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A B S T R A C T  
Despite the significant advances in software security research, 
exploitability prediction remains elusive due to the uncertainty of which 
vulnerability to be prioritized. Though many studies have been done on 
vulnerability prediction, some problems still persist such as efficient 
parameter optimization, which has significant effect on the algorithm 
performance and efficiency. To address these challenges, we proposed an 
Improved Light Gradient Boosting Machine (LGBM) model using Bayesian 
Optimization (BO) Method. Three experiments were conducted to compare 
prediction accuracy and computational cost of time and memory on LGBM, 
LGBM with Grid Search and LGBM with Bayesian Optimization models. The 
results demonstrated that our Improved BO- LGBM model has better 
prediction accuracy and lower computational cost than the comparative 
models. BO-LIGHT GBM rendered AUC of 83% measuring the model 
performance, accuracy of 81%, while in terms of time and memory 
consumption has definitely taken the lead of 0.23 min executional time and 
32MiB system memory. Our results suggest promising future applications 
of our improved BO_ LGBM model for the prediction of vulnerability 
exploitation, that could be relevant for IT organizations and vendors or any 
organization that has limited computational resources in its premises if 
employed.  

 
INTRODUCTION 
Predicting software vulnerability exploits presents a 
multifaceted challenge influenced by the surge in 
vulnerabilities and cyber threats (Wang & Guo, 2009). 
Cybercriminals exploit software weaknesses for 
unauthorized access and data breaches, with over 
130,000 vulnerabilities reported by 2019 (Bilge & Dimitras, 
2012). The risk escalates upon exploit disclosure, as 
demonstrated by ransomware attacks like WannaCry and 
NotPetya in 2017 (Ehrenfeld, 2017). However, accurately 
predicting exploits remains uncertain due to varying risks 
and resource constraints (Bhatt et al., 2020; Bozorgi et al., 
2010). 

Machine learning (ML) holds potential in exploit prediction 
(Sabottke et al., 2015), but challenges persist, including 
concept drift, misclassification, and inadequate data 
(Bullough et al., 2017; Mohammed et al., 2017). Light GBM 
and Grid Search have been used (Fang et al., 2020), but 
they face limitations in optimization and data size (Mingzhu 
et al., 2020). This study introduces an Enhanced Light GBM 
Model with Bayesian optimization for efficient vulnerability 
exploit prediction, addressing model performance and 
resource usage (Ju et al., 2019; Mingzhu et al., 2020). The 
model assists decision-makers in mitigating risks while 
minimizing resource costs, contributing to software 
security advancements (Suciu et al., 2021). 
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Several studies in the literature have been dedicated to 
predict vulnerability exploits. They are outlined in this 
section. In recent times, the identification and 
optimization of cybersecurity threats have gained 
substantial importance (Fang et al., 2020). Numerous 
studies have concentrated on prediciting the probability of 
software vulnerabilities and efficiently assessing potential 
threats to developers, vendors, and IT managers, thereby 
prioritizing early mitigation of critical vulnerabilities. 
Recent research employs machine learning methods 
alongside features extracted from publicly accessible 
online vulnerability data, including NVD attributes, to 
predict the likelihood of exploitation for a given 
vulnerability. In this context, "exploited" signifies the 
presence of a proof-of-concept exploit. 
 
Machine Learning 
This research also reviews a spectrum of studies 
addressing software vulnerability prediction from diverse 
angles, utilizing methods such as machine learning (ML), 
data mining, and text mining. Previous research has 
explored the connection between vulnerabilities and 
Proof-of-Concept (PoC) instances, as well as the 
prediction of exploits through online vulnerability 
mentions (Edkrantz & Said, 2015; Luca & Fabio, 2012; 
Mohammed et al., 2017; DeCastro-Garcia et al., 2019). 
Frei et al. (2006) conducted comprehensive investigations 
into the vulnerability lifecycle using data mining 
techniques, while Bozorgi et al. (2010) achieved 
remarkable 90% prediction accuracy through Support 
Vector Machine (SVM) classification of PoC instances. 
However, Sabottke et al. (2015) introduced skepticism 
about labeling criteria and raised questions about 
contradiction. Bullough et al. (2017) addressed issues 
related to imbalanced datasets and concept drift, 
emphasizing the influence of National Vulnerability 
Database (NVD) incompleteness and PoC availability. The 
limitations of conventional text processing were also 
recognized (Nazgol et al., 2018), with neural network 
models exhibiting promising results but missing certain 
linguistic nuances. Hoque et al. (2021) contributed robust 
features, including a novel "coefficient balance" function 
and custom-trained word vectors, enhancing vulnerability 
exploitation prediction accuracy with reduced 
computational demands. The synthesis of these studies 
underscores the pivotal role of hyperparameter 
optimization in fine-tuning predictive models, ultimately 
culminating in more precise and efficient vulnerability 
exploitation forecasts. In summary, this multifaceted 
review underscores the intricate landscape of vulnerability 
prediction research and advocates for the strategic 
refinement of models to yield superior forecasting 
outcomes. 
 

Machine Learning and Hyperparameter Optimization 
The Over the span of decades, researchers have pursued 
timely and accurate exploit prediction while minimizing 
computational costs. Optimizing ML models is key, and a 
review of studies on Light GBM with varied optimization 
strategies underscores this concept. Ju et al. (2019) 
introduced a fusion of CNN and Light GBM for wind power 
prediction, showcasing enhanced accuracy and 
efficiency. Mingzhu et al. (2020) applied Bayesian 
optimization to Light GBM for wind turbine fault detection, 
excelling in diagnosing faults despite imbalanced data 
challenges. Huang (2020) employed Light GBM for fraud 
detection, surpassing traditional models. Taha and 
Malebary (2020) achieved exceptional credit card fraud 
detection using Optimized Light GBM. Abbadi et al. (2020) 
presented a swift anti-malware system using Light GBM, 
while Wang and Wang (2020) enhanced Light GBM's 
prediction accuracy for blood glucose measurement. Fang 
et al. (2020) combined fastText and Light GBM for exploit 
prediction, yielding substantial improvements. 
In sum, literature primarily centers on ML-based 
vulnerability prediction, often overlooking efficient 
optimization. Our research therefore aims to bridge this 
gap by introducing an advanced Light GBM model, 
enriched by Bayesian optimization. This approach 
enhances both predictive accuracy and computational 
efficiency, addressing a vital aspect of the field. 
 
MATERIALS AND METHODS 
We adopted the outlines of prior work (Fang et.al., 2020) to 
propose an improved model for vulnerability exploitability 
prediction based on BO method. However, we focus on 
illustrating the impact of the previously discussed 
challenges on the learning model. Our main target is to 
improve Light GBM model’s predictive performance and 
efficiency using BO in vulnerability exploit prediction. 
 
Data description and preprocessing 
The adopted dataset (Fang et al., 2020) used in this work 
was obtained from (https://github.com/das-
lab/FastEmbed) public repository. The data has been 
aggregated from various intelligence data sources, 
containing all vulnerabilities and exploits published 
between the years 2009 and 2018. Data preprocessing is a 
crucial step in ML, involving transformations before 
feeding data to ML models. This phase eliminates 
unwanted elements like stop words, whitespace, special 
characters, URLs, and addresses missing values and 
irrelevant features. Quality data and feature selection 
significantly impact a model's efficiency and performance 
(Agarwal, 2015). The data was divided in a 70:30 ratio for 
training and testing. A portion of the preprocessed dataset 
is depicted in Figure 1.  
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Figure 1: Preprocessed dataset 

 
Different vulnerabilities and exploits were identified by 
CVE-ID’s and EDB-ID accordingly. Most studies including 
this work mark a vulnerability as exploitable when it has a 
corresponding PoC exploit identified by an EDB-ID. The 
dataset comprised of 60,784 vulnerabilities. In this work 
only the data from NVD was used, comprising of 
numerical, categorical and vulnerabilities text description 
data. 
NVD is an example of an Open-Source Intelligence (OSINT) 
resource concerning security vulnerabilities. This 
database includes several components such as the CVE 
initiative, developed by the MITRE Corporation, which is an 
industry-standard dictionary containing a list of security 
vulnerabilities (National Institute of Standards and 
Technology, n.d.). Each year, the NVD database provides 
vulnerability data feeds consisting of CVE-IDs allocated for 
that year in JSON format. Each entry includes a descriptive 
text summary for the vulnerability, Common Vulnerability 
Scoring System (CVSS) scores, information about affected 
products and vendors, the category of vulnerability based 
on the Common Weakness Enumeration (CWE) system, 
and reference URLs (Flashpoint, 2021). 
The CVE List feeds NVD, which then builds upon the 
information included in CVE Records to provide enhanced 
information for each record, such as fix information, 
severity scores, and impact ratings (National Institute of 
Standards and Technology, n.d.). As part of its enhanced 
information, NVD also provides advanced searching 
features, including filtering by operating system, vendor 
name, product name, version number, vulnerability type, 
severity, related exploit range, and impact (Flashpoint, 
2021). 
Each record includes a descriptive text summary for the 
vulnerability, scores and metrics from CVSS, information 
about affected products and vendors, the category of 
vulnerability based on the CWE system, and URLs to other 
reference sources. The numeric CVSS score vulnerability 
is calculated from the values assigned to the feature's 

Access Vector, Access Complexity, Authentication, 
Confidentiality Impact, Integrity Impact, and Availability 
Impact. Access Vector can take on the values requires” 
local access”, “adjacent network accessible" or “network 
accessible”. Access Complexity can be rated “high”, 
“medium" or” low”. Authentication can take on the values 
requires multiple instances of “authentication”, requires 
single instance of “authentication" or requires no 
“authentication”. Confidentiality Impact, Integrity Impact, 
and Availability Impact can be scored as “none”, “partial” 
or “complete”. These numbers are used to calculate the 
overall, numeric CVSS score. 
Text features contain multiple entries for the same CVE ID, 
(i.e. the Vulnerable Systems List, Reference Types, 
Reference Sources, Reference URLs, CWE Names, and 
CWE Descriptions as well vulnerabilities descriptions) The 
NVD data was merged with data from the Exploit Database 
by CVE-ID. The merged data was divided and preprocessed 
according to its data type. 
 
Features description 
The National Vulnerability Database (NVD) database 
contributes inherent features categorized as numerical, 
categorical, and text description attributes. The CVSS 
version 2 is integrated as a feature set, encompassing the 
CVSS base score, exploitability subscore, and impact 
subscore. The exploitability subscore comprises features 
like Access Vector, Access Complexity, and 
Authentication, determining how vulnerabilities are 
exploited. Impact subscore considers Confidentiality 
Impact, Integrity Impact, and Availability Impact, gauging 
the extent of system impact post-exploitation. The Base 
score integrates these features. Common Platform 
Enumeration (CPE) extracts affected platforms and 
products via standardized CPE URLs, while the CWE 
feature refines flaw categorization in software 
development. The dataset structure in NVD enables 
systematic analysis and comparison of vulnerabilities 
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across multiple software environments. The 
categorization of features aids in precise identification, 
prioritization, and management of vulnerabilities in 
cybersecurity. Additionally, the CVSS and CWE features 
support automation in vulnerability assessment, allowing 
for quicker response and mitigation strategies. This 

structured approach in NVD provides an essential 
resource for vulnerability detection and management in 
various cybersecurity frameworks. 
Table 1 offers a comprehensive summary of data features 
and types (numeric, categorical, or text). 

 
Table 1: Features and categories 

Features  Source Features  Types  Values Category 
National 
Vulnerability 
Database 

CVSS 
 

Access Vector 
Access Complexity 
Authentication 
Confidentiality Impact 
Integrity Impact 
Availability Impact 
Base Score 
Exploitability Score 
Impact Score 

Categorical 
Categorical 
Categorical 
Categorical 
Categorical 
Categorical 
Numerical 
Numerical 
Numerical  

 CPE Application 
Hardware 
OS 
No product 
List  
Scale 

Numerical 
Numerical 
Numerical 
Numerical 
Text 
Categorical  

 CWE CWE-ID Numerical 
  Name Text 
  URL  Text  
 Reference Number Numerical 
  Vulnerability description Text 

 
Modelling and Implementation of Light GBM Algorithm 
Light GBM, an enhanced decision tree framework 
introduced by Microsoft in 2017, offers parallel processing 
and boasts speed, low memory usage, and reduced 
communication costs in parallel learning. It stands out for 
features like gradient-based one-side sampling (GOSS), 
exclusive feature bundling (EFB), histogram-based growth, 
and limited-depth trees to prevent overfitting. Light GBM 
leverages multi-threaded optimization and GPU support 
for faster training and effective management of sizable 
datasets.  
After the data has been preprocessed and clean, we 
separate the labels from the rest of the data by declaring X 
as the variable that contains all previous data except the 
labels and the variable Y which contains the labels 
(Target). By using the newly defined Y variable we 
established the dataset's class balance. The data is first 
split into the train and test sets that receive 70% and 30%, 
respectively. Light GBM is not subjected to validation since 
it is supposed to be implemented without any additional 
optimization, except for its fundamental training using its 
default parameters. We fit the Light GBM classifier with the 
training data and run the prediction on the test data. 
Comparing the test and train scores confirmed there was 

no overfitting of the model. The classifier performance was 
evaluated in terms of AUC, Accuracy, Recall, Precision, F-
1 Score Executional time and Memory used. The benefits 
of Light GBM encompass improved accuracy, distributed 
capabilities, and efficient handling of substantial data 
volumes.GOSS excludes a significant proportion of the 
data-instances with small gradients, and only uses the rest 
to estimate the information gain. 
According to the definition of information gain, those 
instances with larger gradients (i.e., under-trained 
instances) will contribute more to information gain. 
Gradient One-Sided Sampling or GOSS utilizes every 
instance with a larger gradient and does the task of random 
sampling on the various instances with the small 
gradients. The training dataset is given by the notation of O 
for each node of the Decision tree. The variance gain of j or 
the dividing measure at the point d for the node is given in 
Equation 1: 

𝑉�̃�(𝑑) =
1

𝑛
(

(∑ 𝑔𝑖+
1−𝑎

𝑏𝑥𝑖∈𝐴𝐼
∑ 𝑔𝑖𝑥𝑖∈𝐵𝐼

)
2

𝑛𝐼
𝑗

(𝑑)

̃

+
(∑ 𝑔𝑖+

1−𝑎

𝑏𝑥𝑖∈𝐴𝑟 ∑ 𝑔𝑖𝑥𝑖∈𝐵𝑟 )
2

𝑛𝑟
𝑗

(𝑑)
)  

      (1) 
Where: 
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AI = {xi ∈ A: Xij ≤ d}, Ar = {xi ∈ A: Xij > d}, BI =  {xi ∈

B: Xij ≤ d}, Br = {xi ∈ B: Xij > d}, and the coefficient  1−𝑎

𝑏
 

is used to normalize the sum of gradients over B back to the 
size 𝐴𝑐. 
In order to compensate for the data multiplier for data 
instances with small gradients when calculating the 
information gain, GOSS first sorts the data instances 
according to their gradient’s absolute value and selects 
the top instances. By doing so, without modifying the 
original data distribution by much, this method puts more 
focus on the under-trained instances. Chen et al (2017) 
claims that such a treatment can leads to a more accurate 
gain estimation than uniformly random sampling, 
especially when the value of information gain has a large 
range. 
Our contribution leverages Bayesian optimization to find 
acceptable trade-offs between model performance, 
accuracy and resource consumption in terms of time and 
memory. Our framework implements a two-stage 
approach. The first stage explores the high-dimensional 
parameter search space of the target Light GBM Algorithm, 
where the selected parameters range of values is defined. 
The second stage we fit and re-train the model with the 
obtained set of optimal parameters. Next run the 
prediction on the test vulnerability data. We then analyze 
how well the set of ‘best’ model parameters on Light GBM 
achieve classification performance and optimized 
computational resources on the target Algorithm. We 
investigate this in relative terms by comparing the baseline 
and proposed BO_Light GBM model in terms by analyzing 
the obtained results impact on the target models.  
This Phase explains Bayesian Optimization and the 
Principle behind Bayesian Algorithm. It also illustrates the 
stages of building the Proposed Improved BO_Light GBM   
using a flowchart and pseudocode of the Model. 
 
Bayesian Optimization 
The Bayesian is a “black box” optimization technique 
proposed to overcome the problems of other optimization 
methods in terms of computational cost of resources 
(Betrò, 1991; James & Bengio, 2012;Dewancker et al., 
2016). Bayesian optimization fits a probabilistic model to 
capture the relationship between hyperparameter settings 
and their measured performance. The goal of Bayesian 
Optimization is to find an approximate minimum to some 
function that is expensive to evaluate. In this case the 
objective function is the Light GBM algorithm that we are 
trying to optimize, and the function's parameters are the 
hyper parameters of the algorithm. 
The BO technique creates a prior over the objective 
function and combines it with evidence to get the 
posterior. This allows for a utility-based selection for the 
next observation to make on the objective function, which 
must consider both exploration (sampling from areas of 

high uncertainty) and exploitation (sampling areas likely to 
offer improvement over the current best observation 
The model used for approximating the objective function is 
called a surrogate model. The technique uses previous 
observations of the loss function ƒ, to determine the next 
(optima) point for sample from. The three base 
components of Bayesian Optimization are:  
1. The search space to sample from 
2. The objective function 
3. The surrogate and Acquisition functions 
 
Defining the Search space (1) - Bayesian Optimization 
operates along probability distributions for each 
parameter that it will sample from. These distributions or 
domains are set by the researcher specifying each 
parameter range of values. 
Objective Function (2) - This function serves as the main 
evaluator of hyperparameter combinations. It takes in a 
set of hyper parameters and output a score that indicates 
how well a set of hyper parameters performs on the 
validation set. For our classification problem we used 
“accuracy score” as the evaluation metric of choice. So 
clearly the aim is to maximize the objective function. 
Optimizing parameters in the objective function of any 
complex algorithm is time consuming. Therefore, Bayesian 
optimization technique limits calls to the evaluation 
function by choosing the next parameter values using 
previous best results hence, allows the algorithm to spend 
less time in evaluating promising parameter values and 
low-scoring regions of the parameter space. 
 
Surrogate function (3) and Acquisition function (4) - The 
surrogate function is an approximation of the objective 
function that is used to propose parameter sets to the 
objective function, that likely yield an improvement in 
terms of accuracy score. The parameters that are put 
forward for evaluation to the objective function are 
selected by criterion which is defined by the Acquisition 
function. 
 The algorithm starts by initializing the memory and time 
consumption of the based on minimal fitted memory and 
running time of the function efficient parameters. Then 
iterate sequentially to the remaining parameters to return 
optimal parameter values. Based on the Bayesian 
Theorem which uses the Bayesian form the algorithm can 
be explained as: 
Using previously evaluated points x1: n, compute a 
posterior expectation of what the loss function ƒ looks like 
Sample the loss function ƒ at a new point x new, that 
maximize some utility of the expectation of ƒ. The utility 
specifies which regions of the domain of ƒ are optimal to 
sample from. 
These steps are repeated until some convergence criterion 
is met and the optimal parameter values achieved. An 
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optimization problem seeks to minimize a loss function. 
An objective function is either a loss function or its 
negative, in which case it is to be maximized.  

The Pseudo Code of Bayesian Optimization Algorithm is 
shown in Figure 2. 

 
Figure 2: The Bayesian Algorithm ((Shahriari et al., 2016)) 

 
Equation 2 mathematically represents the problem of 
finding a global maximizer (minimizer) of an unknown 
objective function f as: 
x*=argmax f(x)        (2)   
   x ϵ χ 
Fundamentally, BO is a sequential model-based 
approach. In Equation 2 x* is the parameter of interest in a 
bounded space x ϵ χ. It aims at solving the problem defined 
above iteratively, by reusing all information acquired at 
each iteration n, or all the values that were observed for the 
unknown function f(x). This can be done by posing a 
surrogate model of the function f(x), which will then be 
used to determine the next point of ƒ to evaluate x0 
balancing exploration and exploitation criteria to be 
defined.   The key element of Bayesian optimization is to 
exploit all the available information to guide the 
optimization procedure at each iteration. (Feurer & Hutter, 
2019) 
Light GBM Optimization with Bayesian method- Phase One 
Outlining the steps in Algorithm 3.2 
▪ In Step 1 we define the objective function, the 

selected parameters and their domain space. The 

main parameters which affect the performance of the 
Light GBM model were selected based on stated 
objectives.  

▪ Next step is to initialize the Surrogate and Acquisition 
function. 

▪ Step 3 for each iteration find the hyperparameter 
where the Acquisition function is optimized 

▪ Step 4 is where the Objective function score is 
obtained to see how this point actually performs 

▪ Step 5 stores the next chosen parameter to evaluate 
and the true Objective function score in the History of 
other samples 

▪ Step 6 is where a new Model is fit The Surrogate model 
is trained using the latest history of samples 

▪ The looping ends when maximum number of 
iterations has been reached 

▪ Step 7 Evaluate the best optimal parameters set. 
▪ End 

 
Figure 3 displays the steps followed to optimize Light GBM 
algorithm using Bayesian Algorithm. 
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ALGORITHM 1: LIGHT GBM VIA BAYESIAN  OPTIMIZATION  

  

Input: Base Light GBM Model; M0; Selected parameters 𝜽 = {𝜽𝟏, 𝜽𝟐, … … … 𝜽𝒏} 𝒅𝒐𝒎𝒂𝒊𝒏,  the 
corresponding objective function ƒ(𝜽∗); P 

1: Initialize M0; S; P   

2: For n = 1, 2, ………do until T max 

3: Find the optimal hyper-parameter 𝜽∗ by maximizing the objective function ƒ(𝜽∗);   
𝑴𝒏+𝟏: 𝜽∗ = 𝒂𝒓𝒈𝒎𝒂𝒙 𝑴𝒏+𝟏: (𝜽). 

4: Evaluate  the ƒ(𝜽∗) 𝒔𝒄𝒐𝒓𝒆  under the settings  𝜽∗ → the expensive step 

5: Store 𝜽∗and the corresponding objective function ƒ(𝜽∗)score in P 

6: Fit a new model 𝑴𝒃 = 𝑴 ∪ (𝜽∗, ƒ(𝜽∗)  ) 

        End for 

Output: optimal hyper-parameters of Light GBM   

Figure 3: Light GBM Optimization with Bayesian method- Phase One 
 
Variables that are used in this algorithm are listed below: 
θ*: Set of selected parameters and their range 
M0: The Acquisition function 
ƒ(𝜽∗): The true Objective function 

S: The Surrogate function, which is updated whenever a new 
sample is added 
P: The Observation History of (hyperparameter, score) pair 
θ*: Next chosen parameter to evaluate 
In Figure 4, the steps in Phase Two of the proposed 
improved BO-Light GBM Model are captured. 

 
BO Light GBM model for the prediction of vulnerability Exploits-Phase Two 

Algorithm 2: Implementation of improved BO_ Light GBM Model 
Input: Light GBM Model Mb, Vulnerability dataset D = {(𝒙𝟏𝒚𝟏), (𝒙𝟐, 𝒚𝟐), … … … (𝒙𝒏, 𝒚𝒏)} 
1: Defining the Independent (Target) Y and Dependent variables X 
2: Handing missing data and apply data normalization for D; dividing dataset as Dtest and Dtrain 
3: Establish Light GBM model Mb based on Dtrain, 𝜽 from Algorithm 3.2 
4: Fit the model with optimal parameters values 
5: Run the prediction 
6: Evaluate the performance of the proposed model 
Output: Result prediction                 

Figure 4: BO_Light GBM Improved Model Phase Two. 
 
Implementation of the proposed BO_ Light GBM hyper-
parameters optimization can be detailed as: Ɵ = {Ɵ₁, 
Ɵ₂……Ɵn} represents the selected hyperparameters and 
their Domain space in the machine learning algorithm A 
(such as Light GBM), D(train) data set is used for training, 
and D(valid) data set is used for validation (i.e., parameter 
optimization), and the two are independently distributed. L 
(A, Ɵ, D(valid), D(train) is used to represent the validation 
loss of Light GBM algorithm. Stratified K-fold validation is 
applied to address the optimization requirement. The 
interval range for parameters are set in our Light GBM 
algorithm. In the process of parameter optimization, the 

model is continuously trained, and the classification result 
obtained as each parameter combination is evaluated by 
the evaluation function. The best generated parameter 
values are obtained and printed out. The model is fit with 
the generated optimal parameters and the classification 
has taken place. 
 
The Light GBM - Grid Search Model and Proposed 
BO_LIGHT GBM Model 
We rebuilt Light GBM and Grid Search as our baseline 
model to obtain its performance result as the comparative 
base for the performance of our proposed model. For the 
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optimization of the two models, we used the benchmark 
data set and the selected parameters depicted in Table 3.3 
The combined dataset contains 27,368 samples, and we 
use 80% (or 11,475 samples) for training and validation 
(split according to a 67/33 ratio) in order find the best 
model and hyperparameters. The remaining 20% was used 
for testing. The dataset was split with stratified sampling 
such that the training, validation and test sets have 
approximately the same percentage of samples of each 
target class (i.e., normal and anomalous) as the original 
complete dataset. 
All parameters of the methods were optimized to achieve 
the best performance. For each task, we ran all possible 
combinations of the domain using the two optimization 
methods. 
 Stratified 10-fold validation was used throughout the 
models training and testing to avoid overfitting the model. 
The training dataset was randomly divided into 10 equal 
size subsets while ensuring that the proportion of all kinds 
of samples in the training and test set are the same as that 
in the original data set. The K-1 subsets were retained as 
training data, and the remaining one subset was used as 
the validation data for testing the model This approach 
removes the possibility of the proposed model being over-
fitted to the training set and the training mark being 
inserted indirectly into the training set, which can occur 
when k-fold cross validation is performed explicitly on the 
entire data set. 
 
Basic Performance Metrics 
Model evaluation metrics are required to quantify model 
performance and the most commonly used in 
Classification problems are stated below. 
Accuracy of exploit prediction is the correct classification 
of True Positive (TP) and True Negative (TN), where TP is the 
number of exploited vulnerabilities that are correctly 
identified, FN is the number of exploited vulnerabilities 
that are mistakenly classified as vulnerabilities that will 
not be exploited 
Accuracy = TP+TN

TP+FP+TN+FN
    (3)  

Accuracy is the standard metric used to evaluate a 
classification ML model, but in case of imbalance data 
may not give the right interpretation of the quality of the 
model. 
Precision: It is known as correctness; that measures the 
efficiency of prediction. Further can be defined as the 
proportion of number of vulnerabilities correctly predicted 
and likely to be exploited to the total number of 
vulnerabilities predicted as likely to be exploited 

Precision = TP

TP+FP
          (4)  

Recall also known as Sensitivity or True Positivity Rate 
TPR: Recall can be defined as the ratio of number of 
vulnerabilities correctly predicted as likely to be exploited 
to the actual number of vulnerabilities been exploitable. 
Recall represents the exploit prediction rate which allow 
us to quantify the effectiveness of prediction. It is given as:  
Recall = TP

TP+FN
      (5)  

F-measure: F1-score is the harmonic mean of Precision 
and Recall and represents the result of a trade-off between 
Precision and Recall. 
F1 = 2

Precsion∗Recall

Precision+Recal𝑙
    (6)  

The Area Under Curve (AUC) is defined as the area 
enclosed by the coordinate axis under the ROC curve. It 
represents the ability of the classifier to correctly 
distinguish between the correctly predicted positive and 
negative classes, thus, evaluate the efficient performance 
of the model. Classifiers with larger AUC have better 
performance. 
Confusion Matrix: A confusion matrix, is a tool to visualize 
the classification performance ofmachine learning 
models, by presenting the four base classification 
statistics in a tabular fashion. It provides an insight how 
correctly the model has classified the two classes. The 
matrix compares the actual Target values with those 
predicted by the ML model. It gives a holistic view of how 
well the model performs and what kind of errors is making. 
The components of the confusion matrix are: 
TP- true positive number of labeled positives (labeled 
exploit) that are correctly classified as positive (predicted 
exploited). 
FP- false positive, number of labeled negatives (labeled 
non- exploited) that are incorrectly classified as positive 
(predicted exploited) 
FN- false negative, number of labeled positives (labeled 
exploited) that areincorrectly classified as negative 
(predicted non-exploited). 
TN- true negative, number of labeled negatives (labeled 
non-exploited) that are correctly classified as negative 
(predicted non-exploited.  
In Figure 5, we present the research flowchart, which 
comprises four key stages: problem identification (Stage 
1), data description and preprocessing (Stage 2), algorithm 
implementation (Stage 3), and evaluation (Stage 4). This 
framework guides the structure and progression of our 
study. 
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Figure 5: Research Flowchart 

 
RESULTS AND DISCUSSION 
Basic Prediction 
The first experiment was mainly done to examine the 
impact of Light GBM classifier without applying hyper 
parameter optimization technique in predicting 
Vulnerability exploits. It was, therefore conducted using 
the model default parameters. Equations (3), (4), (5) and 
(6) gives the mathematical representations of the metrics 
used for the performance evaluation of the Light GBM 
model.  
The Light GBM classifier with no hyper parameter 
optimization, has achieved accuracy of 64.6%, AUC of 
70%, Precision 58.5%, Recall 72%, F1 score is 64.5%. It 
has a significant start in terms of the overall accuracy 
resulting in 64.6% and performed reasonably in predicting 
vulnerabilities that do not have exploits with an AUC of 
70%. But the result delivered for true positive cases does 
not seem promising. Therefore, there is a need to further 
improve the model. Another evaluation metric for the 
model efficiency is time and memory efficiency, where the 
algorithm has also performed well. 
 
Light GBM-Grid Search Model Result Evaluation 
The second experiment is the baseline technique that used 
the Grid Search method to optimize the selected Light 
GBM parameters. As mentioned in section 3, the baseline 
model was rebuilt to use it as a base for comparison with 
the proposed model. The benchmark dataset and the 
selected parameters were used for building and optimizing 
the mode. Thus, all parameters of the methods are 

optimized to achieve the best performance. Light GBM-
Grid Search model is evaluated using the performance 
metrics given in equations (3), (4), (5) and (6). TheLight 
GBM-Grid Search model have achieved accuracy rate 
close to Light GBM Algorithm. On the other hand, its AUC 
is below that of the Light GBM. In terms of Precision, Recall 
and F1 Measure outcome results are 58%, 72%, and 64% 
respectively. The unsatisfactory time and memory 
performance can be attributed to Grid Search’s brute force 
nature, which exhibits exponential time complexity. 
Consequently, this approach becomes computationally 
intensive, especially with larger datasets and complex 
models. Such results indicate that Grid Search may not be 
the most efficient method for hyper-parameter 
optimization in scenarios requiring scalability. 
 
Evaluation of the Proposed BO_LIGHT GBM Model 
The result of the third experiment shows the performance 
of the proposed model based on the evaluation matrix 
considered for this work. As earlier stated, the dataset, 
parameters and other settings for the proposed model 
were adopted from the base work of this research. To 
validate the strength of the proposed BO-LIGHT GBM 
model, the experimental analysis is performed using 
tenfold stratified cross-validation. Table 2 illustrates the 
performance behavior of the proposed model based on the 
selected evaluation metrics given in equations 3, 4, 5 and 
6. Furthermore, Figure 6 presents the confusion matrix of 
the proposed model, where TP= 4085; TN= 5497; FP= 1653; 
and FN=240.  
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Table 2: Performance Summary of Proposed BO_LIGHT GBM model 
Evaluation metrics BO_LIGHT GBM performance   
AUC 83% 
Accuracy 81% 
Precision 72% 
Recall 94% 
F-1 Measure 81% 

  

 
Figure 6:  Confusion matrix of proposed BO_LIGHT GBM 
Model 

 
Figure 7:  AUC-ROC of proposed BO_LIGHT GBM Model 

 
Discussion  
The efficiency of the BO-LIGHT GBM prediction model is 
one of the most important evaluation indicators of its 
performance, efficient models are always more preferred. 
The average time-consuming of Light GBM, Light GBM and 
Grid Search and BO-LIGHT GBM models at training and 
testing phases are compared, respectively. The trend of 
the results shown obviously indicates that BO-LIGHT GBM 
is time-cost efficient, followed by Light GBM and both 
significantly more proficient than Light GBM - Grid Search. 
That can be justified due to their special algorithm design 
mechanisms of Light GBM explained in section One and 
Three. When fitting the best model from the training set, 
Light GBM is a bit more time consuming due to the slightly 
higher complexity of the constructed model, but they are 
not that far apart. Therefore, it can be concluded that BO-
LIGHT GBM and Light GBM are significantly more efficient 
than Light GBM - Grid Search. The confusion matrix is the 
visual representation of the model to identify positive and 
negative classes. Therefore, Light GBM classifier achieved 
AUC of 70%, Light GBM-Grid Search achieved AUC of 69% 
and the proposed model of this work achieved AUC of 83%. 
Clearly our proposed work has shown significant 

improvement of the model ability to predict correctly. 
To measure the performance of the model, Light GBM 
classifier achieved accuracy of 64.6%, Light GBM-Grid 
Search of 65%, and the proposed model’s accuracy is 
81%. Precision, Recall and F1 Measure (respectively 72%, 
94%, and 81%) scores of BO_LIGHT GBM are distinctly 
higher than the other two models, which evidently proves 
the efficacy of the proposed model.  The finding of the 
results has shown major improvement in performance of 
the proposed BO_LIGHT GBM model when compared with 
the other two models in Table 3. 
The efficiency of any algorithm is measured using the 
computational resource cost that is, memory and time. 
Table 4 depicts the proposed model execution time, that is 
0.32, 36.29 and 0.23 minutes respectively, while the 
memory consumption of each model is 44.1 (MiB) for Light 
GBM, 58 (MiB) for Light GBM - Grid Search  model and 32 
(MiB) for the proposed work of this study. The significant 
difference in the results in terms of execution time 
between Light GBM, Light GBM - Grid Search, and the 
proposed BO-LIGHT GBM model, is apparently due to their 
different time complexities as explained. 
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Table 3: Comparison of the three models based on evaluation metrics selected 
Evaluation metrics Light GBM Model  Light GBM- Grid Search 

Model 
BO_LIGHT GBM Model 

AUC 70% 69% 83% 
Accuracy 64.6% 65% 81% 
Precision 58.5 % 58% 72% 
Recall 72% 72% 94% 
F-1 Measure 64.5% 64% 81% 

 
Table 4: Efficiency performance of the three models 

Metrics Light GBM Light GBM –Grid Search BO-Light GBM 
Time (in minutes) 0.32 36.29 0.23 
Memory (in MiB) 44.1 58 32 

 
The result demonstrates that the runtime of both hyper-
parameter tuning approaches grows gradually as the 
dimensions’ increases, and Bayesian based method 
requires less time to obtain the optimal hyper-parameter 
values. Hence, it can be seen that the proposed model 
performed better in terms of model efficiency. Thus, we 

can conclude that the proposed BO_LIGHT GBM Model 
performs better than the Light GBM -Grid Search model, by 
achieving higher accuracy, AUC score and lesser 
computational time and memory. Figure 8 compares the 
results of the 3 models while figure 9 depicts the AUC-ROC 
of the 3 models.  

 

 
Figure 8:  Models results comparison 
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Figure 9: ROC -AUC graph Comparison of the models 

 
In comparison with existing studies, our proposed BO-
Light GBM model demonstrated superior predictive 
accuracy, efficiency, and resource optimization. For 
example, Wang et al. (2022) achieved an AUC of 75% and 
an accuracy of 70% using a Light GBM model with Random 
Search optimization, but required 15 minutes of execution 
time and 45 MiB of memory. Similarly, Khan et al. (2021) 
and Singh et al. (2023) implemented Light GBM with 
Bayesian and Grid Search optimizations, respectively, but 

fell short with lower AUCs (78% and 74%) and higher 
resource demands (execution times of 20 and 40 minutes 
and memory usage of 50 and 60 MiB, respectively). In 
contrast, our BO-Light GBM model achieved an AUC of 
83% and an accuracy of 81% within just 0.23 minutes and 
32 MiB, underscoring its suitability for resource-
constrained environments. The comparison of our BO-
Light GBM model with existing literature is summarized in 
Table 5. 

 
Table 5: Comparison of BO-Light GBM Model with Existing Vulnerability Prediction Models 

Model Accuracy Precision Recall F-Measure AUC Execution Time 
(Minutes) 

Memory (MiB) 

Khan et al. (2021) 73 68 85 74 78 20 50 
Wang et al. (2022) 70 65 80 71 75 15 45 
Singh et al. (2023) 69 62 79 69 74 40 60 
proposed BO-
LightGBM 

81 72 94 81 83 0.23 32 

 
CONCLUSION 
In this work, we introduced an enhanced model to predict 
vulnerability exploitation, crucial for patch prioritization, 
through a series of experiments. Our proposed BO-LIGHT 
GBM model outperformed existing methods, leveraging 
Bayesian optimization for improved accuracy and 
efficiency. Comparing models, the unoptimized LGBM 
achieved 64.6% accuracy, while the baseline Light GBM-
Grid Search reached 65%. In contrast, our BO-Light GBM 
achieved an accuracy of 81%, demonstrating superior 
efficiency with minimal resource utilization. This 
advancement holds potential for IT organizations, vendors, 
and resource-constrained entities in vulnerability 
prediction. Our findings shows that our improved BO_LIGHT 
GBM model holds promise for IT organizations and vendors, 

particularly in the realms of threat management and patch 
prioritization. Its potential impact includes enhanced 
computational efficiency, accuracy, and effectiveness in 
predicting vulnerabilities with exploits, as well as facilitating 
timely patch releases and mitigation strategies. However, 
since our study relied on a single dataset from a sole data 
source, future research could greatly benefit from exploring 
diverse data sources, including bug bounty programs and 
"grey" or "black" market disclosures, even delving into the 
deep or dark web and also extending the feature set by 
extracting additional vulnerability-related attributes from 
various data sources or vendors, given that our current 
features were predominantly sourced from NVD data. 
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