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A B S T R A C T  
Radioisotopes are critical in nuclear medicine for both imaging and 
therapeutic applications. In this work, the optimization of input parameters 
for enhanced production of technetium-99 using the EXIFON code have 
been studied. The reaction 100Mo(p, 2n)99mTc was examined within an 
incident proton energy range of 0 - 40 MeV. The calculated excitation 
function for the reaction channel reached a peak value of 1003.7 mbat 
about 21.00 MeV incident energy. Results obtained from the EXIFON code 
were compared with evaluated nuclear cross-sections data (ENDF) and 
experimentally measured cross-sections data (EXFOR) from the 
International Atomic Energy Agency (IAEA) nuclear database. Our findings 
show good agreement with the evaluated nuclear data and disagreement 
with the experimental data within the investigated energy range.  
 
 
 

 
INTRODUCTION 
The production of radioisotopes for nuclear medicine is 
crucial due to their extensive use in tomography devices 
and growing applications in various fields (Art & Aytekin, 
2015, Joseph et al., 2018). In nuclear medicine, 
radioisotopes are essential for both diagnostic and 
therapeutic purposes (Agassi et el., 1975), with their 
specific properties determining their application. 
Technetium-99m (99mTc), isolated from molybdenum-99 
decay in 1938, is the most commonly used radioactive 
isotope tracer for SPECT imaging across numerous organs 
due to its short six-hour half-life, which minimizes 
radiation exposure (Papagiannopoulou, 2017; Art & 
Aytekin, 2015; Green, 2012; Adams, 2022). It works by 
emitting gamma rays detected by a gamma camera 

(Herman et al., 2007; Uzunov et al., 2018; Joseph & Adams, 
2022). Various methods have been employed to analyze 
the production excitation function of 99mTc.  Quantum 
mechanical pre-equilibrium model, the Exifon 2.0, has 
been adopted for this study to analyze the production 
excitation function of 99mTc in order to obtain the 
production yield and purity index of the reaction channel of 
interest. Several models for nuclear reactions exist, and 
they have the ability to forecast cross sections for these 
reactions. Among these models are Talys code (Koning, 
2012), Empire code (Herman et al., 2007), ALICE code 
(Agassi et el., 1975), Exifon code and few others. Each of 
these models has its own strengths and limitations, with 
some being more powerful than others. The Exifon code is 
an easy-to-use tool designed for predicting cross sections 
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of nuclear reactions involving uncharged neutrons and 
gamma rays, as well as charged particles such as protons 
and alpha particles. Though relatively old (due to the lack 
of substantial updates in recent years) and lacks the 
sophistication found in other codes, such as the Talys 
code, the Exifon code can swiftly estimate the cross 
sections of nuclear reactions within a few minutes or even 
a fraction of a minute, depending on the maximum energy 
of interest. The code holds the advantage of being simple 
to comprehend and execute, without the need for 
complicated procedures and substantial effort. 
Additionally, various prior studies have utilized the code to 
perform calculations of cross sections (Joseph et al., 2015; 
Ahmad et al., 2017; Ahmad et al., 2019; Chad-Umoren & 
Ebiwonjumi, 2014; Dauda, 2011; Joseph & Rabiu, 2013; 
Dauda, 2017; Jonah, 2004; Hauser & Feshback, 1952; 
Kalka, 1991; Kalka et al., 1990; Muhammed et al., 2011; 
Murata, 1997; Polster & Kalka, 1991; Usman & Ahmad, 
2020). Moreover, the information from available literature 
shows that no such work, particularly on excitation 
function calculation of the production route of 99mTc has 
been carried out; hence, this research is focused on the 
optimization of input parameters that will enhance the 
production of technetium-99 using the EXIFON code.  
 
THEORETICAL FRAME WORK  
The EXIFON code is an advanced analytical model that 
functions within a purely statistical multi-step reaction 
framework. It provides a comprehensive description of 
emission spectra, angular distributions, and activation 
cross sections, encompassing equilibrium, pre-
equilibrium, and direct (both collective and non-collective) 
processes. The model is specifically designed for 
reactions induced by neutrons, protons, and alpha 
particles, with these same particles, along with photons, 
present in the exit channels. Moreover, EXIFON's 
predictions serves as a valuable complement to 
experimental data by providing a theoretical basis for 
understanding nuclear reactions, optimizing production 
parameters, and enabling efficient planning and execution 
of experiments for 99mTc production. 
The quantum mechanical pre-equilibrium model, Exifon 
2.0, can be used to analyze the production excitation 
function of 99mTc, focusing on production yield and purity 
index. Several nuclear reaction models, including Talys, 
Empire, ALICE, and Exifon, can forecast cross-sections. 
Exifon is an easy-to-use tool for predicting cross sections 
for both uncharged and charged particles, though it is 
relatively outdated compared to more advanced codes like 
Talys. Despite its simplicity and the lack of recent updates, 
Exifon is advantageous for its quick calculations and ease 
of use, requiring minimal effort to operate. 
The development of this model was shaped by three 
pivotal concepts: the classification of nuclear states 

based on their complexity or exciton numbers as 
introduced by (Griffin, 1967), the differentiation between 
bound and unbound states has been outlined (Feshbach, 
1980) and the use of random matrices to represent chaotic 
nuclear Hamiltonians, has been earlier proposed (Agassi 
et al., 1975). These theoretical ideas were implemented in 
multi-body theories using the Born series expansion, with 
residual interactions treated through random matrix 
theory. This approach enabled the derivation of differential 
cross-sections for reactions like (a, xb) after energy 
ensemble averaging as seen in equation (1): 
(𝑎, 𝑥𝑏) = (𝑆𝑀𝐷) + (𝑆𝑀𝐶) + (𝑀𝑃𝐸)  (1) 
where SMD is the statistical multi-step direct process, 
SMC statistical multi-step compound process and Multi 
particle emission (MPE) process calculated in a pure SMC 
concept. 
In the statistical multi-step model, the total emission 
spectrum of the process (a, xb) is divided into three main 
parts (Kalka, 1991) (see equation 2): 
dσa,xb(Ea)

dEb
=

dσa,b
SMC(Ea)

Eb
+

dσa,xb
MPE(Ea)

Eb
   (2) 

where 
dσa,b

SMC(Ea)

Eb
 is SMC emission which is based on a 

master’s equation and 
dσa,xb

MPE(Ea)

Eb
 is Multiple Particle 

Emission Process (MPE), reaction which include the 
second chance, third chance emission etc. summarized in 
this term as presented in equation (3): 

∑
dσa,cxb(Ea)

dEb
+ ∑

dσa,xb(Ea)

dEb
… . .𝑐𝑐     (3) 

The first and second term together i.e. (SMC + SMD) 
represent the first chance emission process. The SMD 
cross-section is the sum over S-step direct processes 
given (equation 4) as 
𝑑𝜎𝑆𝑀𝐷𝐸𝑎

𝑑𝐸𝑏
=  ∑

𝑑𝜎𝑎,𝑏
(𝑠)

𝑑𝐸𝑏
𝑠=1      (4) 

The Code is based on optical potentials and includes both 
statistical multistep (SMD) and statistical multistep 
compound (SMC) components as shown above. EXIFON 
can perform calculations for incident energies up to 100 
MeV quickly and can predict cross-sections using a global 
parameter set, with outputs formatted in ENDF-6 (Griffin, 
1967). The initial step to properly run the program is to 
ensure that the existing version of EXIFON on the system is 
functioning efficiently. Typically, the code is installed on a 
32-bit operating system. For this study, input parameters 
were carefully defined, including the use of proton particle 
as projectile and the 100Mo isotope of molybdenum as the 
target nuclei. The code offers a modification option for 
calculations with or without shell effect corrections; for 
this study, calculations were performed without shell 
corrections. 
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RESULTS AND DISCUSSION 
The energy of the incident proton particle was varied from 
0 MeV to 40 MeV, obtaining the cross-section for each 
energy level. These results were used to determine the 
excitation function of the reaction. The output data 
(OUTEXI) used was the energy values to the corresponding 
cross section data for each reaction. These results are 
stored in the designated output directory and presented 
for every possible reaction energy in MeV with their 

corresponding cross-sections in barns. Other information 
displayed in the results was discarded because of the 
objectives of this research work. The calculated cross-
section data were then plotted as a function of proton 
energy, and the resulting excitation curve was compared 
with Evaluated Nuclear Data (ENDF) from the IAEA nuclear 
data service website (Kalka, 1991), as well as experimental 
data from the EXFOR Data Library (Koning, 2012; Lamere et 
al., 2019). 

 
Figure1: Excitation Functions for the 100Mo(p, 2n)99mTc Reaction 
 
The predictions of cross-sections from this study partially 
align with the ENDF, especially up to about 18 MeV. The 
EXIFON-estimated cross-sections exceed the ENDF data 
beyond 18 MeV, up to approximately 30 MeV. Overall, this 
study predicts higher cross-sections up to around 21 MeV 
of incident proton energy. As shown in Fig. 1, the detailed 
shape of the excitation function peaks at about 21 MeV for 

99mTc production, with a corresponding cross-section 
value of 1003.7mb, indicating a region of higher yield 
production potential. Both EXIFON and ENDF could not 
accurately replicate the experimental results of (Agassi et 
al., 1975; Kalka, 1991], despite sharing a similar shape 
rather than magnitude. 

 
Table 1: presents the production yield and purity index of the reaction 

Reactions Energy of Peak Cross 
Section (Ep) (MeV) 

Peak Cross Section 
Value (σp) (mb) 

Total Cross Section 
(σT) (mb) 

Purity Index (PI) 
(%) 

100Mo(p,2n)99mTc 21.00 1003.7 23162.8 4.33 
For this work however, the direct dependence of the Yield on the peak cross section has been applied to analyze the yield 
of the reactions of interest as given in Table 1. 
 
CONCLUSION 
The excitation function for the theoretical production of 
99mTc, a crucial radionuclide in nuclear medicine, was 
investigated through proton bombardment of 100Mo using 
the EXIFON nuclear reaction code. The set objective was 
achieved as the results were compared with experimental 
data from the EXFOR library and evaluated data for 
validation and the comparison indicates that the 
prediction of 99mTc via the investigated method and code is 

relatively accurate. These findings could aid in providing 
valuable information for the experimental production of 
the 99mTc radioisotope. In addition, it helps in development 
and enhancement of future versions of the EXIFON code 
and other nuclear reaction codes. 
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