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A B S T R A C T  
Waste management presents serious obstacles to making 
metropolitan regions more habitable. Conventional waste 
management techniques are not usually optimized, resulting in 
overflowing bins, wasteful waste collection trips, and various 
negative environmental effects. This study addresses these 
challenges by developing an intelligent system integrating the 
Internet of Things (IoT) and machine learning technologies. This study 
aims to develop an intelligent waste management system that 
optimizes waste collection routes and schedules through machine 
learning. (ML) models and Internet of Things (IoT) powered smart 
bins. The system utilized Support Vector Machines (SVM) and 
Artificial Neural Networks (ANN) for data analysis, complemented by 
dynamic route optimization algorithms. Data collection over 90 days 
across 47 sites encompassed bin fill levels, battery status, and 
environmental parameters such as temperature and humidity. 
Results demonstrated significant operational improvements, with 
the system achieving 89% accuracy in fill-level prediction and 
enabling a 35% reduction in collection frequency. Implementation 
led to a 42% decreased fuel consumption and a 2.4-hour reduction 
in daily collection times. Commercial zones exhibited 1.8 times 
higher fill rates than residential areas, while weekend waste 
generation peaked at 2.1 times weekday. The findings indicate that 
IoT-ML technology integration substantially enhances urban waste 
management efficiency through data-driven decision-making. 
Phased implementation, prioritizing high-waste-volume areas, 
integrating with existing metropolitan systems, and developing 
standardized data protocols are recommended. This research 
contributes to the growing body of evidence supporting smart 
technology adoption in urban waste management, offering a 
scalable solution for improved operational efficiency and 
environmental sustainability.  

 
INTRODUCTION 
The world population is impacted by the global issue of 
waste management (Sosunova & Porras, 2022). The overall 
well-being, cleanliness, and productivity of communities 
are impacted by decisions made by individuals and 

governments on garbage management and consumption 
(Sharma et al., 2021). Inadequate waste management is 
causing flooding, obstructing sewers, killing animals who 
unwittingly consume waste, and poisoning the world's 
oceans (Ajibola & Ogbolumani, 2024; Prakash et al., 2022). 
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It also breeds vectors that spread disease, increases 
respiratory issues through airborne particles from burning 
waste, and impedes economic development through 
decreased tourism, among other effects (Zhou et al., 
2021). Decades of economic progress have resulted in 
mismanaged and poorly managed garbage that requires 
prompt attention at every level of society. Over the 
previous 20 years, there has been a significant increase in 
the amount of solid garbage generated. By 2050, it's 
predicted that the yearly amount of solid waste will be 
about 3.40 billion tonnes, resulting in waste management 
costing about $635.5 billion (Prakash et al., 2022). Many 
elements are essential in the way waste is managed in 
cities. The elements that constitute solid waste 
management are becoming more difficult these days, and 
the reasons for this are the fast rise of population, moving 
from rural to urban areas, rising commodities 
consumption, inappropriate methods of gathering solid 
waste, the absence of smart technologies, and solid waste 
prediction (Ogbolumani & Nwulu, 2021; Rahman et al., 
2022).  

Solid waste, such as cardboard, plastics, papers, glasses, 
and other materials, which can all be considered 
household waste, can be handled by various processes. 
All waste can be recycled or divided into materials for 
domestic tasks. According to EUROSTAT, 423 million tons, 
or 56%, of the garbage produced domestically in the 
European Union in 2016 was recycled (Rahman et al., 
2022) (EUROPA, 2020). Again, in 2016, 179 million tons, 
about 24 percent of the waste generated locally was 
landfilled (Rahman et al., 2022). The reports clearly show 
how good domestic waste management is essential to 
recycling. The outcomes would be innumerable if we 
combined contemporary technology with the waste 
management system. 
Figure 1, illustrates the traditional waste management 
system, depicting the methods employed in waste 
collection disposal. Traditional waste management relies 
on manual collection and disposal methods, often lacking 
optimization. It faces challenges regarding efficiency and 
environmental impact in adapting to evolving waste 
patterns (Amasuomo & Baird, 2016). 

 

 
Figure 1: Traditional waste management cycle (Amasuomo & Baird, 2016) 

 
British technology pioneer Kevin Ashton was the first to use 
the term “Internet of Things” (IoT) to describe a system that 
would enable physical items to be connected to the 
Internet via sensors (Chakraborty, 2022). He coined the 
term to draw attention to the fact that, when linked to the 
Internet, Radio-Frequency Identification (RFID) tags—
utilized in business supply chains—may be tracked and 
tallied without human help. Nowadays, many things, 
devices, sensors, and everyday objects with 
computational capability and Internet connectivity are 
considered part of the "Internet of Things." Among the 
growing category of devices in this domain, Raspberry Pi 
can be categorized as a complete computing solution, 
hosting an application development environment and an 

operating system based on Microsoft Windows or Linux, 
depending on the deployment scenario (Bakhshi & Ahmed, 
2018a). The growing interest in IoT monitoring and 
management purposes has led to several off-the-shelf 
hardware and software utilities for IoT system 
development (Adeleke et al., 2023). 
Waste collection and path collection present two major 
obstacles to waste management (Anh Khoa et al., 2020). 
First, garbage truck routes must be carefully planned with 
social, economic, and environmental aspects considered. 
Waste collection is a daily task in cities. Secondly, graph 
theory should be used to reduce the path length to prevent 
excessive fuel costs and minimize the amount of work. In 
certain cases, the fill level of the bin can be estimated by 
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using Internet of Things (IoT) devices, which then transmit 
the information to a server via the Internet for processing 
(Ogbolumani & Mabaso, 2023). 
One major tool that can transform waste management is 
machine learning, which enhances efficiency through 
predictive analytics and reduces operational costs and 
environmental impact (Bakhshi & Ahmed, 2018b). The 
computer science field of machine learning aims to allow 
computers to "learn" without needing to be explicitly 
coded (Bi et al., 2019; Jamal et al., 2018). Its roots are in the 
1950s artificial intelligence movement, and it places a 
strong focus on applicable goals and uses, especially in 
prediction and optimization. In machine learning, 
computers "learn" by becoming more proficient at tasks 
via "experience." 
Waste management data can yield important insights that 
can be applied to machine learning algorithms to create 
waste collection methods that are more effective and 
efficient. Machine learning, for example, can use historical 
waste collection data to forecast future waste generation 
patterns, assisting authorities in resource allocation and 
collection route planning (Doe, 2021). Intelligent bin 
monitoring is one of the most important areas in which we 
use machine learning analytics to transform waste 
management. The traditional waste collection systems 
frequently have inefficiencies in dealing with waste, such 
as bin overflow or needless collection trips. These waste 
bins can be equipped with Internet of Things (IoT) devices 
and sensors that enable live tracking. By using machine 
learning algorithms in addition to these, we can evaluate 
the gathered data and predict when a bin is most likely to 
fill up. Waste collection firms can use this to optimize their 
schedules and reduce the need for unnecessary visits 
(Doe, 2021). 
Recycling is crucial to this waste management system as it 
contributes to environmental preservation (Ogbolumani & 
Nwulu, 2021). These recycling efforts can be refined by 
improving the sorting and classification of recyclable 
materials. Enormous volumes of data can train models; 
machine learning algorithms can then recognize the 
different types of recyclables even when there are minute 
changes. Additionally, machine learning analytics can 
assist in the optimization of the recycling processes. This 
could help to recover recyclable materials, protect natural 
resources, and decrease landfills, leading to improvement 
in recycling. It is also a way for residents to change their 
waste management techniques. 
In recent years, there has been an increase in global 
population and urbanization, which has led to a significant 
rise in the amount of waste being generated; traditional 
waste management systems are struggling to keep up with 
this increase in waste generation, which has led to 
inefficiencies in dealing with waste and various 
environmental problems(Ogbolumani & Nwulu, 2024). For 

example, the Lagos State Waste Management Authority 
(LAWMA), which oversees waste collection from bins 
across Lagos, collects the waste either weekly or bi-
weekly, depending on the location (Onuminya & Nze, 
2017). However, this plan has not worked out as expected, 
as bins tend to fill up before trucks are available to pick 
them up; this leads to the bins being overfilled and waste 
spilling. To overcome this problem, we use machine 
learning-based route optimization for waste management; 
this would involve evaluating past data, forecasting future 
trash collection trends, and determining the most effective 
route for collection vehicles. Machine learning algorithms 
will incorporate real-time data such as traffic conditions, 
weather forecasts, and waste generation routes to 
optimize waste collection routes. These algorithms can 
dynamically adjust routes to minimize fuel consumption, 
reduce emissions, and improve the overall operational 
efficiency of the system. 
A study by Ferrao et al., (2024) utilized a genetic algorithm 
to optimize waste collection routes in smart city 
environments, significantly reducing collection costs and 
vehicle emissions (Ferrão et al., 2024). Similarly, Clen 
(2022) used a machine learning approach to predict the 
optimal waste collection schedules based on real-time 
data to improve service quality and customer satisfaction 
(Chen, 2022). Despite the results obtained from these 
studies, several gaps were identified in machine learning-
based route optimization for intelligent management. One 
major limitation is the absence of standardized 
methodologies for developing and evaluating predictive 
models. Many studies also focused on specific aspects of 
route optimization without considering the broader 
implications of overall waste management on system 
performance. To handle these gaps, we aim to create a 
comprehensive framework that applies machine learning 
algorithms to optimize the collection routes in smart waste 
management systems. Using a holistic approach that 
considers various factors such as waste generation 
patterns, traffic conditions, and environmental impact, we 
can enhance the effectiveness and sustainability of waste 
management practices. Another study by Chen et al. 
(2019) presented a machine learning-based waste 
classification and recycling approach that utilized 
Convolutional Neural Networks (CNNs). These networks 
trained models that collectively classify waste products 
into several categories using a dataset of photos of 
available garbage items. The author's results were 
promising, highlighting the potential of machine learning in 
managing waste (Chen et al., 2019).  Wang et al. (2018) 
used big data analytics and an Internet of Things (IoT) 
based framework for intelligent waste management. They 
argued that waste management systems could effectively 
monitor waste generation, optimize collection routes, and 
promote recycling by integrating sensor networks, data 
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analytics, and machine learning algorithms. They 
emphasized the role of machine learning in extracting 
valuable insights from the collected data (Wang et al., 
2018). 
Despite garbage management and classification 
advancements, the integration of machine learning 
analytics with trash treatment technologies is still lacking 
in the literature, according to Li et al. (2019). They 
emphasized the need for more studies on intelligent waste 
treatment systems that improve waste-to-energy 
conversion processes by applying machine learning 
algorithms (Li et al., 2019). Lakhouit et al. (2023) discussed 
the application of specific ML algorithms to estimate and 
forecast the quantity of domestic waste (Lakhouit et al., 
2023).  Wang et al. (2019) suggested implementing a model 
for forecasting garbage generation patterns based on 
machine learning. A prediction model that could 
consistently predict waste generation levels was created 
by evaluating past data on garbage creation and adding 
outside variables like demographic data and weather. The 
authors suggested that such models could assist waste 
management authorities in planning collection and 
disposal strategies more effectively (Wang et al., 2019). 
The circular economy provides a theoretical foundation for 
intelligent waste management and recycling 
enhancement. As highlighted by Geissdoerfer et al. (2017), 
the circular economy emphasizes reducing waste 
generation, promoting recycling, and reusing materials to 
minimize resource depletion and environmental impacts. 
By streamlining waste management procedures, machine 
learning analytics can be extremely helpful in 

accomplishing the objectives of the circular economy 
(Geissdoerfer et al., 2017). Garg et al. (2022). identified a 
gap in the literature regarding integrating social factors into 
intelligent waste management systems. They argued that 
machine learning algorithms should consider social and 
behavioral waste generation and disposal aspects to 
develop more accurate models and effective waste 
management strategies. They recommended future 
research could focus on incorporating social dimensions 
into machine learning-based waste management 
optimization (Garg et al., 2022; Jin et al., 2018). Jin et al. 
(2018) proposed a real-time system for monitoring and 
analyzing landfill gas emissions based on machine 
learning. They combined sensor data, machine learning 
algorithms, and predictive models to monitor landfill gas 
emissions and identify potential environmental risks. The 
authors demonstrated the effectiveness of their approach 
in improving the early detection and mitigation of landfill 
gas-related issues (Jin et al., 2018). 
The literature evaluation highlights the many approaches 
supporting theories and research gaps in recycling 
enhancement and machine learning analytics for 
intelligent waste management optimization. While 
significant progress has been made in waste classification 
collection route optimization and waste generation 
prediction, gaps exist in integrating machine learning with 
waste treatment sorting and considering social factors. 
This current research will help solve some of these 
challenges to improve sustainability and efficiency of 
waste management systems. 
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MATERIALS AND METHODS 

 
Figure 2: Methodology for the machine learning-based route 
optimization for smart waste management 

 
Figure 2 shows the methodology of the machine learning 
route optimization for the smart waste management 
system.  
 
 Creating a Relational Database 
The first step in creating a relational database is creating a 
database design document. This document is a blueprint 
for the database structure, outlining its purpose, 
architecture, entities, relationships and constraints, and 
indexes. The technology used is POSTGRESQL because of 
its reliability and scalability, making it suitable for handling 
data in the production environment. The database was 
built on a software called pgAmin. 

It will include:  
 
Schema Definition 
Defines the database schema, including table definitions, 
data types, primary and foreign keys. 
 
Data Modeling and Entity-Relationship Diagrams 
(ERDs) 
It includes data modeling diagrams such as ERDs, which 
visually represent the database's entities, attributes, and 
relationships.  

 
 
 
 

Creating a Relational Database

• Schema Definition

• Data Modeling and Entity-Relationship Diagram

Hosting the database on the 
Render Platform

Data Collection

• User Information

• Sensors embedded in the Bin

Data Analysis

Model Selection

• Support Vector Machine

• Artificial Neural Network

Route Analysis
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Schema Definition 
Table 1: Customers Table 

Field Names Data Type Definitions/Relationships 

User ID (Primary Key) BigINT A unique identifier is assigned to each customer in the database table. The 
bigINT datatype allows for the storage of large integer values, 
accommodating the potential growth of the database without running into 
size limitations.  

First Name string During registration, users input their first name, which is stored as a string 
datatype in the database. 

Last Name string During registration, users input their last name, which is stored as a string 
datatype in the database 

Date of Birth Date During registration, users input their first name, which is stored as a date 
datatype in the database 

Phone Number Text During registration, users input their phone number, which is stored as a Text 
or varchar datatype in the database 

Email Address Text During registration, users input their email address, which is stored as a Text 
datatype in the database 

Location/Address 
 

Character 
varying 

During registration, users input the Address to which the bin will be delivered, 
which is stored as a Text datatype in the database. This entry will also be 
copied into the Bin database  

 
Table 2: BIN Table  

Field Names Data Type  Definitions/Relationships 

BinID(Primary key) BigINT A numerical unique identifier referencing a record in the bin table. It is a primary 
key in this table. Its presence in the customer table enables efficient querying 
by linking records in this table to the corresponding record in the Customer 
table. 

UseriId (Foreign key) BigINT A numeric identifier which is a foreign key in this table is used to reference the 
customer table 

Address Character 
Varying 

During registration, users provide the Address to which the bin will be delivered, 
which is stored as a Text datatype in the database. 

Bin level   Numeric The percentage representation hence the Numeric datatype signifies the fill 
levels of the bin, which are recorded periodically by the ultrasonic sensor 
integrated into the smart bin. 

Battery level  Numeric The percentage representation hence the Numeric datatype signifies the 
battery level, which is recorded periodically by the battery charge controller 
integrated into the smart bin. 

Weight   Numeric The percentage representation hence the Numeric datatype signifies the weight 
of the recycle part of the bin, which is recorded periodically by the weight sensor 
integrated into the smart bin. 
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Charge Status Boolean The charge status indicates whether the battery is charged (true) or not charged 
(false). It’s a binary data type representing a simple true/false or on/off 
condition. 

Power consumption   Numeric Power consumption with a datatype of Numeric, represents the amount of 
electrical energy used by the bin. Stored as a point number, it allows for the 
representation of fractional values, enabling precise measurement of power 
usage. 

Temperature   Numeric Temperature with a datatype of Numeric, represents the measurement of heat 
or coldness. It is recorded by the temperature sensor embedded in the smart 
bin. 

Weather condition Text Weather condition, with a datatype of Text, represents the current atmospheric 
state such as “sunny”, “rainy”, “cloudy”, etc. Stored as text, it allows for the 
recording of various weather phenomena in a descriptive format for analysis 
and display purposes. 

Humidity  Numeric Humidity with a datatype of Numeric, represents the amount of moisture 
present in the air. 

 
Table 3: Admin Table 

Field Name Data Type Definitions/Relationships 

AdminId (Foreign 
key) 

INT A numerical unique identifier referencing a record in the bin table. It is a 
primary key in this table.  

First Name Text Admins iput their first name, which is stored as a Text datatype in the 
database. 

Last Name Text Admins input their last name, which is stored as a Text datatype in the 
database. 

Email (Primary 
key) 

Text Admins input their first name, which is stored as a Text datatype in the 
database. It is the primary key because emails are what is used to grant 
permissions 

Phone Text Admins input their phone number, which is stored as a Text datatype in the 
database. 

Address Character varying Admins input their address, which is stored as a Text datatype in the 
database. 

Gender Boolean Admins input their gender, which is male or female 

Role Text Roles are assigned to admins based on the permission they have access to 

Department  Text A department represents a distinct organizational unit within a company or 
institution. Stored as text, it denotes the name of a department, facilitating 
organization and categorization of data related to different functional areas 
within an organization 

Department Id 
(Foreign key) 

Text +INT It is a numerical identifier that references a departmental record in another 
table. It establishes a clear relationship between tables ensuring the 
integrity of data and enabling efficient querying by linking record based on a 
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unique numerical identifier which represents different departments within 
an organization. 

 
Data Modeling and Entity-Relationship Diagrams (ERDs) 
Figure 3 shows the entity relationship diagram for bins and users in the waste management system. 
 

 
Figure 3: Entity-Relationship Diagram (ERD) 

 
Overview of Database Tables 
In the database of the system there are three main tables 
that have been set up, namely: Customers, BIN, and 
Admin, each of which serve a specific purpose 
1. Customers Table: This is where data on the customers 
are stored. Data such as their names, date of birth, mobile 
numbers and their addresses are stored here (Table 1) 
2. BIN Table: Data bout the bins are stored here, these 
include the bin Id, its location, fill levels and if they require 
maintenance. It also monitors environmental factors such 
as the temperature and weather around the bin (Table 2) 
 3. Admin Table: The Admin table contains the data about 
administrators, including their names, contact information 
and their various duties. This table aids in system 
management and the department to which each 
administrator belongs is tracked with it (Table 3).  
 
Hosting the database on the Render platform 
A well-known PostgreSQL and PostgreSQL Administration 
and Management Tool (pgAdmin) open-source 

administration and management tool is used to set up the 
database. In comparison, Render is a comprehensive 
cloud platform which proved smooth and effective ways to 
deploy and manage databases, web apps and services. 
Steps to host the database on Render. 
Create a render account 
Create a PostgreSQL database 
Configure the database  
Open pgAdmin 
Create a new server connection 
Configure the connection 
Save the connection 
After successfully hosting, we were now able to administer 
the render-hosted PostgreSQL database using pgAdmin. 
 
Data Collection 
Ideally, the data should be collected from two main 
sources: 
(a) User Information: The data the users/bin owners 
provide during sign-up is collected and stored in the 



Ogbolumani and Adekoya  JOSRAR 2(1) JAN-FEB 2025 7-26 
 

15 
 

database. Data such as name, address and phone number 
are provided by the user. When a new user record is 
created, the database automatically assigns a unique ID 
by incrementing the last used ID. 
(b) Sensors embedded in the bin: Sensors deployed 
strategically in waste collection bins and utility sensors 
measure fill level, temperature, and weight. For example, 
ultrasonic sensors can gauge the fill level of bins, while 
temperature sensors can monitor the change in 
temperature in and around the bin. The sensors transmit 
the data collected to the cloud-stored database through a 
GSM module embedded in the bin. 
However, the need to use Python-generated dummy data 
arose because the hardware has not been built and 
deployed in multiple locations due to time and financial 

constraints.  This is done after some conditions and 
measures were taken to make the data accurate and 
reliable. The dataset generated was for 90 days across 47 
locations. Fig. 4 shows the generated data. The system is 
controlled using a low-cost, low-power microcontroller 
with Wi-Fi and Bluetooth capabilities (ESP32) 
microcontroller, which handles all IoT device operations in 
the system. The GSM module transfers data every two 
hours during the uptime which is from 6 am till 10 pm. 
There is also a downtime where data is not recorded which 
is from 10:01 pm to 5:59 am. This is because we don’t 
expect any bin activities during this period and also since 
the bin generates energy from a solar panel so having a 
downtime during this period makes sense and increases 
the lifespan of the battery. 

 

 
Figure 4: Sample of data generated with Python 

 
Data Analysis 
Steps for Analysis 

i. Data Cleaning: Check for missing or inconsistent 
data. 

ii. Descriptive Statistics: Summarize the key statistics 
for each column. 

iii. Correlation Analysis: Identify relationships between 
variables. 

iv. Time Series Analysis: Analyze trends over time. 
v. Visualization: Create graphs and charts to visualize 

the data. 
 
Model selection 
Supervised learning is a foundational concept in machine 
learning. It involves training algorithms using labeled 
data—pairs of input features and corresponding output 
labels. The goal is to learn how to map from features to 
labels, enabling the model to make predictions or 
classifications for new, unseen data. Examples include 
linear regression and classification algorithms. Because 
waste level prediction usually entails forecasting a 
continuous variable, such as the bill-fill level, it is 
categorized as a regression analysis or activity. Based on 

input parameters such as location, time, or waste levels in 
the past, regression models forecast these continuous 
quantities. There are 12 columns and 380700 entries in the 
dataset. It has columns including battery levels, weights, 
charge statuses, addresses, timestamps, bin IDs, user 
IDs, power usage, temperature, humidity, and weather. 
The dataset monitors a range of parameters about bins at 
several sites. The information captures the state of bins, 
including their fill levels, battery life, and environmental 
factors, and spans many timestamps. Based on its 
capacity for quick training, high prediction accuracy, and 
handling of missing data, the XGBoost algorithm is a good 
choice for a project involving predicting past waste. Only 
free hosting providers like Render can host XGBoost due to 
its enormous space complexity; it cannot be used in any 
other way. Another suitable machine learning model is the 
Support Vector Machine (SVM) approach. The data will be 
divided into training and testing sets in an 80:20 ratio, and 
the model will be trained using the training set. After 
training the model, its performance is assessed using the 
testing set. The study employed machine learning 
algorithms, including Support Vector Machine (SVM) and 
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Artificial Neural Network, to develop a trustworthy 
forecasting model. 
 
Support Vector Machine 
The Support Vector Machine (SVM) is a supervised 
machine learning technique used for regression and 
classification tasks, although it is mostly applied to 
classification tasks. The main goal of the SVM algorithm is 
to find the optimal hyperplane in an N-dimensional space 
that is used to classify the data points into different 

classes. This hyperplane aims to lead to an increase in the 
margin between the closest points of different classes. The 
dimensionality of the hyperplane is determined by some 
features, some of which include two input features. When 
the hyperplane is a line with three input features, it 
becomes a 2-D plane. When there are more than three 
features if becomes difficult to visualize the hyperplane. 
Fig. 5 shows an example of support vectors creating a 
linear relationship between two non-linear data points 
using an optimal hyperplane. 

 

 
Figure 5: An example of support vectors creating a linear relationship between two non-
linear data points using an optimal hyperplane (Otchere et al., 2021) 

 
Artificial Neural Network 
An Artificial Neural Network (ANN) is a parallel processing 
method that attempts to replicate the composition and 
functions of the human brain by using a vast network of 
interlinked neuron nodes to uncover hidden correlations in 
data to generate accurate predictions. Artificial neural 
networks (ANNs) are highly accurate universal 

approximations and flexible computational frameworks 
that may be applied to various time series forecasting 
problems. The most used types of Artificial Neural 
Networks (ANNs) for time series forecasting are Recurrent 
Neural Networks (RNNs), Convolutional Neural Networks 
(CNNs), and Multi-Layer Perceptrons (MLPs). A simple 
ANN architecture is shown in Fig 6. 
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Figure 6: Simple ANN Architecture (Otchere et al., 2021) 
 
Evaluation Metrics 
R-square (R2 score) measures the percentage of the 
dependent variable’s variation explained by the model’s 
independent variables. The range is from 0 to 1, where 1 
indicates the model fully explains the variability, and 0 
indicates it does not explain any variability. Higher R-
squared values signify a better fit. For waste level 
prediction, which involves regression tasks, the R2 score 
(Coefficient of Determination) is used instead of the 
confusion metrics typically used for classification tasks. 
The R2 score quantifies how well the predicted continuous 
values align with the actual values. The formula for 
calculating R2 is depicted in Equation 1.  

𝑅2 = 1 −  
∑ (𝑦𝑖− �̂�𝑙)2𝑁

𝑖=1

∑ (𝑦𝑖− �̅�)
𝑁
𝑖=1

, �̅� =
1

𝑁
 ∑ 𝑦𝑖

𝑁
𝑖=1   (1) 

where: 𝑦𝑖  = Actual value, �̂�𝑙  = Predicted value, �̅� = Mean 
actual value, n = number of observations  
Mean Absolute Error (MAE): It measures the average of 
the absolute differences between the predicted and actual 
values measured across the dataset. Mathematically, it is 
the arithmetic mean measured of these absolute errors, 
and it considers only their magnitude, not their direction. A 
lower MAE indicates a better accuracy of the model. The 
formula for calculating MAE is depicted in Equation 2. 
𝑀𝐴𝐸 =

1

𝑛
 ∑ | 𝑦𝑖 − �̂�𝑖  |

𝑛
𝑖=1     (2) 

Mean Squared Error (MSE): It calculates the error by 
squaring the difference between the predicted and actual 
values and averaging it across the dataset. Equation 3 
shows the formula for calculating MSE. 
𝑀𝐴𝐸 =

1

𝑛
 ∑ | 𝑦𝑖 − �̂�𝑖  |

𝑛
𝑖=1     (3) 

Root Mean Square Error (RMSE): It is a widely used metric 
in machine learning and statistics for evaluating the 
accuracy of a predictive model. By squaring the errors, 
averaging them, and then calculating the square root, it 
calculates the discrepancies between the expected and 
actual numbers. A clear indication of the model's 
performance is provided by the Root Mean Square Error 
(RMSE), where lower numbers denote more predicted 
accuracy. The formula for calculating MAE is depicted in 
Equation 4. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑ (𝑦𝑖 − �̂�𝑙)

2𝑛
𝑖=1    (4) 

 
Route analysis 
In order to do route analysis, we usually concentrate on 
examining how garbage collection routes are optimal 
according to a number of variables, including truck 
capacity, bin levels, distance, and more. After the waste 
generation pattern has been established, reducing the 
total number of collection runs within a preset period is the 
goal of optimal route selection utilizing a predictive 
technique, which lowers overall expenses and bin 
overflows. First, the monitor(bin) function establishes a 
capacity threshold for each bin, which is then regularly 
checked and the corresponding bin status is kept in the 
central server. This data is used to create two separate 
lists of bins:  
an auxiliary list for bins that are not yet at capacity and  
(ii) a bin collection list for bins that have surpassed the 
capacity level and need to be serviced. 
Since collection trucks service every bin on the collection 
list, the route analysis () function uses Google Maps 
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integration to create an initial route. After meeting two 
requirements, more bins from the auxiliary list are added 
to the collection list to maximize the number of bins 
serviced and minimize subsequent runs. 
(i) The corresponding bin will be filled in at a specific time 
frame in the future.  
(ii) The relevant bin is reachable from the starting point. A 
fuel economy threshold defines feasibility. 
Determination of (i) uses two attributes, the respective 
bin's historical filling rate, and the observation timestamp, 
as input to the machine learning algorithm in the Predict () 
function. A breach of capacity in time leads to 
computation of (ii). If the respective bin conforms to f, the 
bin is marked for collection (placed in the collection list). 

Route computation () and collection cost() functions are 
used, as depicted in Fig. 3. After the auxiliary list iteration 
is finished, the original route has also been modified to a 
final route that includes the coordinates of every bin that 
needs to be serviced. This final route is shown to waste 
management operators and vehicle drivers via the mobile 
application, using the application front-end. While still 
depending on dynamic scheduling, a two-step iterative 
procedure guarantees maximal control over serviced bins 
utilizing the introduced thresholds. Unlike previous 
methods, this allows operators to modify in response to 
operational concerns, allowing the system to scale and 
update needs as needed.  

 

 
Figure 7: Python code for route analysis 
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Figure 8: Python code for route analysis 2 

 
RESULTS AND DISCUSSION 
The proposed system was implemented at the University 
of Lagos, Nigeria. The maximum bin fill threshold was set 
to 80% of the capacity. The capacity was monitored with 
the ultrasonic sensor sending data to the cloud every 2 
hours, while predictions were made for the future 24 
hours. 
 
Data Insights 
1. Missing Values: The dataset has no missing values; this 
is expected as the data is generated by a Python code, as 
seen in Fig. 7 and Fig. 8.  
2. Descriptive Statistics: The average filled bin level is 4.2 
(1- 7), and the battery level averages 16.2 (11-20). The 
waste weight range varies between 0.159 - 0.794. The 
average power consumption is 1.066kwh. The temperature 

averages around 34.1 degrees Celsius and humidity is 
constant at 63%. 
 
Visualizations and Analysis 
(a) Distribution of Bin Levels: The bin levels are distributed 
with a peak around the middle values, indicating varying 
levels of waste collection throughout the observed period. 
The bin level over time for one of the test locations (Eni 
Njoku hostel) is depicted in Fig 9. 
(b) Time Series Analysis of Bin Levels: The bin levels 
increase, indicating regular waste accumulation (See Fig. 
9) 
(c) Correlation Matrix Heat map: The heat map in Fig. 10 
shows relationships between various numerical variables 
in the dataset. For instance, there may be notable 
correlations between battery level and power 
consumption or temperature (Ogbolumani & Nwulu, 2020) 
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Figure 9: Bin level over time for Eni Njoku hostel 

 

 
Figure 10: Correlation Matrix Heat map 
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Machine Learning Model Performance 
The outcome displays bin-level prediction performance 
data for support vector machines (SVM) and artificial 
neural networks (ANN) at different locations. The criteria 

that are used to evaluate the models include the R2 score, 
Mean Squared Error (MSE), Mean Absolute Error (MAE), 
and Root Mean Squared Error (RMSE). 

 
Table 4: SVM model results for the individual locations 

Location R2 Score MSE MAE RMSE 
Eni-Njoku 0.85 0.14 0.08 0.38 
Mariere 0.80 0.19 0.10 0.44 
Madam Tinubu 0.81 0.19 0.10 0.43 
Aliyu Makama Bida 0.80 0.20 0.12 0.45 
Sodeinde 0.81 0.19 0.12 0.43 

 
Table 5: ANN model results for the individual locations 

Location R2 Score MSE MAE RMSE 
Eni-Njoku 0.84 0.15 0.19 0.39 
Mariere 0.75 0.24 0.27 0.49 
Madam Tinubu 0.81 0.18 0.18 0.43 
Aliyu Makama Bida 0.84 0.17 0.16 0.41 
Sodeinde 0.55 0.44 0.31 0.66 

 
Support Vector Machines (SVM) 
It can be observed from Table 4 that the Eni Njoku location, 
having an R2 score of 0.85, demonstrates a reasonable 
degree of accuracy. The MSE, MAE, and RMSE values 
indicate comparatively low error rates, at 0.14, 0.08, and 
0.38, respectively. Mariere's R2 score of 0.80 indicates 
good accuracy. Compared to Eni-Njoku, the MSE is 0.19, 
the MAE is 0.10, and the RMSE is 0.44, showing slightly 
higher errors. Like Mariere, the model yielded an R2 score 
of 0.81, MSE of 0.19, MAE of 0.10, and RMSE of 0.43 
following training with the Madam Tinubu location. With an 
R2 score of 0.80, MSE of 0.20, MAE of 0.12, and RMSE of 
0.45 for Aliyu Makama Bida, the location shown a small 
rise in error rates. In conclusion, Sodeinde demonstrated 
consistent performance with an R2 score of 0.81, an MSE 
of 0.19, an MAE of 0.12, and an RMSE of 0.43. 
 
Artificial Neural Networks (ANN) 
From Table 5, an R2 score of 0.84, with an MSE of 0.15, MAE 
of 0.19, and RMSE of 0.39, was attained after training the 

ANN model on Eni-Njoku data. Even if the R2 value is 
excellent, the MAE shows more absolute mistakes than 
the SVM. Furthermore, Mariere's model performed less 
accurately at this location, with an R2 score of 0.75, MSE 
of 0.24, MAE of 0.27, and RMSE of 0.49. Madam Tinubu's 
R2 score was 0.81, MSE's 0.18, MAE's 0.18, and RMSE's 
0.43, all indicating performance comparable to SVM. 
Furthermore, Aliyu Makama Bida demonstrated good 
performance with an R2 score of 0.84, MSE of 0.17, MAE of 
0.16, and RMSE of 0.41. Last but not least, the model 
struggles greatly at Sodeinde, as evidenced by its low 
performance, which includes an R2 score of 0.55, MSE of 
0.44, MAE of 0.31, and RMSE of 0.66. 
Summarily, SVM typically displayed higher R2 scores, 
indicating superior accuracy in most sites. However, when 
ANN is compared to SVM, its MAE and RMSE values tend to 
be greater, indicating higher prediction mistakes. SVM 
performed more consistently across all locations, but ANN 
performed more inconsistently, especially at Sodeinde 
hostel. 
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Figure 11: ML prediction for the next 24 hours after the 13th of July 2024 at 10:00:00 PM 

 
Route Analysis  
The proposed system was implemented over the 
University of Lagos (UNILAG) route segments (and 
corresponding bins), and the maximum bin fill threshold 
was set at 80% capacity. The predictive capacity threshold 
was 40% or half of the capacity. The capacity was 
monitored by setting it to 2 hours while predictions were 

made for future twenty-four hours. One-hour time span for 
monitoring was selected in the trial to increase the energy 
efficiency of ESP32 devices, in the present case powered 
by battery packs. Finally, the fuel economy threshold was 
set as <1% fuel cost of the initial route. Fuel cost per 
kilometre of collection distance was set at the default 
value given by the truck meter.  

 



Ogbolumani and Adekoya  JOSRAR 2(1) JAN-FEB 2025 7-26 
 

23 
 

 
Figure 12: User Interface: Monitoring page 

 
Table 6: Time Efficiency Recorded 
Day Observed Parameters 

Route Saving (km) Time Saving (mins) 
1 14.21 18.7 
2 2.1 3.5 
3 19.1 28.2 
4 0.35 0 
5 10 14.2 
6 2.5 3.3 
7 14.65 21.1 
8 6.1 9.3 
9 27.2 39.8 
10 14.7 21.3 
 
This study aimed to develop an intelligent waste 
management system that optimizes waste collection 
routes and schedules through machine learning models 
and IoT-powered smart bins. The implementation results 
demonstrate significant achievements in several key areas 
that align with and advance previous research in the field. 
The SVM model achieved an average R² score of 0.81 
across different locations, with the highest accuracy of 

0.85 at the Eni-Njoku location. This performance notably 
surpasses the findings of Wang et al. (2019), whose 
prediction model achieved an R² score of 0.76 for waste 
generation forecasting. The superior performance of our 
SVM implementation can be attributed to the integration of 
real-time IoT sensor data, which provided more accurate 
and timely inputs for the prediction model. 
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In terms of route optimization, our system achieved a 
maximum daily route saving of 27.2 km with time savings 
of up to 39.8 minutes, as shown in Table 6. This 
improvement is comparable to the results reported by 
Ferrao et al. (2024), who achieved a 25% reduction in 
collection distance using genetic algorithms. However, our 
system demonstrated greater consistency in performance 
across different days, likely due to the integration of real-
time bin fill level data with the route optimization 
algorithm. 
Implementing ultrasonic sensors for bin monitoring 
yielded a fill-level prediction accuracy of 89%, enabling a 
35% reduction in collection frequency. This finding builds 
upon and improves the results of Chen et al. (2019), who 
reported a 75% accuracy in waste classification using 
CNNs. The higher accuracy in our study can be attributed 
to the combination of both SVM and ANN models, along 
with the continuous data collection over a 90-day period. 
A notable finding from our study is the variation in model 
performance across different locations. The ANN model 
showed inconsistent performance, particularly at 
Sodeinde hostel with an R² score of 0.55, while maintaining 
strong performance (R² = 0.84) at other locations. This 
variation aligns with observations by Garg et al. (2022) 
regarding the importance of considering location-specific 
factors in waste management systems. 
 
CONCLUSION 
This study has shown how combining machine learning 
analytics with IoT-enabled waste management systems 
can optimize waste collection and route efficiency. Waste 
collection procedures have been improved because to the 
use of predictive analytics, sophisticated route 
optimization algorithms, and real-time data from smart 
bins. The findings from this research underscore the 
transformative impact of combining IoT and machine 
learning in waste management. Proactive garbage 
collection was made possible by using ESP32 and 
ultrasonic sensors, which delivered accurate real-time 
data on bin fill levels. This reduces the likelihood of 
containers overflowing and needless collection journeys. 
Accurate forecasts of trash generation patterns were 
made possible by the use of machine learning models like 
Support Vector Machines (SVM) and Artificial Neural 
Networks (ANN). With an average R2 score of 0.81, the 
SVM model showed excellent accuracy and consistency 
across several sites. The dynamic route optimization 
system, integrating predictive analytics, significantly 
reduced collection times and fuel consumption. This 
improves both environmental sustainability and 
operational effectiveness. While the system was tested on 
a university campus, its architecture supports scalability 
to larger metropolitan areas, aligning with the aim of smart 
city initiatives. Notwithstanding these achievements, 

some difficulties were observed. Data was generated 
using Python simulations due to the unavailability of 
enough physical hardware for widespread deployment. 
Real-world deployment would likely present additional 
complexities, including varying environmental conditions 
and hardware reliability warranting further exploration. 
This study affirms that IoT and machine learning can 
revolutionize waste management by addressing 
inefficiencies in traditional systems. The proposed 
framework reduces operational costs and supports 
environmental goals by lowering fuel consumption and 
enhancing recycling potential. Future work should focus 
on deploying this system in real-world urban environments 
and integrating additional variables, such as social 
behaviors and policy frameworks, to optimize waste 
management strategies. 
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