimes 
compromise predictive capabilities. 
 
Comparative Insights 
When comparing models with all features to those after 
feature reduction, it becomes evident that models 
retaining all features exhibit superior performance in both 
internal data and external data evaluations. The lower MSE 
and RMSE values for these models suggest that more 
features contribute beneficially to the model's ability to 
learn from the training data and generalize effectively. 
The findings emphasize the Elastic Net Regression model 
as the most effective among the tested models, 
particularly in its ability to generalize to unseen data after 
both feature inclusion and reduction. These insights are 
crucial for practitioners in selecting the appropriate 
modeling approach, especially in contexts where model 
generalization is critical for predictive accuracy. Future 
work may focus on exploring other techniques for feature 
selection and model tuning to further enhance 
performance. 

CONCLUSION 
This study underscores the effectiveness of regression 
techniques in addressing multicollinearity and overfitting. 
Elastic Net Regression emerged as the most robust 
method, suggesting its utility in predictive modeling, 
particularly in public health contexts like COVID-19. 
Future research should explore broader datasets and 
advanced machine learning techniques to further enhance 
predictive accuracy. Data Quality: Improve the accuracy 
and consistency of COVID-19 data reporting. Further 
Research: Investigate factors affecting regional variations 
in COVID-19 outcomes and the impact of public health 
interventions. 
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