
49
This work is licensed under the Creative Commons
Attribution 4.0 International License

An Improved Light GBM using Bayesian Optimization for Vulnerability Exploitation Prediction

Mashi, Boryanka T., 2Ahmad, Ibrahim S., 3Kakudi, Habeebah A. and 3Tanimu, Jesse J.,

1Department of Computer Science, Federal University Dutsin-ma, Katsina State, Nigeria
2Department of Information Technology, Bayero University Kano, Kano State, Nigeria
3Department of Computer Science, Bayero University Kano, Kano State, Nigeria
*Corresponding Author’s email: bobisco66@gmail.com

K E Y W O R D S
Exploitability,
Prediction,
Bayesian Optimization,
Machine Learning,
Light Gradient Boosting Machine.

C I T A T I O N
Mashi, B. T., Ahmad, I. S., Kakudi, H. A.,
& Tanimu, J. J. (2024). An Improved
Light GBM using Bayesian
Optimization for Vulnerability
Exploitation Prediction. Journal of
Science Research and Reviews, 1(1),
49-62..
https://doi.org/10.70882/josrar.2024.
v1i1.17

A B S T R A C T
Despite the significant advances in software security research,
exploitability prediction remains elusive due to the uncertainty of which
vulnerability to be prioritized. Though many studies have been done on
vulnerability prediction, some problems still persist such as efficient
parameter optimization, which has significant effect on the algorithm
performance and efficiency. To address these challenges, we proposed an
Improved Light Gradient Boosting Machine (LGBM) model using Bayesian
Optimization (BO) Method. Three experiments were conducted to compare
prediction accuracy and computational cost of time and memory on LGBM,
LGBM with Grid Search and LGBM with Bayesian Optimization models. The
results demonstrated that our Improved BO- LGBM model has better
prediction accuracy and lower computational cost than the comparative
models. BO-LIGHT GBM rendered AUC of 83% measuring the model
performance, accuracy of 81%, while in terms of time and memory
consumption has definitely taken the lead of 0.23 min executional time and
32MiB system memory. Our results suggest promising future applications
of our improved BO_ LGBM model for the prediction of vulnerability
exploitation, that could be relevant for IT organizations and vendors or any
organization that has limited computational resources in its premises if
employed.

INTRODUCTION
Predicting software vulnerability exploits presents a
multifaceted challenge influenced by the surge in
vulnerabilities and cyber threats (Wang & Guo, 2009).
Cybercriminals exploit software weaknesses for
unauthorized access and data breaches, with over
130,000 vulnerabilities reported by 2019 (Bilge & Dimitras,
2012). The risk escalates upon exploit disclosure, as
demonstrated by ransomware attacks like WannaCry and
NotPetya in 2017 (Ehrenfeld, 2017). However, accurately
predicting exploits remains uncertain due to varying risks
and resource constraints (Bhatt et al., 2020; Bozorgi et al.,
2010).

Machine learning (ML) holds potential in exploit prediction
(Sabottke et al., 2015), but challenges persist, including
concept drift, misclassification, and inadequate data
(Bullough et al., 2017; Mohammed et al., 2017). Light GBM
and Grid Search have been used (Fang et al., 2020), but
they face limitations in optimization and data size (Mingzhu
et al., 2020). This study introduces an Enhanced Light GBM
Model with Bayesian optimization for efficient vulnerability
exploit prediction, addressing model performance and
resource usage (Ju et al., 2019; Mingzhu et al., 2020). The
model assists decision-makers in mitigating risks while
minimizing resource costs, contributing to software
security advancements (Suciu et al., 2021).

Journal of Science Research and Reviews

Original Research Article

PRINT ISSN: 1595-9074

E-ISSN: 1595-8329

DOI: https://doi.org/10.70882/josrar.2024.v1i1.17

Homepage: https://josrar.esrgngr.org

mailto:bobisco66@gmail.com
https://doi.org/10.70882/josrar.2024.v1i1.17
https://doi.org/10.70882/josrar.2024.v1i1.17
https://doi.org/10.70882/josrar.2024.v1i1.17
https://josrar.esrgngr.org/

Mashi et al., JOSRAR 1(1) SEPT-OCT 2024 49-62

50

Several studies in the literature have been dedicated to
predict vulnerability exploits. They are outlined in this
section. In recent times, the identification and
optimization of cybersecurity threats have gained
substantial importance (Fang et al., 2020). Numerous
studies have concentrated on prediciting the probability of
software vulnerabilities and efficiently assessing potential
threats to developers, vendors, and IT managers, thereby
prioritizing early mitigation of critical vulnerabilities.
Recent research employs machine learning methods
alongside features extracted from publicly accessible
online vulnerability data, including NVD attributes, to
predict the likelihood of exploitation for a given
vulnerability. In this context, "exploited" signifies the
presence of a proof-of-concept exploit.

Machine Learning
This research also reviews a spectrum of studies
addressing software vulnerability prediction from diverse
angles, utilizing methods such as machine learning (ML),
data mining, and text mining. Previous research has
explored the connection between vulnerabilities and
Proof-of-Concept (PoC) instances, as well as the
prediction of exploits through online vulnerability
mentions (Edkrantz & Said, 2015; Luca & Fabio, 2012;
Mohammed et al., 2017; DeCastro-Garcia et al., 2019).
Frei et al. (2006) conducted comprehensive investigations
into the vulnerability lifecycle using data mining
techniques, while Bozorgi et al. (2010) achieved
remarkable 90% prediction accuracy through Support
Vector Machine (SVM) classification of PoC instances.
However, Sabottke et al. (2015) introduced skepticism
about labeling criteria and raised questions about
contradiction. Bullough et al. (2017) addressed issues
related to imbalanced datasets and concept drift,
emphasizing the influence of National Vulnerability
Database (NVD) incompleteness and PoC availability. The
limitations of conventional text processing were also
recognized (Nazgol et al., 2018), with neural network
models exhibiting promising results but missing certain
linguistic nuances. Hoque et al. (2021) contributed robust
features, including a novel "coefficient balance" function
and custom-trained word vectors, enhancing vulnerability
exploitation prediction accuracy with reduced
computational demands. The synthesis of these studies
underscores the pivotal role of hyperparameter
optimization in fine-tuning predictive models, ultimately
culminating in more precise and efficient vulnerability
exploitation forecasts. In summary, this multifaceted
review underscores the intricate landscape of vulnerability
prediction research and advocates for the strategic
refinement of models to yield superior forecasting
outcomes.

Machine Learning and Hyperparameter Optimization
The Over the span of decades, researchers have pursued
timely and accurate exploit prediction while minimizing
computational costs. Optimizing ML models is key, and a
review of studies on Light GBM with varied optimization
strategies underscores this concept. Ju et al. (2019)
introduced a fusion of CNN and Light GBM for wind power
prediction, showcasing enhanced accuracy and
efficiency. Mingzhu et al. (2020) applied Bayesian
optimization to Light GBM for wind turbine fault detection,
excelling in diagnosing faults despite imbalanced data
challenges. Huang (2020) employed Light GBM for fraud
detection, surpassing traditional models. Taha and
Malebary (2020) achieved exceptional credit card fraud
detection using Optimized Light GBM. Abbadi et al. (2020)
presented a swift anti-malware system using Light GBM,
while Wang and Wang (2020) enhanced Light GBM's
prediction accuracy for blood glucose measurement. Fang
et al. (2020) combined fastText and Light GBM for exploit
prediction, yielding substantial improvements.
In sum, literature primarily centers on ML-based
vulnerability prediction, often overlooking efficient
optimization. Our research therefore aims to bridge this
gap by introducing an advanced Light GBM model,
enriched by Bayesian optimization. This approach
enhances both predictive accuracy and computational
efficiency, addressing a vital aspect of the field.

MATERIALS AND METHODS
We adopted the outlines of prior work (Fang et.al., 2020) to
propose an improved model for vulnerability exploitability
prediction based on BO method. However, we focus on
illustrating the impact of the previously discussed
challenges on the learning model. Our main target is to
improve Light GBM model’s predictive performance and
efficiency using BO in vulnerability exploit prediction.

Data description and preprocessing
The adopted dataset (Fang et al., 2020) used in this work
was obtained from (https://github.com/das-
lab/FastEmbed) public repository. The data has been
aggregated from various intelligence data sources,
containing all vulnerabilities and exploits published
between the years 2009 and 2018. Data preprocessing is a
crucial step in ML, involving transformations before
feeding data to ML models. This phase eliminates
unwanted elements like stop words, whitespace, special
characters, URLs, and addresses missing values and
irrelevant features. Quality data and feature selection
significantly impact a model's efficiency and performance
(Agarwal, 2015). The data was divided in a 70:30 ratio for
training and testing. A portion of the preprocessed dataset
is depicted in Figure 1.

Mashi et al., JOSRAR 1(1) SEPT-OCT 2024 49-62

51

Figure 1: Preprocessed dataset

Different vulnerabilities and exploits were identified by
CVE-ID’s and EDB-ID accordingly. Most studies including
this work mark a vulnerability as exploitable when it has a
corresponding PoC exploit identified by an EDB-ID. The
dataset comprised of 60,784 vulnerabilities. In this work
only the data from NVD was used, comprising of
numerical, categorical and vulnerabilities text description
data.
NVD is an example of an Open-Source Intelligence (OSINT)
resource concerning security vulnerabilities. This
database includes several components such as the CVE
initiative, developed by the MITRE Corporation, which is an
industry-standard dictionary containing a list of security
vulnerabilities (National Institute of Standards and
Technology, n.d.). Each year, the NVD database provides
vulnerability data feeds consisting of CVE-IDs allocated for
that year in JSON format. Each entry includes a descriptive
text summary for the vulnerability, Common Vulnerability
Scoring System (CVSS) scores, information about affected
products and vendors, the category of vulnerability based
on the Common Weakness Enumeration (CWE) system,
and reference URLs (Flashpoint, 2021).
The CVE List feeds NVD, which then builds upon the
information included in CVE Records to provide enhanced
information for each record, such as fix information,
severity scores, and impact ratings (National Institute of
Standards and Technology, n.d.). As part of its enhanced
information, NVD also provides advanced searching
features, including filtering by operating system, vendor
name, product name, version number, vulnerability type,
severity, related exploit range, and impact (Flashpoint,
2021).
Each record includes a descriptive text summary for the
vulnerability, scores and metrics from CVSS, information
about affected products and vendors, the category of
vulnerability based on the CWE system, and URLs to other
reference sources. The numeric CVSS score vulnerability
is calculated from the values assigned to the feature's

Access Vector, Access Complexity, Authentication,
Confidentiality Impact, Integrity Impact, and Availability
Impact. Access Vector can take on the values requires”
local access”, “adjacent network accessible" or “network
accessible”. Access Complexity can be rated “high”,
“medium" or” low”. Authentication can take on the values
requires multiple instances of “authentication”, requires
single instance of “authentication" or requires no
“authentication”. Confidentiality Impact, Integrity Impact,
and Availability Impact can be scored as “none”, “partial”
or “complete”. These numbers are used to calculate the
overall, numeric CVSS score.
Text features contain multiple entries for the same CVE ID,
(i.e. the Vulnerable Systems List, Reference Types,
Reference Sources, Reference URLs, CWE Names, and
CWE Descriptions as well vulnerabilities descriptions) The
NVD data was merged with data from the Exploit Database
by CVE-ID. The merged data was divided and preprocessed
according to its data type.

Features description
The National Vulnerability Database (NVD) database
contributes inherent features categorized as numerical,
categorical, and text description attributes. The CVSS
version 2 is integrated as a feature set, encompassing the
CVSS base score, exploitability subscore, and impact
subscore. The exploitability subscore comprises features
like Access Vector, Access Complexity, and
Authentication, determining how vulnerabilities are
exploited. Impact subscore considers Confidentiality
Impact, Integrity Impact, and Availability Impact, gauging
the extent of system impact post-exploitation. The Base
score integrates these features. Common Platform
Enumeration (CPE) extracts affected platforms and
products via standardized CPE URLs, while the CWE
feature refines flaw categorization in software
development. The dataset structure in NVD enables
systematic analysis and comparison of vulnerabilities

Mashi et al., JOSRAR 1(1) SEPT-OCT 2024 49-62

52

across multiple software environments. The
categorization of features aids in precise identification,
prioritization, and management of vulnerabilities in
cybersecurity. Additionally, the CVSS and CWE features
support automation in vulnerability assessment, allowing
for quicker response and mitigation strategies. This

structured approach in NVD provides an essential
resource for vulnerability detection and management in
various cybersecurity frameworks.
Table 1 offers a comprehensive summary of data features
and types (numeric, categorical, or text).

Table 1: Features and categories

Features Source Features Types Values Category
National
Vulnerability
Database

CVSS

Access Vector
Access Complexity
Authentication
Confidentiality Impact
Integrity Impact
Availability Impact
Base Score
Exploitability Score
Impact Score

Categorical
Categorical
Categorical
Categorical
Categorical
Categorical
Numerical
Numerical
Numerical

 CPE Application
Hardware
OS
No product
List
Scale

Numerical
Numerical
Numerical
Numerical
Text
Categorical

 CWE CWE-ID Numerical
 Name Text
 URL Text
 Reference Number Numerical
 Vulnerability description Text

Modelling and Implementation of Light GBM Algorithm
Light GBM, an enhanced decision tree framework
introduced by Microsoft in 2017, offers parallel processing
and boasts speed, low memory usage, and reduced
communication costs in parallel learning. It stands out for
features like gradient-based one-side sampling (GOSS),
exclusive feature bundling (EFB), histogram-based growth,
and limited-depth trees to prevent overfitting. Light GBM
leverages multi-threaded optimization and GPU support
for faster training and effective management of sizable
datasets.
After the data has been preprocessed and clean, we
separate the labels from the rest of the data by declaring X
as the variable that contains all previous data except the
labels and the variable Y which contains the labels
(Target). By using the newly defined Y variable we
established the dataset's class balance. The data is first
split into the train and test sets that receive 70% and 30%,
respectively. Light GBM is not subjected to validation since
it is supposed to be implemented without any additional
optimization, except for its fundamental training using its
default parameters. We fit the Light GBM classifier with the
training data and run the prediction on the test data.
Comparing the test and train scores confirmed there was

no overfitting of the model. The classifier performance was
evaluated in terms of AUC, Accuracy, Recall, Precision, F-
1 Score Executional time and Memory used. The benefits
of Light GBM encompass improved accuracy, distributed
capabilities, and efficient handling of substantial data
volumes.GOSS excludes a significant proportion of the
data-instances with small gradients, and only uses the rest
to estimate the information gain.
According to the definition of information gain, those
instances with larger gradients (i.e., under-trained
instances) will contribute more to information gain.
Gradient One-Sided Sampling or GOSS utilizes every
instance with a larger gradient and does the task of random
sampling on the various instances with the small
gradients. The training dataset is given by the notation of O
for each node of the Decision tree. The variance gain of j or
the dividing measure at the point d for the node is given in
Equation 1:

𝑉�̃�(𝑑) =
1

𝑛
(

(∑ 𝑔𝑖+
1−𝑎

𝑏𝑥𝑖∈𝐴𝐼
∑ 𝑔𝑖𝑥𝑖∈𝐵𝐼

)
2

𝑛𝐼
𝑗

(𝑑)

̃

+
(∑ 𝑔𝑖+

1−𝑎

𝑏𝑥𝑖∈𝐴𝑟 ∑ 𝑔𝑖𝑥𝑖∈𝐵𝑟)
2

𝑛𝑟
𝑗

(𝑑)
)

 (1)
Where:

Mashi et al., JOSRAR 1(1) SEPT-OCT 2024 49-62

53

AI = {xi ∈ A: Xij ≤ d}, Ar = {xi ∈ A: Xij > d}, BI = {xi ∈

B: Xij ≤ d}, Br = {xi ∈ B: Xij > d}, and the coefficient 1−𝑎

𝑏

is used to normalize the sum of gradients over B back to the
size 𝐴𝑐.
In order to compensate for the data multiplier for data
instances with small gradients when calculating the
information gain, GOSS first sorts the data instances
according to their gradient’s absolute value and selects
the top instances. By doing so, without modifying the
original data distribution by much, this method puts more
focus on the under-trained instances. Chen et al (2017)
claims that such a treatment can leads to a more accurate
gain estimation than uniformly random sampling,
especially when the value of information gain has a large
range.
Our contribution leverages Bayesian optimization to find
acceptable trade-offs between model performance,
accuracy and resource consumption in terms of time and
memory. Our framework implements a two-stage
approach. The first stage explores the high-dimensional
parameter search space of the target Light GBM Algorithm,
where the selected parameters range of values is defined.
The second stage we fit and re-train the model with the
obtained set of optimal parameters. Next run the
prediction on the test vulnerability data. We then analyze
how well the set of ‘best’ model parameters on Light GBM
achieve classification performance and optimized
computational resources on the target Algorithm. We
investigate this in relative terms by comparing the baseline
and proposed BO_Light GBM model in terms by analyzing
the obtained results impact on the target models.
This Phase explains Bayesian Optimization and the
Principle behind Bayesian Algorithm. It also illustrates the
stages of building the Proposed Improved BO_Light GBM
using a flowchart and pseudocode of the Model.

Bayesian Optimization
The Bayesian is a “black box” optimization technique
proposed to overcome the problems of other optimization
methods in terms of computational cost of resources
(Betrò, 1991; James & Bengio, 2012;Dewancker et al.,
2016). Bayesian optimization fits a probabilistic model to
capture the relationship between hyperparameter settings
and their measured performance. The goal of Bayesian
Optimization is to find an approximate minimum to some
function that is expensive to evaluate. In this case the
objective function is the Light GBM algorithm that we are
trying to optimize, and the function's parameters are the
hyper parameters of the algorithm.
The BO technique creates a prior over the objective
function and combines it with evidence to get the
posterior. This allows for a utility-based selection for the
next observation to make on the objective function, which
must consider both exploration (sampling from areas of

high uncertainty) and exploitation (sampling areas likely to
offer improvement over the current best observation
The model used for approximating the objective function is
called a surrogate model. The technique uses previous
observations of the loss function ƒ, to determine the next
(optima) point for sample from. The three base
components of Bayesian Optimization are:
1. The search space to sample from
2. The objective function
3. The surrogate and Acquisition functions

Defining the Search space (1) - Bayesian Optimization
operates along probability distributions for each
parameter that it will sample from. These distributions or
domains are set by the researcher specifying each
parameter range of values.
Objective Function (2) - This function serves as the main
evaluator of hyperparameter combinations. It takes in a
set of hyper parameters and output a score that indicates
how well a set of hyper parameters performs on the
validation set. For our classification problem we used
“accuracy score” as the evaluation metric of choice. So
clearly the aim is to maximize the objective function.
Optimizing parameters in the objective function of any
complex algorithm is time consuming. Therefore, Bayesian
optimization technique limits calls to the evaluation
function by choosing the next parameter values using
previous best results hence, allows the algorithm to spend
less time in evaluating promising parameter values and
low-scoring regions of the parameter space.

Surrogate function (3) and Acquisition function (4) - The
surrogate function is an approximation of the objective
function that is used to propose parameter sets to the
objective function, that likely yield an improvement in
terms of accuracy score. The parameters that are put
forward for evaluation to the objective function are
selected by criterion which is defined by the Acquisition
function.
 The algorithm starts by initializing the memory and time
consumption of the based on minimal fitted memory and
running time of the function efficient parameters. Then
iterate sequentially to the remaining parameters to return
optimal parameter values. Based on the Bayesian
Theorem which uses the Bayesian form the algorithm can
be explained as:
Using previously evaluated points x1: n, compute a
posterior expectation of what the loss function ƒ looks like
Sample the loss function ƒ at a new point x new, that
maximize some utility of the expectation of ƒ. The utility
specifies which regions of the domain of ƒ are optimal to
sample from.
These steps are repeated until some convergence criterion
is met and the optimal parameter values achieved. An

Mashi et al., JOSRAR 1(1) SEPT-OCT 2024 49-62

54

optimization problem seeks to minimize a loss function.
An objective function is either a loss function or its
negative, in which case it is to be maximized.

The Pseudo Code of Bayesian Optimization Algorithm is
shown in Figure 2.

Figure 2: The Bayesian Algorithm ((Shahriari et al., 2016))

Equation 2 mathematically represents the problem of
finding a global maximizer (minimizer) of an unknown
objective function f as:
x*=argmax f(x) (2)
 x ϵ χ
Fundamentally, BO is a sequential model-based
approach. In Equation 2 x* is the parameter of interest in a
bounded space x ϵ χ. It aims at solving the problem defined
above iteratively, by reusing all information acquired at
each iteration n, or all the values that were observed for the
unknown function f(x). This can be done by posing a
surrogate model of the function f(x), which will then be
used to determine the next point of ƒ to evaluate x0
balancing exploration and exploitation criteria to be
defined. The key element of Bayesian optimization is to
exploit all the available information to guide the
optimization procedure at each iteration. (Feurer & Hutter,
2019)
Light GBM Optimization with Bayesian method- Phase One
Outlining the steps in Algorithm 3.2
▪ In Step 1 we define the objective function, the

selected parameters and their domain space. The

main parameters which affect the performance of the
Light GBM model were selected based on stated
objectives.

▪ Next step is to initialize the Surrogate and Acquisition
function.

▪ Step 3 for each iteration find the hyperparameter
where the Acquisition function is optimized

▪ Step 4 is where the Objective function score is
obtained to see how this point actually performs

▪ Step 5 stores the next chosen parameter to evaluate
and the true Objective function score in the History of
other samples

▪ Step 6 is where a new Model is fit The Surrogate model
is trained using the latest history of samples

▪ The looping ends when maximum number of
iterations has been reached

▪ Step 7 Evaluate the best optimal parameters set.
▪ End

Figure 3 displays the steps followed to optimize Light GBM
algorithm using Bayesian Algorithm.

Mashi et al., JOSRAR 1(1) SEPT-OCT 2024 49-62

55

ALGORITHM 1: LIGHT GBM VIA BAYESIAN OPTIMIZATION

Input: Base Light GBM Model; M0; Selected parameters 𝜽 = {𝜽𝟏, 𝜽𝟐, … … … 𝜽𝒏} 𝒅𝒐𝒎𝒂𝒊𝒏, the
corresponding objective function ƒ(𝜽∗); P

1: Initialize M0; S; P

2: For n = 1, 2, ………do until T max

3: Find the optimal hyper-parameter 𝜽∗ by maximizing the objective function ƒ(𝜽∗);
𝑴𝒏+𝟏: 𝜽∗ = 𝒂𝒓𝒈𝒎𝒂𝒙 𝑴𝒏+𝟏: (𝜽).

4: Evaluate the ƒ(𝜽∗) 𝒔𝒄𝒐𝒓𝒆 under the settings 𝜽∗ → the expensive step

5: Store 𝜽∗and the corresponding objective function ƒ(𝜽∗)score in P

6: Fit a new model 𝑴𝒃 = 𝑴 ∪ (𝜽∗, ƒ(𝜽∗))

 End for

Output: optimal hyper-parameters of Light GBM

Figure 3: Light GBM Optimization with Bayesian method- Phase One

Variables that are used in this algorithm are listed below:
θ*: Set of selected parameters and their range
M0: The Acquisition function
ƒ(𝜽∗): The true Objective function

S: The Surrogate function, which is updated whenever a new
sample is added
P: The Observation History of (hyperparameter, score) pair
θ*: Next chosen parameter to evaluate
In Figure 4, the steps in Phase Two of the proposed
improved BO-Light GBM Model are captured.

BO Light GBM model for the prediction of vulnerability Exploits-Phase Two

Algorithm 2: Implementation of improved BO_ Light GBM Model
Input: Light GBM Model Mb, Vulnerability dataset D = {(𝒙𝟏𝒚𝟏), (𝒙𝟐, 𝒚𝟐), … … … (𝒙𝒏, 𝒚𝒏)}
1: Defining the Independent (Target) Y and Dependent variables X
2: Handing missing data and apply data normalization for D; dividing dataset as Dtest and Dtrain
3: Establish Light GBM model Mb based on Dtrain, 𝜽 from Algorithm 3.2
4: Fit the model with optimal parameters values
5: Run the prediction
6: Evaluate the performance of the proposed model
Output: Result prediction

Figure 4: BO_Light GBM Improved Model Phase Two.

Implementation of the proposed BO_ Light GBM hyper-
parameters optimization can be detailed as: Ɵ = {Ɵ₁,
Ɵ₂……Ɵn} represents the selected hyperparameters and
their Domain space in the machine learning algorithm A
(such as Light GBM), D(train) data set is used for training,
and D(valid) data set is used for validation (i.e., parameter
optimization), and the two are independently distributed. L
(A, Ɵ, D(valid), D(train) is used to represent the validation
loss of Light GBM algorithm. Stratified K-fold validation is
applied to address the optimization requirement. The
interval range for parameters are set in our Light GBM
algorithm. In the process of parameter optimization, the

model is continuously trained, and the classification result
obtained as each parameter combination is evaluated by
the evaluation function. The best generated parameter
values are obtained and printed out. The model is fit with
the generated optimal parameters and the classification
has taken place.

The Light GBM - Grid Search Model and Proposed
BO_LIGHT GBM Model
We rebuilt Light GBM and Grid Search as our baseline
model to obtain its performance result as the comparative
base for the performance of our proposed model. For the

Mashi et al., JOSRAR 1(1) SEPT-OCT 2024 49-62

56

optimization of the two models, we used the benchmark
data set and the selected parameters depicted in Table 3.3
The combined dataset contains 27,368 samples, and we
use 80% (or 11,475 samples) for training and validation
(split according to a 67/33 ratio) in order find the best
model and hyperparameters. The remaining 20% was used
for testing. The dataset was split with stratified sampling
such that the training, validation and test sets have
approximately the same percentage of samples of each
target class (i.e., normal and anomalous) as the original
complete dataset.
All parameters of the methods were optimized to achieve
the best performance. For each task, we ran all possible
combinations of the domain using the two optimization
methods.
 Stratified 10-fold validation was used throughout the
models training and testing to avoid overfitting the model.
The training dataset was randomly divided into 10 equal
size subsets while ensuring that the proportion of all kinds
of samples in the training and test set are the same as that
in the original data set. The K-1 subsets were retained as
training data, and the remaining one subset was used as
the validation data for testing the model This approach
removes the possibility of the proposed model being over-
fitted to the training set and the training mark being
inserted indirectly into the training set, which can occur
when k-fold cross validation is performed explicitly on the
entire data set.

Basic Performance Metrics
Model evaluation metrics are required to quantify model
performance and the most commonly used in
Classification problems are stated below.
Accuracy of exploit prediction is the correct classification
of True Positive (TP) and True Negative (TN), where TP is the
number of exploited vulnerabilities that are correctly
identified, FN is the number of exploited vulnerabilities
that are mistakenly classified as vulnerabilities that will
not be exploited
Accuracy = TP+TN

TP+FP+TN+FN
 (3)

Accuracy is the standard metric used to evaluate a
classification ML model, but in case of imbalance data
may not give the right interpretation of the quality of the
model.
Precision: It is known as correctness; that measures the
efficiency of prediction. Further can be defined as the
proportion of number of vulnerabilities correctly predicted
and likely to be exploited to the total number of
vulnerabilities predicted as likely to be exploited

Precision = TP

TP+FP
 (4)

Recall also known as Sensitivity or True Positivity Rate
TPR: Recall can be defined as the ratio of number of
vulnerabilities correctly predicted as likely to be exploited
to the actual number of vulnerabilities been exploitable.
Recall represents the exploit prediction rate which allow
us to quantify the effectiveness of prediction. It is given as:
Recall = TP

TP+FN
 (5)

F-measure: F1-score is the harmonic mean of Precision
and Recall and represents the result of a trade-off between
Precision and Recall.
F1 = 2

Precsion∗Recall

Precision+Recal𝑙
 (6)

The Area Under Curve (AUC) is defined as the area
enclosed by the coordinate axis under the ROC curve. It
represents the ability of the classifier to correctly
distinguish between the correctly predicted positive and
negative classes, thus, evaluate the efficient performance
of the model. Classifiers with larger AUC have better
performance.
Confusion Matrix: A confusion matrix, is a tool to visualize
the classification performance ofmachine learning
models, by presenting the four base classification
statistics in a tabular fashion. It provides an insight how
correctly the model has classified the two classes. The
matrix compares the actual Target values with those
predicted by the ML model. It gives a holistic view of how
well the model performs and what kind of errors is making.
The components of the confusion matrix are:
TP- true positive number of labeled positives (labeled
exploit) that are correctly classified as positive (predicted
exploited).
FP- false positive, number of labeled negatives (labeled
non- exploited) that are incorrectly classified as positive
(predicted exploited)
FN- false negative, number of labeled positives (labeled
exploited) that areincorrectly classified as negative
(predicted non-exploited).
TN- true negative, number of labeled negatives (labeled
non-exploited) that are correctly classified as negative
(predicted non-exploited.
In Figure 5, we present the research flowchart, which
comprises four key stages: problem identification (Stage
1), data description and preprocessing (Stage 2), algorithm
implementation (Stage 3), and evaluation (Stage 4). This
framework guides the structure and progression of our
study.

Mashi et al., JOSRAR 1(1) SEPT-OCT 2024 49-62

57

Figure 5: Research Flowchart

RESULTS AND DISCUSSION
Basic Prediction
The first experiment was mainly done to examine the
impact of Light GBM classifier without applying hyper
parameter optimization technique in predicting
Vulnerability exploits. It was, therefore conducted using
the model default parameters. Equations (3), (4), (5) and
(6) gives the mathematical representations of the metrics
used for the performance evaluation of the Light GBM
model.
The Light GBM classifier with no hyper parameter
optimization, has achieved accuracy of 64.6%, AUC of
70%, Precision 58.5%, Recall 72%, F1 score is 64.5%. It
has a significant start in terms of the overall accuracy
resulting in 64.6% and performed reasonably in predicting
vulnerabilities that do not have exploits with an AUC of
70%. But the result delivered for true positive cases does
not seem promising. Therefore, there is a need to further
improve the model. Another evaluation metric for the
model efficiency is time and memory efficiency, where the
algorithm has also performed well.

Light GBM-Grid Search Model Result Evaluation
The second experiment is the baseline technique that used
the Grid Search method to optimize the selected Light
GBM parameters. As mentioned in section 3, the baseline
model was rebuilt to use it as a base for comparison with
the proposed model. The benchmark dataset and the
selected parameters were used for building and optimizing
the mode. Thus, all parameters of the methods are

optimized to achieve the best performance. Light GBM-
Grid Search model is evaluated using the performance
metrics given in equations (3), (4), (5) and (6). TheLight
GBM-Grid Search model have achieved accuracy rate
close to Light GBM Algorithm. On the other hand, its AUC
is below that of the Light GBM. In terms of Precision, Recall
and F1 Measure outcome results are 58%, 72%, and 64%
respectively. The unsatisfactory time and memory
performance can be attributed to Grid Search’s brute force
nature, which exhibits exponential time complexity.
Consequently, this approach becomes computationally
intensive, especially with larger datasets and complex
models. Such results indicate that Grid Search may not be
the most efficient method for hyper-parameter
optimization in scenarios requiring scalability.

Evaluation of the Proposed BO_LIGHT GBM Model
The result of the third experiment shows the performance
of the proposed model based on the evaluation matrix
considered for this work. As earlier stated, the dataset,
parameters and other settings for the proposed model
were adopted from the base work of this research. To
validate the strength of the proposed BO-LIGHT GBM
model, the experimental analysis is performed using
tenfold stratified cross-validation. Table 2 illustrates the
performance behavior of the proposed model based on the
selected evaluation metrics given in equations 3, 4, 5 and
6. Furthermore, Figure 6 presents the confusion matrix of
the proposed model, where TP= 4085; TN= 5497; FP= 1653;
and FN=240.

Mashi et al., JOSRAR 1(1) SEPT-OCT 2024 49-62

58

Table 2: Performance Summary of Proposed BO_LIGHT GBM model
Evaluation metrics BO_LIGHT GBM performance
AUC 83%
Accuracy 81%
Precision 72%
Recall 94%
F-1 Measure 81%

Figure 6: Confusion matrix of proposed BO_LIGHT GBM
Model

Figure 7: AUC-ROC of proposed BO_LIGHT GBM Model

Discussion
The efficiency of the BO-LIGHT GBM prediction model is
one of the most important evaluation indicators of its
performance, efficient models are always more preferred.
The average time-consuming of Light GBM, Light GBM and
Grid Search and BO-LIGHT GBM models at training and
testing phases are compared, respectively. The trend of
the results shown obviously indicates that BO-LIGHT GBM
is time-cost efficient, followed by Light GBM and both
significantly more proficient than Light GBM - Grid Search.
That can be justified due to their special algorithm design
mechanisms of Light GBM explained in section One and
Three. When fitting the best model from the training set,
Light GBM is a bit more time consuming due to the slightly
higher complexity of the constructed model, but they are
not that far apart. Therefore, it can be concluded that BO-
LIGHT GBM and Light GBM are significantly more efficient
than Light GBM - Grid Search. The confusion matrix is the
visual representation of the model to identify positive and
negative classes. Therefore, Light GBM classifier achieved
AUC of 70%, Light GBM-Grid Search achieved AUC of 69%
and the proposed model of this work achieved AUC of 83%.
Clearly our proposed work has shown significant

improvement of the model ability to predict correctly.
To measure the performance of the model, Light GBM
classifier achieved accuracy of 64.6%, Light GBM-Grid
Search of 65%, and the proposed model’s accuracy is
81%. Precision, Recall and F1 Measure (respectively 72%,
94%, and 81%) scores of BO_LIGHT GBM are distinctly
higher than the other two models, which evidently proves
the efficacy of the proposed model. The finding of the
results has shown major improvement in performance of
the proposed BO_LIGHT GBM model when compared with
the other two models in Table 3.
The efficiency of any algorithm is measured using the
computational resource cost that is, memory and time.
Table 4 depicts the proposed model execution time, that is
0.32, 36.29 and 0.23 minutes respectively, while the
memory consumption of each model is 44.1 (MiB) for Light
GBM, 58 (MiB) for Light GBM - Grid Search model and 32
(MiB) for the proposed work of this study. The significant
difference in the results in terms of execution time
between Light GBM, Light GBM - Grid Search, and the
proposed BO-LIGHT GBM model, is apparently due to their
different time complexities as explained.

Mashi et al., JOSRAR 1(1) SEPT-OCT 2024 49-62

59

Table 3: Comparison of the three models based on evaluation metrics selected
Evaluation metrics Light GBM Model Light GBM- Grid Search

Model
BO_LIGHT GBM Model

AUC 70% 69% 83%
Accuracy 64.6% 65% 81%
Precision 58.5 % 58% 72%
Recall 72% 72% 94%
F-1 Measure 64.5% 64% 81%

Table 4: Efficiency performance of the three models

Metrics Light GBM Light GBM –Grid Search BO-Light GBM
Time (in minutes) 0.32 36.29 0.23
Memory (in MiB) 44.1 58 32

The result demonstrates that the runtime of both hyper-
parameter tuning approaches grows gradually as the
dimensions’ increases, and Bayesian based method
requires less time to obtain the optimal hyper-parameter
values. Hence, it can be seen that the proposed model
performed better in terms of model efficiency. Thus, we

can conclude that the proposed BO_LIGHT GBM Model
performs better than the Light GBM -Grid Search model, by
achieving higher accuracy, AUC score and lesser
computational time and memory. Figure 8 compares the
results of the 3 models while figure 9 depicts the AUC-ROC
of the 3 models.

Figure 8: Models results comparison

7
0

%

6
4

.6
0

%

5
8

.5
0

%

7
2

%

6
4

.5
0

%

6
9

%

6
5

%

5
8

%

7
2

%

6
4

%

8
3

%

8
1

%

7
2

%

9
4

%

8
1

%

A U C A C C U R A C Y P R E C I S I O N R E C A L L F 1

MODELS RESULTS COMPARISM

LIGHT LGBM LIGHT LGBM+GS BO_LIGHT GBM

Mashi et al., JOSRAR 1(1) SEPT-OCT 2024 49-62

60

Figure 9: ROC -AUC graph Comparison of the models

In comparison with existing studies, our proposed BO-
Light GBM model demonstrated superior predictive
accuracy, efficiency, and resource optimization. For
example, Wang et al. (2022) achieved an AUC of 75% and
an accuracy of 70% using a Light GBM model with Random
Search optimization, but required 15 minutes of execution
time and 45 MiB of memory. Similarly, Khan et al. (2021)
and Singh et al. (2023) implemented Light GBM with
Bayesian and Grid Search optimizations, respectively, but

fell short with lower AUCs (78% and 74%) and higher
resource demands (execution times of 20 and 40 minutes
and memory usage of 50 and 60 MiB, respectively). In
contrast, our BO-Light GBM model achieved an AUC of
83% and an accuracy of 81% within just 0.23 minutes and
32 MiB, underscoring its suitability for resource-
constrained environments. The comparison of our BO-
Light GBM model with existing literature is summarized in
Table 5.

Table 5: Comparison of BO-Light GBM Model with Existing Vulnerability Prediction Models

Model Accuracy Precision Recall F-Measure AUC Execution Time
(Minutes)

Memory (MiB)

Khan et al. (2021) 73 68 85 74 78 20 50
Wang et al. (2022) 70 65 80 71 75 15 45
Singh et al. (2023) 69 62 79 69 74 40 60
proposed BO-
LightGBM

81 72 94 81 83 0.23 32

CONCLUSION
In this work, we introduced an enhanced model to predict
vulnerability exploitation, crucial for patch prioritization,
through a series of experiments. Our proposed BO-LIGHT
GBM model outperformed existing methods, leveraging
Bayesian optimization for improved accuracy and
efficiency. Comparing models, the unoptimized LGBM
achieved 64.6% accuracy, while the baseline Light GBM-
Grid Search reached 65%. In contrast, our BO-Light GBM
achieved an accuracy of 81%, demonstrating superior
efficiency with minimal resource utilization. This
advancement holds potential for IT organizations, vendors,
and resource-constrained entities in vulnerability
prediction. Our findings shows that our improved BO_LIGHT
GBM model holds promise for IT organizations and vendors,

particularly in the realms of threat management and patch
prioritization. Its potential impact includes enhanced
computational efficiency, accuracy, and effectiveness in
predicting vulnerabilities with exploits, as well as facilitating
timely patch releases and mitigation strategies. However,
since our study relied on a single dataset from a sole data
source, future research could greatly benefit from exploring
diverse data sources, including bug bounty programs and
"grey" or "black" market disclosures, even delving into the
deep or dark web and also extending the feature set by
extracting additional vulnerability-related attributes from
various data sources or vendors, given that our current
features were predominantly sourced from NVD data.

Mashi et al., JOSRAR 1(1) SEPT-OCT 2024 49-62

61

REFERENCES
Abbadi, M. A., Bustanji, A. M., & Alkasassbeh, M. (2020).
Robust Intelligent Malware Detection using Light GBM
Algorithm. International Journal of Innovative Technology
and Exploring Engineering, 9(6):1253-1260. DOI:
10.35940/ijitee.F4043.049620

Agarwal, V. (2015). Research on data preprocessing and
categorization technique for smartphone review analysis.
International Journal of Computer Applications, 131(4), 30-
36. https://doi.org/10.5120/ijca2015907309.

Taha, A. A., & Malebary, S. J. (2020). An intelligent approach
to credit card fraud detection using an optimized Light
Gradient Boosting Machine. IEEE Access, 8(1), 25579–
25587. https://doi.org/10.1109/ACCESS.2020.2971354

Betrò, B. (1991). Bayesian methods in global optimization.
Journal of Global Optimization, 1(1), 1–14.

Bhatt, N., Adarsh, A., & Yadavalli, V. S. S. (2020).
Exploitability prediction of software vulnerabilities. August,
1–16. https://doi.org/10.1002/qre.2754
B
ilge, L., & Dimitras, T. (2012). Before we knew it: an empirical
study of zero-day attacks in the real world. In: Proceedings
of the 2012 ACM Conference on Computer and
CommunicationsSecurity, 833–844.

Bozorgi, M., Saul, L. K., Savage, S., & Voelker, G. M. (2010).
Beyond Heuristics: Learning to Classify Vulnerabilities and
Predict Exploits.

Bullough, B. L., Yanchenko, A. K., Smith, C. L., & Zipkin, J. R.
(2017). Predicting exploitation of disclosed software
vulnerabilities using open-source data. IWSPA 2017 -
Proceedings of the 3rd ACM International Workshop on
Security and Privacy Analytics, Co-Located with CODASPY
2017, 45–53. https://doi.org/10.1145/3041008.3041009

Chen, T., Guestrin, C., Ke, G., Meng, Q., & Finley, T. (2017).
LightGBM: A highly efficient gradient boosting decision tree.
Proceedings of the 31st International Conference on Neural
Information Processing Systems, 3149–3157.

DeCastro-García, N., Muñoz Castañeda, Á. L., Escudero
García, D., & Carriegos, M. V. (2019). Effect of the sampling
of a dataset in the hyperparameter optimization phase over
the efficiency of a machine learning algorithm. *Advances in
Complex Systems and Their Applications to Cybersecurity*,
2019, Article 6278908.
https://doi.org/10.1155/2019/6278908

Dewancker, I., McCourt, M., & Clark, S. (2016). Bayesian
Optimization Primer. SigOpt.

Edkrantz, M., & Said, A. (2015). Predicting cyber
vulnerability exploits with machine learning. In SCAI.

Ehrenfeld, J. M. (2017). Wannacry, cybersecurity and health
information technology: A time to act. Journal of Medical
Systems, 41(4), 104.

Elgeldawi, E., Sayed, A., Galal, A. R., & Zaki, A. M. (2021).
Hyperparameter tunning for Machine Learning Algorithms
Used for Arabic Sentiment Analysis. IIormatics,
https://doi.org/10.33990/informatics 8040079, 8,79.

Fang, Y., Liu, Y., Huang, C., & Liu, L. (2020). FastEmbed:
Predicting vulnerability exploitation possibility based on
ensemble machine learning algorithm. PLoS ONE 15(2):
e0228439. .0228439. PLOS ONE, 15(2), 1–28.

Feurer, M., & Hutter, F. (2019). Hyperparameter
Optimization. In F. Hutter, L. Kotthoff, & J. Vanschoren
(Eds.), Authomated Machine Learning
Methods,Systems,Challenges (pp. 3–35). Springer
International Publishing. https://doi.org/10.1007/978-3-
030-05318-5_1

Flashpoint. (2021). Beyond CVE and NVD: The Full
Vulnerability Intelligence Picture. Retrieved from
https://flashpoint.io

Frei, S., May, M., Fiedler, U., & Plattner, B. (2006). Large-
scale vulnerability analysis. In Proc. of LSAD’06 ACM, 131–
138.

Hoque, M. S., Jamil, N., Amin, N., & Lam, K.-Y. (2021). An
improved vulnerability exploitation prediction model with
novel cost function and custom trained word vector
embedding. Sensors, 21(12), Article 4220.
https://doi.org/10.3390/s21124220

James, B., & Bengio, Y. (2012). Optimization, Random
Search for Hyper-Parameter. Journal of Machine Learning
Research, 13, 281–305.

Ju, Y. U. N., Sun, G., Chen, Q., & Zhang, M. I. N. (2019). A
Model Combining Convolutional Neural Network and
LightGBM Algorithm for Ultra-Short-Term Wind Power
Forecasting. IEEE Access, 7, 28309–28318.
https://doi.org/10.1109/ACCESS.2019.2901920

Khan, A., Ali, M., & Rahman, F. (2021). Application of
LightGBM in security prediction models. International

Mashi et al., JOSRAR 1(1) SEPT-OCT 2024 49-62

62

Journal of Cyber Security and Digital Forensics, 10(2), 123–
130.
Luca, A., & Fabio, M. (2012). No Title A Preliminary Analysis
of Vulnerability Scores for Attacks in Wild. ACM 978-1-4503-
1661-3/12/10.

Mingzhu, T., Qi, Z., Steven, X. D., Huawei, W., Linlin, L., Wen,
L., & Bin, H. (2020). An Improved LightGBM Algorithm for
Online Fault Detection of Wind Turbine Gearboxes.
Energies, 1–16. https://doi.org/doi:10.3390/en13040807

Mohammed, A., Eric, N., Krishna, D., Senguttuvan, M., Jana,
S., & Paulo, S. (2017). Proactive Identification of Exploits in
the Wild Through Vulnerability Mentions Online.
International Conference on Cyber Conflict.

National Institute of Standards and Technology. (n.d.).
National Vulnerability Database FAQ. NIST.gov. Retrieved
from https://nvd.nist.gov/

Nazgol, T., Palash, G., Mohammed, A., Paulo, S., & Kristina,
L. (2018). DarkEmbed: Exploit Prediction with Neural
Language Models. The Thirtieth AAAI Conference on
Innovative Applications of Artificial Intelligence (IAAI-18),
7849–7854.

Sabottke, C., Suciu, O., Dumitraş, T., Sabottke, C., &
Dumitras, T. (2015). Vulnerability Disclosure in the Age of
Social Media: Exploiting Twitter for Predicting Real-World
Exploits This paper is included in the Proceedings of the
Vulnerability Disclosure in the Age of Social Media.

Shahriari, B., Swersky, K., Wang, Z., Adams, R., & Freitas, N.
de. (2016). Taking the Human Out of the Loop: A Review of
Bayesian Optimization. IEEE Access, 104(1), 148–175.
https://doi.org/10.1109/JPROC.2015.2494218

Singh, P., Kumar, V., & Mehta, R. (2023). LightGBM
hyperparameter tuning for exploit detection in resource-
constrained environments. Journal of Network and
Computer Applications, 45(1), 25–33.

Suciu, O., Nelson, C., Lyu, Z., Bao, T., & Dumitras, T. (2022).
Expected exploitability: Predicting the development of
functional vulnerability exploits. In *Proceedings of the 31st
USENIX Security Symposium* (pp. 377-394). USENIX
Association.
https://www.usenix.org/conference/usenixsecurity22/pres
entation/suciu20.

Wang, J. A., & Guo, M. (2009). OVM: An ontology for
vulnerability management. In Proceedings of the 5th Annual
Workshop on Cyber Security and Information Intelligence
Research: Cyber Security and Information Intelligence
Challenges and Strategies (pp. 34:1–34:4). ACM.
https://doi.org/10.1145/1558607.1558646

Wang, Y., Chen, L., & Li, J. (2022). Optimizing LightGBM for
cyber vulnerability prediction. Computers & Security, 40(3),
56–64.

Wang, Y., & Wang, T. (2020). Application of improved
LightGBM model in blood glucose prediction. Applied
Sciences, 10(9), 3227.
https://doi.org/10.3390/app10093227

