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A B S T R A C T  
The epidemiological features of malaria infection are taken into 
consideration in this paper as a fractional-order mathematical 
model in Caputo derivative. The activities that the model uses to 
manage the disease are treatment and vaccination to study the 
effects of the controls on the disease dynamics. The theory of 
Lyapunov functions determines and verifies the existence and 
uniqueness of solutions within the frame of the fractional order and 
the stability of the endemic equilibrium point. The model is 
numerically obtained with the help of the fractional Adams-
Bashforth-Moulton algorithm that will indicate the alteration of the 
model parameters, and the fractional orders of the model 
parameters to the impact of each of the mentioned parameters on 
the course of the disease. It has been established through the 
application of simulation that the more the disease is treated and 
vaccinated the less the prevalence of malaria and that the fractional-
order models have high level of flexibility and realism than the 
classical integer order equations. The paper identifies the 
importance of fractional modeling in the description of the 
interactions between the effects of memory and nonlocal interaction 
between the biological systems and this enhances the 
understanding and control of infectious diseases. The model does 
however assume that the population is homogeneous mixed and 
hypothetical values of the parameters thus preventing the empirical 
validation. To make the model more predictive and practical to use 
in the formulation of effective control schemes against malaria, then 
the future research must be capable of addressing the spatial 
heterogeneity, stochasticity. 

 
INTRODUCTION 
The bite of infected females Anopheles mosquitoes is the 
way the Plasmodium parasite enters the body of a man and 
leads to malaria. Since hundreds of thousands of years 
this protozoan parasite has been causing malaria 
epidemics and it is one of the key world health problems 

(Global Malaria Prevention and Treatment Foundation, 
2013). In spite of tremendous advances in control and 
treatment, malaria continues to cause a huge public 
health burden especially in tropical and subtropical areas 
of Africa, Asia, and South America (World Health 
Organization [WHO], 2011). The disease is endemic in 
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more than 100 countries and it poses a threat to the lives 
of more than one-third of the world population (WHO, 
2011). About 216 million cases of malaria were reported to 
have occurred in the world in 2010, with an estimated 
655,000 deaths (WHO, 2011, 2012). This is particularly true 
of children below five years old and the percentage of 
malaria mortality attributed to them is a significant 
percentage (Chiyaka et al., 2006). Despite the production 
and continuous improvement of malaria vaccines, the 
overall prevention strategies are still necessary. Such are 
the vectority control activities, the use of insecticide 
impregnated nets, interior residual spraying and effective 
antimalarial drugs treatments (Esteva et al., 2009; Fillinger 
et al., 2009; Rhee et al., 2005; Roberts et al., 1997; WHO, 
2011; Zi et al., 2012). 
Mathematical modeling is important in deciphering the 
dynamics of malaria transmission and guiding 
interventions by the population health. By using the 
mathematical framework, scientists have the opportunity 
to study the processes that cause disease transmission 
and assess the efficacy of different control tools. 
Nonetheless, the traditional integer-order models 
frequently do not provide biological memory effects and 
long-term dependencies of epidemiological systems. To 
overcome such limitations, fractional-order models use 
non-local operators to consider the memory and 
hereditary characteristics of the disease transmission 
processes (Diethelm, 2022). 
FD equations Fractional different equations (FDEs) are a 
generalization of the classical methods of modeling to 
allow a more general and detailed approach to analysis. 
This research paper develops a fractional-order model that 
helps study the dynamics of malaria transmission taking 
into consideration prevention and treatment controls. The 
model is more realistic in the effects of memory by 
incorporating the effects of memory via the use of the 
fractional calculus; this enables the model to provide a 
realistic understanding of the infection progression and 
the effects of interventions. The control measures are 
considered in order to identify effective interventions in 
reducing the prevalence of malaria. 
In biological modeling, the reason why fractional 
derivatives are particularly useful is due to the fact that 
they are able to reproduce memory and hereditary 
properties, which contribute to the progression of 
diseases. In contrast to classical derivatives, fractional 
derivatives enable the current situation of the system to be 
based on its historical behavior. This attribute allows 
analyzing more precisely the role of past infections, history 
of treatment and the level of immunity in the perpetuation 
of infection. Fractional models can therefore help shed 
light on chronic issues like drug resistance, re-infection 
and limitations on health care. 
The current advances in fractional calculus have proven 
that it is useful in the modeling of complex dynamic 

systems (Atokolo et al., 2022). Although classical integer-
order models mainly model the behavior of the local 
system, of the global system, the fractional-order models 
can include the dynamics of the global system as the 
memory-dependent processes. This feature is what helps 
fractional models to be more appropriate when it comes to 
representing real-world epidemiological trends. 
Fractional derivatives that are commonly used in biology 
are Caputo and RiemannLiouville derivatives, which are 
singular in nature (Milici et al., 2018). More recently, non-
singular, e.g. the MittagLeffler and AtanganaBaleanu, 
derivatives have become more popular because of their 
better mathematical features and use in modeling actual 
systems. 
It has been demonstrated that many studies have been 
able to use the fractional modeling techniques in the 
dynamics of infectious diseases. Atokolo et al. (2022) 
established a model of the fractional-order sterile insect 
technology that is controlled by Laplace-Adomian 
Decomposition Method (LADM) to reduce Zika virus 
outbreaks. In a similar manner, Atokolo et al. (2024) 
explored the dynamics of transmissions of the Lassa fever 
through a fractional framework to assess the effect of 
vaccination and treatment measures. Yunus et al. (2023) 
used a fractional derivatives approach to forecasting 
Lassa fever dynamics and Omede et al. (2024) developed 
a Caputo-based fractional compartmental model of soil-
transmitted helminth infections and showed that LADM 
was more flexible in modeling the dynamics of solutions. 
Amos et al. (2024) developed the fractional model of 
hepatitis C transmission and used the 
AdamsBashfordMoulton numerical scheme to 
demonstrate that the contact rates and improvement of 
treatment had a massive impact on the reduction of 
disease transmission. The fractional approaches to 
HIV/AIDS and diphtheria, used by Philip et al. (2024) and 
Abah et al. (2024) respectively, point at the flexibility and 
strength of the fractional systems in relation to classical 
models. A model of fractional Chlamydia transmission 
developed by Joseph et al. (2025) based on the generalized 
AdamsBashforthMoulton method showed that improving 
treatment and vaccine coverage was an effective way to 
lower the prevalence of infections. Ahmed et al. (2021) 
developed an ABC fractional-order model to investigate 
the dynamics of HIV and COVID-19 co-infection, whereas 
Smith et al. (2023) performed a systematic review of 
hepatitis C and COVID-19 co-infection modeling strategies 
to identify the methodological issues and gaps in the 
literature. Das et al. (2024) also investigated the dynamics 
of hepatitis C and co-infection with COVID-19 in low- and 
middle-income states, with a particular focus on practical 
and structural issues in the process of disease modelling. 
Besides this, Ullah et al. (2020) proposed a hybrid Laplace 
transform and Adomian Decomposition Method to solve 
the fuzzy Volterra integral equations, which is an 
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improvement in the analytical methods of fractional 
systems. Ali et al. (2017) studied the solutions and stability 
of the fractional problems of the boundary value, 
particularly the Ulam stability and enhancing the theory of 
the fractional differential equations. 
In general, the concept of fractional-order modeling is an 
effective and versatile tool in the analysis of the dynamics 
of infectious diseases. Fractional differential equations 
can capture memory effects and non-local interactions, 
which are of interest in the study of epidemiology and 
control policies; hence, it is specifically effective when 
analyzing the transmission of malaria and its control 
measures. 
This paper aims to prepare conditions to the presence and 
uniqueness of solutions in a Malaria model of the 
fractional-order; Stability analysis of the endemic 
equilibrium with the method of Lyapunov function; Solve 
the model numerically using the fractional Adams -Bash 
ford Moulton method; Simulate to find the dynamics of the 
model. Since the comprehensive literature review 
demonstrates that the past researchers did not combine 
the use of fractional calculus and Adams-Bashforth-
Moulton method to model Malaria disease and control it.  
 
Preliminary 
Here, we introduce the fundamental concepts and initial 
findings of fractional calculus. Our analysis incorporates 
both the right and left Caputo fractional derivatives, 
building on the models established by Milici et al. (2018) 
and Bonyah et al. (2020). We also explore the practical 
applications of this mathematics, demonstrating its use in 
solving real-world problems across diverse fields like 
physics, engineering, and bio-mathematics. 
 
Definition 1 
Let 𝑓 ∈ Λ∞(𝑅) then the left and right Caputo fractional 
derivative of the function  is given by  

𝐶𝐷𝑡
𝜌
𝑓(𝑡) = (𝑡0𝐷𝑡

−(𝑛−𝜌)
(
𝑑

𝑑𝑡
)
𝑛

𝑓(𝑡))  

𝐶𝐷𝑡
𝜌
𝑓(𝑡) =

1

Γ(𝑛−𝜌)
∫ ((𝑡 − 𝜆)𝑛−𝜌−1𝑓𝑛(𝜆))
𝑡

0
𝑑𝜆,   (1) 

The same way  

𝐶𝐷𝑡
𝜌
𝑓(𝑡) = (𝐷𝑇

−(𝑛−𝜌)
(
−𝑑

𝑑𝑡
)
𝑛

) 𝑓(𝑡)  

𝐷𝐶 𝑇
𝜌
𝑓(𝑡) =

(−1)𝑛

Γ(𝑛−𝑣)
∫ (𝜆 − 𝑡)
𝑇

𝑡

𝑛−𝜌−1
𝑓𝑛(𝜆)𝑑𝜆  

 
Definition 2  
The generalized Mittag-Leffler function 𝐸𝜌,𝛽(𝑥) for 𝑥 ∈ 𝑅 is 
given by   

𝐸𝜌,𝛽(𝑥) = ∑
𝑥𝑛

Γ(𝜌𝑛+𝜓)

∞
𝑛=0 ., 𝛾, 𝜓 > 0     (2) 

which can also be represented as  
𝐸𝜌,𝜓(𝑥) = 𝑥𝐸𝜌,𝜌+𝜓(𝑥) +

1

Γ(𝜓)
   (3) 

𝐸𝜌,𝜓(𝑥) = 𝐿[𝑡
𝜓−1𝐸𝜌,𝜓(±𝜔𝑡𝜌)] =

𝑆𝜌−𝜓

𝑆𝑣±𝜔
..   (4) 

 
Proposition 1 
Let  𝑓 ∈ Λ∞(𝑅) ∩ 𝐶(𝑅)and 𝜌 ∈ 𝑅, 𝑛 − 1 < 𝜌 < 𝑛, 
therefore, the conditions given below holds: 
1. 𝑡0

𝐶 𝐷𝑡
𝜌
𝐼𝜌𝑓(𝑡) = 𝑓(𝑡)

.
 

2. 𝑡0
𝐶 𝐷𝑡

𝜌
𝐼𝜌𝑓(𝑡) = 𝑓(𝑡) − ∑

𝑡𝑘

𝐾!

𝑛−𝑘
𝑘−0 𝑓𝑘(𝑡0) 

 
Model Formulation 
In modeling the dynamics, the population is divided into 
eight groups: Susceptible human population(𝑆ℎ), Exposed 
human population(𝐸ℎ), Vaccinated human 
population(𝑉ℎ),Infected human population(𝐼ℎ), humans 
on malaria treatment (𝑇ℎ), Recovered human population 
(𝑅ℎ), Susceptible vector population(𝑆ℎ), Infected vector 
population(𝐼𝑉). The susceptible humans are recruited at 
the rate of Λℎ, while the susceptible vector are recruited at 
the rate of Λ𝑉, Contact rate between the susceptible 
humans and infected vector population with malaria, 
Contact rate between the susceptible vectors and infected 
human population with malaria are 𝛽ℎ𝑎𝑛𝑑𝛽𝑉  respectively. 
Natural death rate of human population and vector 
population are 𝜇ℎand𝜇𝑉respectively. Death induced rate 
due to an attempt by vectors to bite humans 𝛿3, Disease 
induced death rate of malaria infected humans, Disease 
induced death rate of humans on malaria treatment are 
𝛿1𝑎𝑛𝑑𝛿2respectively. Mosquitoes biting rate 𝑏, 
Vaccination rate of susceptible human population against 
malaria 𝜏1, Waning rate vaccine 𝜏2, Progression rate from 
Exposed human population to malaria infected human 
population 𝜙, Treatment rate of malaria infected human 
population 𝜃, Recovery rate due to treatment of malaria 
𝜂,natural recovery rate of infected human population 𝛼. 
 
Model Assumptions 

1. We assume an imperfect vaccine in the human 
population 

2. We assume exogenous re-infection in human 
population 

3. We assume natural death in the population 
4. We assume disease induced death in the 

population 
5. We assume natural recovery in the human 

population due to strong body immunity. 

 
 
 
 

f
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Malaria Model Flow Chart 

 
Figure 1: Malaria model flow Diagram 

 
Figure 1 denotes shows the transmission dynamics of 
malaria incorporating treatment and vaccination as 
control measures. 
 
Malaria Model Equations 
𝑑𝑆ℎ

𝑑𝑡
= Λℎ + 𝜏2𝑉ℎ + 𝜔𝑅ℎ − 𝜆ℎ𝑆ℎ − (𝜏1 + 𝜇ℎ)𝑆ℎ,  

𝑑𝐸ℎ

𝑑𝑡
= 𝜆ℎ𝑆ℎ − (𝜙 + 𝜇ℎ)𝐸ℎ,  

𝑑𝑉ℎ

𝑑𝑡
= 𝜏1𝑆ℎ − (𝜏2 + 𝜇ℎ)𝑉ℎ,  

𝑑𝐼ℎ

𝑑𝑡
= 𝜙𝐸ℎ − (𝜃 + 𝛼 + 𝛿1 + 𝜇ℎ)𝐼ℎ,   (5) 

𝑑𝑇ℎ

𝑑𝑡
= 𝜃𝐼ℎ − (𝜂 + 𝛿2 + 𝜇ℎ)𝑇ℎ,  

𝑑𝑅ℎ

𝑑𝑡
= 𝛼𝐼ℎ + 𝜂𝑇ℎ − (𝜔 + 𝜇ℎ)𝑅ℎ,  

𝑑𝑆𝑉

𝑑𝑡
= Λ𝑉 − 𝜆𝑉𝑆𝑉 − 𝜇𝑉𝑆𝑉,  

𝑑𝐼𝑉

𝑑𝑡
= 𝜆𝑉𝑆𝑉 − (𝛿3 + 𝜇𝑉)𝐼𝑉 .  

Where  
𝜆ℎ =

𝑏𝛽ℎ𝐼𝑉𝑆ℎ

𝑁ℎ
 𝜆𝑉 =

𝛽𝑉𝐼ℎ𝑆𝑉

𝑁ℎ
. 

Table 1 presents a comprehensive description of the 
model variables and parameters employed in this study. 

 
Table 1: Model Variables and Parameters Description 

Variables Descriptions 
𝑆ℎ  Susceptible human population to malaria 
𝐸ℎ  Exposed human population to malaria 
𝑉ℎ Vaccinated human population against malaria 
𝐼ℎ  Infected human population with malaria 
𝑇ℎ  Human population on malaria treatment 
𝑅ℎ  Recovered human population from malaria 
𝑆𝑉  Susceptible vector population to malaria 
𝐼𝑉  Infected vector population with malaria 
Parameters Descriptions 
Λℎ Recruitment rate of human population 
Λ𝑉  Recruitment rate of vector population 
𝜏1 Vaccination rate of human population 
𝛽ℎ Contact rate between susceptible humans and infected vector population 
𝛽𝑉  Contact rate between susceptible vectors and infected human population 
𝜏2 Waning rate of vaccine in the human population 
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 𝜇ℎ  Natural death rate of human population 
𝜇𝑉  Natural death rate of vector population 
𝜙 Progression rate from Exposed human population to infected human population 
𝜃 Treatment rate of infected human population 
𝜂 Recovery due to treatment rate of human population 
𝛼 Natural recovery rate of human population due to strong body immunity 
𝜔 Rate at which recovered humans become susceptible again 
𝛿1 Disease induced death rate of infected humans with malaria 
𝛿2 Disease induced death rate of humans on  malaria treatment 
𝛿3 Death induced due to an attempt of vectors to bite humans 

 
Model Analysis 
Fractional Malaria Mathematical Model 
In this section, we provide the enhancement of the integer 
model of Malaria represented in Equation (5) with the 
Caputo fractional derivative operator. The revised model 
that uses the Caputo fractional derivative operator is more 
flexible than the classical model in Equation (5) because 
the response of the fractional model can be manipulated 
in order to obtain different responses. The fractional 
Malaria model is, therefore, presented with the following 
introduction: 
𝐷𝐶 𝑡
𝜌
𝑆ℎ = Λℎ + 𝜏2𝑉ℎ + 𝜔𝑅ℎ − 𝜆ℎ𝑆ℎ − 𝐾1𝑆ℎ,  

𝐷𝐶 𝑡
𝜌
𝐸ℎ = 𝜆ℎ𝑆ℎ − 𝐾2𝐸ℎ,  

𝐷𝐶 𝑡
𝜌
𝑉ℎ = 𝜏1𝑆ℎ − 𝐾3𝑉ℎ,  

𝐷𝐶 𝑡
𝜌
𝐼ℎ = 𝜙𝐸ℎ − 𝐾4𝐼ℎ,  

𝐷𝐶 𝑡
𝜌
𝑇ℎ = 𝜃𝐼ℎ − 𝐾5𝑇ℎ,  

𝐷𝐶 𝑡
𝜌
𝑅ℎ = 𝛼𝐼ℎ + 𝜂𝑇ℎ − 𝐾6𝑅ℎ, 

 𝐷𝐶 𝑡
𝜌
𝑆𝑉 = Λ𝑉 − 𝜆𝑉𝑆𝑉 − 𝐾7𝑆𝑉,  

𝐷𝐶 𝑡
𝜌
𝐼𝑉 = 𝜆𝑉𝑆𝑉 − 𝐾8𝐼𝑉 . 

 Where 
𝐾1 = (𝜏1 + 𝜇ℎ), 𝐾2 = (𝜙 + 𝜇ℎ), 𝐾3 = (𝜏2 + 𝜇ℎ), 𝐾4 = (𝜃 +
𝛼 + 𝛿1 + 𝜇ℎ), 𝐾5 = (𝜂 + 𝛿2 + 𝜇ℎ),  
𝐾6 = (𝜔 + 𝜇ℎ), 𝐾7 =𝜇𝑉 , 𝐾8 = (𝛿3 + 𝜇𝑉). 

 Subject to positive initial conditions  
𝑆ℎ(0) = 𝑆ℎ0, 𝐸ℎ(0) = 𝐸ℎ0, 𝑉ℎ(0) = 𝑉ℎ0, 𝐼ℎ(0) = 𝐼ℎ0 , 𝑇ℎ(0) =
𝑇ℎ0, 𝑅ℎ(0) = 𝑅ℎ0, 𝑉ℎ(0) = 𝑆𝑉ℎ0, 𝐼ℎ(0) = 𝐼ℎ0 (7) 
 
Positivity of Model Equation 
We considered the non-negativity of the initial values 
𝑁ℎ(𝑡) ≤

Λℎ
𝜇ℎ

 as 𝑡 → ∞  

Secondly, 𝑖𝑓 𝑙𝑖𝑚𝑠𝑢𝑝𝑁ℎ0 (𝑡) ≤
Λℎ
𝜇ℎ
,  then our model 

feasible domain is given by:  

Ωℎ = {(𝑆ℎ, 𝐸ℎ , 𝑉ℎ, 𝐼ℎ𝑇ℎ , 𝑅ℎ ) ⊂ 𝑅+
6 : (𝑆ℎ + 𝐸ℎ +𝑉ℎ + 𝐼ℎ +

𝑇ℎ + 𝑅ℎ ) ≤
Λℎ
𝜇ℎ
}, 

and  Ω𝑉 = {(𝑆𝑉 , 𝐼𝑉) ⊂ 𝑅+2 : (𝑆𝑉 , 𝐼𝑉) ≤
Λ𝑉
𝜇𝑉
}so that, 

Ω = Ωℎ × Ω𝑉 ⊂ 𝑅+8 ,               hence  Ω is positively invariant. 
If (𝑆ℎ0, 𝐸ℎ0, 𝑉ℎ0, 𝐼ℎ0, 𝑇ℎ0, 𝑅ℎ0, 𝑆𝑉0, 𝐼𝑉0)are non-negative, then 
the solution of model (6) will be non-negative for 𝑡> 0. From 
Eq. (6), selecting the first equation, we obtained; 

𝐷𝐶 𝑡
𝜌
𝑆ℎ = Λℎ + 𝜏2𝑉ℎ + 𝜔𝑅ℎ − 𝜆ℎ𝑆ℎ − 𝐾1𝑆ℎ, 

 𝐷𝐶 𝑡
𝜌
𝑆ℎ + (𝜆ℎ𝑆ℎ + 𝐾1𝑆ℎ,) = Λℎ + 𝜏2𝑉ℎ + 𝜔𝑅ℎ 

 But Λℎ + 𝜏2𝑉ℎ + 𝜔𝑅ℎ ≥ 0then 
𝐷𝐶 𝑡
𝜌
𝑆ℎ + (𝜆ℎ𝑆ℎ + 𝐾1𝑆ℎ,) ≥ 0.. 

Applying the Laplace transform we obtained; 
𝐿[ 𝐷𝐶 𝑡

𝜌
𝑆ℎ] + 𝐿[(𝜆ℎ𝑆ℎ + 𝐾1𝑆ℎ,)] ≥ 0.  

𝑆ℎ
𝜌
𝑆ℎ(𝑠ℎ) − 𝑆ℎ

𝜌−1
𝑆ℎ(0) + (𝜆ℎ + 𝑃1)𝑆ℎ(𝑠) ≥ 0,  

𝑆ℎ(𝑠) ≥
𝑆ℎ
𝜌−1

𝑆ℎ
𝜌
+(𝜆ℎ+𝐾1)

𝑆ℎ(0)    (8) 

By taking the inverse Laplace transform, we obtained: 
𝑆ℎ(𝑡) ≥ 𝐸𝑡𝜌,1(−(𝜆ℎ + 𝐾1)𝑡

𝜌) 𝑆ℎ0.   (9) 
Now since the term on the right-hand side of Eq. (9) is 
positive, we conclude that 𝑆ℎ ≥ 0 for 𝑡 ≥ 0. In the same 
way, we also have that (𝐸ℎ ≥0, 𝑉ℎ ≥ 0, 𝐼ℎ ≥ 0, 𝑇ℎ ≥
0, 𝑅ℎ ≥0, 𝑆𝑉 ≥ 0, 𝐼𝑉 ≥ 0). that is positives; therefore, the 
solution will remain in 𝑅+8  for all  𝑡 ≥ 0 with positive initial 
conditions. 
 
Boundedness of Fractional Model Equation 
The total human population from our model is given by; 
𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝑉ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑇ℎ(𝑡) + 𝑅ℎ(𝑡) 

Likewise, the total vector population is 
𝑑𝑁𝑉

𝑑𝑡
= 𝑆𝑉 + 𝐼𝑉 . 

So from our fractional model (6), we now obtain  
𝐷𝐶 𝑡
𝜌
𝑁ℎ(𝑡) = 𝐷𝐶 𝑡

𝜌
𝑆ℎ(𝑡) + 𝐷𝐶 𝑡

𝜌
𝐸ℎ(𝑡) + 𝐷𝐶 𝑡

𝜌
𝑉ℎ(𝑡) +

𝐷𝐶 𝑡
𝜌
𝐼ℎ(𝑡) + 𝐷𝐶 𝑡

𝜌
𝑇ℎ(𝑡) + 𝐷𝐶 𝑡

𝜌
𝑅ℎ(𝑡).  

𝑐𝐷𝑡
𝜌
𝑁ℎ(𝑡) = Λℎ − 𝜇ℎ𝑁ℎ(𝑡) 

 Taking the Laplace transformation of (10) we obtained:
 𝐿[𝑐𝐷𝑡

𝜌
𝑁ℎ(𝑡)] = 𝐿[Λℎ − 𝜇ℎ𝑁ℎ(𝑡)]  

𝑆ℎ
𝜌
𝑁ℎ(𝑠) − 𝑆ℎ

𝜌−1
𝑁ℎ(0) + 𝜇ℎ𝑁ℎ(𝑠) ≤

Λℎ
𝜇ℎ
,  

𝑁ℎ(𝑠) ≤
𝑆ℎ
𝜌−1

(𝑆𝜌+𝜇ℎ)
𝑁ℎ(0) +

Λℎ
𝑆ℎ(𝑆ℎ

𝜌
+𝜇ℎ)

   (11)

 Taking the inverse Laplace transform of Eq. (11) we have; 
𝑁ℎ(𝑡) ≤ 𝐸ℎ𝜌,1(𝜇ℎ𝑡

𝜌)𝑁ℎ(0) + Λℎ𝐸ℎ𝜌,𝜌+1(𝜇ℎ𝑡𝜌) (12)

   

 
At 𝑡 → ∞, the limit of Eq. (12) becomes: 
𝑙𝑖𝑚
𝑡→∞
𝑆𝑢𝑝𝑁ℎ(𝑡) =

Λℎ
𝜇ℎ
. similarly, we have𝑙𝑖𝑚

𝑡→∞
𝑆𝑢𝑝𝑁𝑉(𝑡) =

Λ𝑉
𝜇𝑉
.

 This means that, if 𝑁ℎ0 ≤
Λℎ
𝜇ℎ
𝑎𝑛𝑑𝑁𝑉0(𝑡) ≤

Λ𝑉
𝜇𝑉
. 

then 𝑁ℎ(𝑡) ≤
Λℎ
𝜇ℎ
𝑎𝑛𝑑𝑁𝑉0(𝑡) ≤

Λ𝑉
𝜇𝑉
. which implies that,𝑁ℎ(𝑡) 

is bounded. 
We now conclude that, this region Ω = Ωℎ × Ω𝑉, is well 
posed and equally feasible epidemiologically. 
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Existence and Uniqueness of our Model Solution 
Let the real non-negative be 𝑊we consider 𝑃 = [0,𝑊]. 
All continuous function that exist on P belongs to 𝑁ℎ𝑒

0 (𝑊) with norm as; 
‖𝐾‖ = 𝑆𝑢𝑝{|𝐾(𝑡)|, 𝑡 ∈𝑊}.  
The modeled system (6) along with specified initial (8) enables solving for a system of differential equations presented in 
(13). 
𝐷𝑐 𝑡
𝜌
𝐾(𝑡) = 𝑍(𝑡, 𝐾(𝑡)), 0 < 𝑡 < 𝑊 < ∞,         (13) 

𝐾(0) = 𝐾0.  
Where 𝐾(𝑡) = (𝑆ℎ, 𝐸ℎ , 𝑉ℎ, 𝐼ℎ , 𝑇ℎ , 𝑅ℎ, 𝑆𝑉 , 𝐼𝑉). represents the classes and Z be a continuous function defined as follows; 

𝑍(𝑡, 𝐾(𝑡)) =

(

 
 
 
 
 
 

𝑍1(𝑡, 𝑆ℎ(𝑡))

𝑍2(𝑡, 𝐸ℎ(𝑡))

𝑍3(𝑡, 𝑉ℎ(𝑡))

𝑍4(𝑡, 𝐼ℎ(𝑡))

𝑍5(𝑡, 𝑇ℎ(𝑡))

𝑍6(𝑡, 𝑅ℎ(𝑡))

𝑍7(𝑡, 𝑆𝑉(𝑡))

𝑍8(𝑡, 𝐼𝑉(𝑡)))

 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 

Λℎ + 𝜏2𝑉ℎ +𝜔𝑅ℎ −
𝑏𝛽ℎ𝐼𝑉𝑆ℎ

𝑁ℎ
− (𝜏1 + 𝜇ℎ)𝑆ℎ,

𝑏𝛽ℎ𝐼𝑉𝑆ℎ

𝑁ℎ
𝑆ℎ − (𝜙 + 𝜇ℎ)𝐸ℎ,

𝜏1𝑆ℎ − (𝜏2 + 𝜇ℎ)𝑉ℎ,
𝜙𝐸ℎ − (𝜃 + 𝛼 + 𝛿1 + 𝜇ℎ)𝐼ℎ,
𝜃𝐼ℎ − (𝜂 + 𝛿2 + 𝜇ℎ)𝑇ℎ,
𝛼𝐼ℎ + 𝜂𝑇ℎ − (𝜔 + 𝜇ℎ)𝑅ℎ,

Λ𝑉 −
𝛽𝑉𝐼ℎ𝑆𝑉

𝑁ℎ
− 𝜇𝑉𝑆𝑉,

𝛽𝑉𝐼ℎ𝑆𝑉

𝑁ℎ
− (𝛿3 + 𝜇𝑉)𝐼𝑉 .

()

)

 
 
 
 
 
 
 
 
 

     (14)

 Using proposition (2.1), we have that,   

𝑆ℎ(𝑡) = 𝑆ℎ0 + 𝐼𝑡
𝜌
[Λℎ + 𝜏2𝑉ℎ +𝜔𝑅ℎ −

𝑏𝛽ℎ𝐼𝑉𝑆ℎ

𝑁ℎ
− (𝜏1 + 𝜇ℎ)𝑆ℎ,],  

𝐸ℎ(𝑡) = 𝐸ℎ0 + 𝐼𝑡
𝜌
[
𝑏𝛽ℎ𝐼𝑉𝑆ℎ

𝑁ℎ
𝑆ℎ − (𝜙 + 𝜇ℎ)𝐸ℎ,],        (15) 

𝑉ℎ(𝑡) = 𝑉ℎ0 + 𝐼𝑡
𝜌
[𝜏1𝑆ℎ − (𝜏2 + 𝜇ℎ)𝑉ℎ,],  

𝐼ℎ(𝑡) = 𝐼ℎ0 + 𝐼𝑡
𝜌[𝜙𝐸ℎ − (𝜃 + 𝛼 + 𝛿1 + 𝜇ℎ)𝐼ℎ],  

𝑇ℎ(𝑡) = 𝑇ℎ0 + 𝐼𝑡
𝜌[𝜃𝐼ℎ − (𝜂 + 𝛿2 + 𝜇ℎ)𝑇ℎ],  

𝑅ℎ(𝑡) = 𝑅ℎ0 + 𝐼𝑡
𝜌[𝛼𝐼ℎ + 𝜂𝑇ℎ − (𝜔 + 𝜇ℎ)𝑅ℎ],  

𝑆𝑉(𝑡) = 𝑆𝑉0 + 𝐼𝑡
𝜌
[Λ𝑉 −

𝛽𝑉𝐼ℎ𝑆𝑉

𝑁ℎ
− 𝜇𝑉𝑆𝑉,[]]  

𝐼𝑉(𝑡) = 𝐼𝑉0 + 𝐼𝑡
𝜌
[
𝛽𝑉𝐼ℎ𝑆𝑉

𝑁ℎ
− (𝛿3 + 𝜇𝑉)𝐼𝑉].  

We obtain the Picard iteration of (15) as follows; 

𝑆ℎ(𝑡) = 𝑆ℎ0 +
1

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑍1
𝑡

0
(𝜆ℎ , 𝑆ℎ(𝑛−1)(𝜆ℎ)) 𝑑 𝜆ℎ,  

𝐸ℎ(𝑡) = 𝐸ℎ0 +
1

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑍2
𝑡

0
(𝜆ℎ, 𝐸ℎ(𝑛−1)(𝜆ℎ)) 𝑑 𝜆ℎ ,

 

𝑉ℎ(𝑡) = 𝑉ℎ0 +
1

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑍3
𝑡

0
(𝜆ℎ, 𝑉ℎ(𝑛−1)(𝜆ℎ)) 𝑑 𝜆ℎ,    

             (16) 
𝐼ℎ(𝑡) = 𝐼ℎ0 +

1

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑍4
𝑡

0
(𝜆ℎ , 𝐼ℎ(𝑛−1)(𝜆ℎ)) 𝑑 𝜆ℎ,  

𝑇ℎ(𝑡) = 𝑇ℎ0 +
1

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑍5
𝑡

0
(𝜆ℎ, 𝑇ℎ(𝑛−1)(𝜆ℎ)) 𝑑 𝜆ℎ ,  

𝑅ℎ(𝑡) = 𝑅ℎ0 +
1

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑍6
𝑡

0
(𝜆ℎ , 𝑅ℎ(𝑛−1)(𝜆ℎ)) 𝑑 𝜆ℎ,  

𝑆𝑉(𝑡) = 𝑆𝑉0 +
1

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑍7
𝑡

0
(𝜆ℎ, 𝑆𝑉(𝑛−1)(𝜆ℎ)) 𝑑 𝜆ℎ,

 

𝐼𝑉(𝑡) = 𝐼𝑉0 +
1

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑍8
𝑡

0
(𝜆ℎ, 𝐼𝑉(𝑛−1)(𝜆ℎ)) 𝑑 𝜆ℎ . 

Transforming equation eq. (13) to get  
𝑋(𝑡) = 𝑋(0) +

1

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑍
𝑡

0
(𝜆ℎ , 𝑋(𝜆ℎ)) 𝑑 𝜆ℎ.        (17) 

Lemma 1, The equation (14) gives us the definition of the Lipchitz condition which vector satisfies; 𝑍(𝑡, 𝐾(𝑡)) on a set 
[0,𝑊[]+

8 ] with the Lipchitz constant given as; 

𝜔 = 𝑚𝑎𝑥 ((𝛽ℎ
* + 𝜏1 + 𝜇ℎ), (𝜙 + 𝜇ℎ), (𝜏2 + 𝜇ℎ), (𝜃 + 𝛼 + 𝛿1 + 𝜇ℎ), (𝜂 + 𝛿2 + 𝜇ℎ), (𝜔 + 𝜇ℎ), (𝜇𝑉), (𝛿3 + 𝜇𝑉)).

 Proof: 
‖𝑍1(𝑡, 𝑆ℎ) − 𝑍1(𝑡, 𝑆ℎ1)‖, 

 
= ‖Λℎ + 𝜏2𝑉ℎ + 𝜔𝑅ℎ −

𝑏𝛽ℎ𝐼𝑉𝑆ℎ

𝑁ℎ
− (𝜏1 + 𝜇ℎ)𝑆ℎ − Λℎ + 𝜏2𝑉ℎ +𝜔𝑅ℎ −

𝑏𝛽ℎ𝐼𝑉𝑆ℎ

𝑁ℎ
− (𝜏1 + 𝜇ℎ)𝑆ℎ1‖, 

 = ‖−Λℎ + 𝜏2𝑉ℎ +𝜔𝑅ℎ −
𝑏𝛽ℎ𝐼𝑉

𝑁ℎ
− (𝜏1 + 𝜇ℎ)(𝑆ℎ − 𝑆ℎ1) + 𝜇ℎ(𝑆ℎ − 𝑆ℎ1)‖ ≤ (𝛽ℎ

* + 𝜏1 + 𝜇ℎ)‖𝑆ℎ − 𝑆ℎ1‖ + 𝜇ℎ‖𝑆ℎ − 𝑆ℎ1‖,

 

∴

‖𝑍1(𝑡, 𝑆ℎ) − 𝑍1(𝑡, 𝑆ℎ1)‖ ≤ (𝛽ℎ
* + 𝜏1 + 𝜇ℎ)‖𝑆ℎ − 𝑆ℎ1‖.
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Similarly, we obtained the following: 

( ) ( ) ( )2 2 1 1,E ,E E E ,h h h h hZ t Z t  −  + −
 

( ) ( ) ( )3 3 1 2 1,V ,V V V ,h h h h hZ t Z t  −  + −  

( ) ( ) ( )4 4 1 1 1, I , I ,h h h h hZ t Z t I I   −  + + + −
 

( ) ( ) ( )5 5 51 2 1,T ,T ,h h h hZ t Z t T T  −  + + −
        (18)

  

‖𝑍6(𝑡, 𝑅ℎ ) − 𝑍6(𝑡, 𝑅ℎ1 )‖ ≤ (𝜔 + 𝜇ℎ)‖𝑅ℎ − 𝑅ℎ1‖,
  ‖𝑍7(𝑡, 𝑆𝑉) − 𝑍7(𝑡, 𝑆𝑉1)‖ ≤ (𝜇𝑉)‖𝑆𝑉 − 𝑆𝑉1‖,  

‖𝑍8(𝑡, 𝐼𝑉 ) − 𝑍8(𝑡, 𝐼𝑉1 )‖ ≤ (𝛿3 + 𝜇𝑉)‖𝐼𝑉 − 𝐼𝑉1‖.  
Where we obtained: 
‖𝑍(𝑡, 𝐾1(𝑡)) − 𝑍(𝑡, 𝐾2(𝑡))‖ ≤ 𝜔‖𝐾1 − 𝐾2‖, 

 
𝜔 = 𝑚𝑎𝑥 ((𝛽ℎ

* + 𝜏1 + 𝜇ℎ), (𝜙 + 𝜇ℎ), (𝜏2 + 𝜇ℎ), (𝜃 + 𝛼 + 𝛿1 + 𝜇ℎ), (𝜂 + 𝛿2 + 𝜇ℎ), (𝜔 + 𝜇ℎ), (𝜇𝑉), (𝛿3 + 𝜇𝑉)).
 (19) 

 
Lemma 2 
The initial value problem (6), (7) in Eq. (19) exists and will have a unique solution 
𝐾(𝑡) ∈ 𝐷𝑐

0(𝐸).  
Applying PicardLindelöfand fixed-point conjecture, we consider the solution of  
𝐾(𝑡) = 𝑆ℎ(𝐾(𝑡)) 

 where S is defined as the Picard operator expressed as ; 
𝑆ℎ: 𝐷𝑐

0(𝐸, 𝑅+
8) → 𝐷𝑐

0(𝐸, 𝑅+
8). 

 Therefore, 
𝑆ℎ(𝐾(𝑡)) = 𝐾(0) +

1

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑍
𝑡

0
(𝜆ℎ, 𝐾(𝜆ℎ)) 𝑑 𝜆ℎ.  

which becomes,  
‖𝑆ℎ(𝐾1(𝑡)) − 𝑆ℎ(𝐾2(𝑡))‖  

= ‖
1

Γ(𝜌)
[∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑍(𝜆ℎ, 𝐾1(𝜆ℎ)) − 𝑍(𝜆ℎ, 𝐾2(𝜆ℎ)) 𝑑 𝜆ℎ
𝑡

0
]‖ 

 
≤

1

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑡

0
‖𝑍(𝜆ℎ , 𝐾1(𝜆ℎ)) − 𝑍(𝜆ℎ, 𝐾2(𝜆ℎ)) 𝑑 𝜆ℎ‖.  

≤
𝜔

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑡

0
‖𝐾1 − 𝐾2‖𝑑𝜆ℎ .  

‖𝑆ℎ(𝐾1(𝑡)) − 𝑆ℎ(𝐾2(𝑡))‖ ≤
𝜔

Γ(𝜌+1)𝑆ℎ
.         (20) 

When 
 

𝜔

Γ(𝜌+1)
𝑆ℎ ≤ 1, 

then the Picard operator gives a contradiction, so Eq. (6), (7) solution is unique. 
Lemma 2: The initial value problem (6), (7) in Eq. (19) exists and will have a unique solution. 
𝑋(𝑡) ∈ 𝐴𝑐

0(𝑓). 
 Using Picard-Lindelöf  and fixed- point theory, we consider the solution of  

𝑋(𝑡) = 𝑆ℎ(𝑋(𝑡)), 
 where S is defined as the Picard operator expressed as; 

𝑆ℎ: 𝐴𝑐
0(𝑓, 𝑅+

8) → 𝐴𝑐
0(𝑓, 𝑅+

8). 
 Therefore, 

𝑆ℎ(𝑋(𝑡)) = 𝑋(0) +
1

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑍
𝑡

0
(𝜆ℎ, 𝑋(𝜆ℎ)) 𝑑 𝜆ℎ.  

This becomes, 
‖𝑆ℎ(𝑋1(𝑡)) − 𝑆ℎ(𝑋2(𝑡))‖ 

 
= ‖

1

Γ(𝜌)
[∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑍(𝜆ℎ, 𝑋1(𝜆ℎ)) − 𝑍(𝜆ℎ , 𝑋2(𝜆ℎ)) 𝑑 𝜆ℎ
𝑡

0
]‖ , ≤

1

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑡

0
‖𝑍(𝜆ℎ, 𝑋1(𝜆ℎ)) − 𝑍(𝜆ℎ , 𝑋2(𝜆ℎ)) 𝑑 𝜆ℎ‖. ≤

𝜓

Γ(𝜌)
∫ (𝑡 − 𝜆ℎ)

𝜌−1𝑡

0
‖𝑋1−𝑋2 ‖𝑑𝜆ℎ. 

 
‖𝑆ℎ(𝑋1(𝑡)) − 𝑆ℎ(𝑋2(𝑡))‖ ≤

𝜓

Γ(𝜌+1)𝑆ℎ
.         (21)  

When 𝜓

Γ(𝜌+1)
𝑆ℎ ≤ 1, then the Picard operator gives a contradiction, 

So Eq. (6), (7) solution is unique.
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Disease Free Equilibrium Point of Malaria Model 
Disease free Equilibrium point is the steady state where there is no disease in the population. At DFE 
𝑆ℎ ≠ 0, 𝐸ℎ = 0, 𝑉ℎ ≠ 0, 𝐼ℎ = 0, 𝑇ℎ = 0, 𝑅ℎ = 0, 𝑆𝑉 ≠ 0, 𝐼𝑉 = 0. 

 𝜀0 = (𝑆ℎ
0, 𝐸ℎ

0, 𝑉ℎ
0, 𝐼ℎ

0, 𝑇ℎ
0, 𝑅ℎ

0, 𝑆𝑉
0, 𝐼𝑉

0) = (
Λℎ(𝜏2+𝜇ℎ)

𝜇ℎ(𝜏2+𝜏1+𝜇ℎ)
, 0,

𝜏1Λℎ
𝜇ℎ(𝜏2+𝜏1+𝜇ℎ)

, 0,0,0,
Λ𝑉
𝜇𝑉
, 0),    (22) 

 
Basic Reproduction Number of Malaria 
Basic Reproduction number is the secondary cases of infection when an infected vector is introduced into a susceptible 
human population. 
It is represented by 𝑅0𝑀 = 𝜌𝐹𝑉−1 where 𝜌 is the dominant Eigen value, 𝐹 is the non-negative matrix and 𝑉 is the other 
transition term.

 

𝐹 =

(

 
 

0 0 0
𝑏𝛽ℎ(𝜏2+𝜇ℎ)

(𝜏2+𝜏1+𝜇ℎ)

0 0 0 0
0 0 0 0

0
𝛽𝑉Λ𝑉𝜇ℎ

Λℎ𝜇𝑉
0 0 )

 
 

,and𝑉 = (

𝐴1 0 0 0
−𝜙 𝐴2 0 0
0 −𝜃 𝐴3 0
0 0 0 𝐴4

) 

𝑉−1 =

(

 
 
 
 

1

𝐴1
0 0 0

𝜙

𝐴2𝐴1

1

𝐴2
0 0

𝜃𝜙

𝐴2𝐴1𝐴3

𝜃

𝐴2𝐴3

1

𝐴3
0

0 0 0
1

𝐴4)

 
 
 
 

          (23) 

𝐹𝑉−1 =

(

 
 

0 0 0
𝑏𝛽ℎ(𝜏2+𝜇ℎ)

(𝜏2+𝜏1+𝜇ℎ)𝐴4

0 0 0 0
0 0 0 0

𝛽𝑣Λ𝑉𝜇ℎ𝜙

Λℎ𝜇𝑉𝐴1𝐴2

𝛽𝑉Λ𝑉𝜇ℎ
Λℎ𝜇𝑉𝐴2

0 0 )

 
 

        (24) 

 

𝑅0
𝑀 =

√Λℎ𝜇𝑣𝐴1𝐴2(𝜏2+𝜏1+𝜇ℎ)𝐴4𝛽𝑣Λ𝑣𝜇ℎ𝜙𝑏𝛽ℎ(𝜏2+𝜇ℎ)

Λℎ𝜇𝑣𝐴1𝐴2(𝜏2+𝜏1+𝜇ℎ)𝐴4
.        (25)

 which is the dominant Eigen value 
 
Endemic Equilibrium Point of Malaria Model 
Endemic equilibrium point is a point where malaria persists in the population. 
At endemic equilibrium point 
𝑆ℎ ≠ 0, 𝐸ℎ ≠ 0, 𝑉ℎ ≠ 0, 𝐼ℎ ≠ 0, 𝑇ℎ ≠ 0, 𝑅ℎ ≠ 0, 𝑆𝑉 ≠ 0, 𝐼𝑉 ≠ 0.  
𝑆ℎ
* = −

Λℎ𝐾3𝐾2𝐾4𝐾5𝐾6
((−𝐾6𝐾4(𝜆ℎ+𝐾1)𝐾2+𝜆ℎ𝜙𝛼𝜔)𝐾5+𝜂𝜔𝜙𝜃𝜆ℎ)𝐾3+𝐾2𝐾4𝐾5𝐾6𝜏1𝜏2

,  

𝐸ℎ
* = −

Λℎ𝐾3𝐾4𝐾5𝐾6𝜆ℎ
(((𝛼𝜔𝜙−𝐾2𝐾4𝐾6)𝜆ℎ−𝐾6𝐾4𝐾2𝐾1)𝐾5+𝜂𝜔𝜙𝜃𝜆ℎ)𝐾3+𝐾2𝐾4𝐾5𝐾6𝜏1𝜏2

,  

𝑉ℎ
* = −

Λℎ𝐾2𝐾4𝐾5𝐾6𝜏1
(((−𝜆ℎ−𝐾1)𝐾3+𝜏1𝜏2)𝐾4𝐾6𝐾2+𝜆ℎ𝜙𝛼𝜔𝐾3)𝐾5+𝜂𝜔𝜙𝜃𝐾3𝜆ℎ

,       (26) 

= −
𝜆ℎΛℎ𝐾5𝐾6𝐾3𝜙

(((𝛼𝜔𝜙−𝐾2𝐾4𝐾6)𝜆ℎ−𝐾6𝐾4𝐾2𝐾1)𝐾5+𝜂𝜔𝜙𝜃𝜆ℎ)𝐾3+𝐾2𝐾4𝐾5𝐾6𝜏1𝜏2
,  

𝑇ℎ
* = −

𝜆ℎΛℎ𝐾6𝐾3𝜙𝜃

(((𝛼𝜔𝜙−𝐾2𝐾4𝐾6)𝐾5+𝜂𝜙𝜔𝜃)𝜆ℎ−𝐾5𝐾6𝐾1𝐾2𝐾4)𝐾3+𝐾2𝐾4𝐾5𝐾6𝜏1𝜏2
,  

𝑅ℎ
* = −

𝜆ℎΛℎ𝐾3𝜙(𝛼𝐾5+𝜂𝜃)

𝛼𝜔𝜙𝐾3𝐾5𝜆ℎ+𝜂𝜔𝜙𝜃𝐾3𝜆ℎ−𝐾1𝐾2𝐾3𝐾4𝐾5𝐾6−𝐾2𝐾3𝐾4𝐾5𝐾6𝜆ℎ+𝐾2𝐾4𝐾5𝐾6𝜏1𝜏2
,  

𝑆𝑉
* =

Λ𝑣
𝜆𝑣+𝐾7

,  

𝐼𝑉
* =

Λ𝑣𝜆𝑣
(𝜆𝑣+𝐾7)𝐾8

.  

Substituting these into the force of infection 𝜆ℎ =
𝑏𝛽ℎ𝐼𝑉𝑆ℎ

𝑁ℎ
 and 𝜆𝑉 =

𝛽𝑉𝐼ℎ𝑆𝑉

𝑁ℎ
.

 
We obtain; 
𝑄1𝜆ℎ

2 + 𝑄2𝜆 + 𝑄3 = 0           (27) 

Where 
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𝑄1 = 𝛼
2𝜙2𝐾3

2𝐾5
2𝐾7

2𝐾8 + 2𝛼𝜂𝜙
2𝜃𝐾3

2𝐾5𝐾7
2𝐾8 + 2𝛼𝜙

2𝜃𝐾3
2𝐾5𝐾6𝐾7

2𝐾8  
+2𝛼𝜙2𝐾3

2𝐾5
2𝐾6𝐾7

2𝐾8 + 𝛼𝜙
2𝐾3

2𝐾5
2𝐾6𝐾8Λ𝑉𝛽𝑉 + 2𝛼𝜙𝐾3

2𝐾4𝐾5
2𝐾6𝐾7

2𝐾8  
+𝜂2𝜙2𝜃2𝐾3

2𝐾7
2𝐾8 + 2𝜂𝜙

2𝜃2𝐾3
2𝐾6𝐾7

2𝐾8 + 2𝜂𝜙
2𝜃𝐾3

2𝐾5𝐾6𝐾7
2𝐾8  

+𝜂𝜙2𝜃𝐾3
2𝐾5𝐾6𝐾8Λ𝑉𝛽𝑉 + 2𝜂𝜙𝜃𝐾3

2𝐾4𝐾5𝐾6𝐾7
2𝐾8 + 𝜙

2𝜃2𝐾3
2𝐾6

2𝐾7
2𝐾8  

+2𝜙2𝜃𝐾3
2𝐾5𝐾6

2𝐾7
2𝐾8 + 𝜙

2𝜃𝐾3
2𝐾5𝐾6

2𝐾8Λ𝑉𝛽𝑉 + 𝜙2𝐾3
2𝐾5

2𝐾6
2𝐾7

2𝐾8  
+𝜙2𝐾3

2𝐾5
2𝐾6

2𝐾8Λ𝑉𝛽𝑉 + 2𝜙𝜃𝐾3
2𝐾4𝐾5𝐾6

2𝐾7
2𝐾8 + 2𝜙𝐾3

2𝐾4𝐾5
2𝐾6

2𝐾7
2𝐾8  

+𝜙𝐾3
2𝐾4𝐾5

2𝐾6
2𝐾8Λ𝑉𝛽𝑉 + 𝐾3

2𝐾4
2𝐾5

2𝐾6
2𝐾7

2𝐾8 + 𝛼
2𝜙2𝐾3

2𝐾5
2𝐾7𝐾8  

+2𝛼𝜂𝜙2𝜃𝐾3
2𝐾5𝐾7𝐾8 + 2𝛼𝜙

2𝜃𝐾3
2𝐾5𝐾6𝐾7𝐾8 + 2𝛼𝜙

2𝐾3
2𝐾5

2𝐾6𝐾7𝐾8  
+2𝛼𝜙𝐾3

2𝐾4𝐾5
2𝐾6𝐾7𝐾8 + 2𝜂𝜙

2𝜃2𝐾3
2𝐾6𝐾7𝐾8 + 2𝜂𝜙

2𝜃𝐾3
2𝐾5𝐾6𝐾7𝐾8  

+2𝜂𝜙𝜃𝐾3
2𝐾4𝐾5𝐾6𝐾7𝐾8 + 𝜙

2𝜃2𝐾3
2𝐾6

2𝐾7𝐾8 + 2𝜙
2𝜃𝐾3

2𝐾5𝐾6
2𝐾7𝐾8  

+𝜙2𝐾3
2𝐾5

2𝐾6
2𝐾7𝐾8 + 2𝜙𝜃𝐾3

2𝐾4𝐾5𝐾6
2𝐾7𝐾8 + 2𝜙𝐾3

2𝐾4𝐾5
2𝐾6

2𝐾7𝐾8  
+𝐾3

2𝐾4
2𝐾5

2𝐾6
2𝐾7𝐾8, 

 𝑄2 = 2𝛼𝜙𝐾2𝐾3
2𝐾4𝐾5

2𝐾6𝐾7
2𝐾8 + 2𝛼𝜙𝐾2𝐾3𝐾4𝐾5

2𝐾6𝐾7
2𝐾8𝜏1 + 2𝜂𝜙𝜃𝐾2𝐾3

2𝐾4𝐾5𝐾6𝐾7
2𝐾8  

+2𝜂𝜙𝜃𝐾2𝐾3𝐾4𝐾5𝐾6𝐾7
2𝐾8𝜏1 + 2𝜙𝜃𝐾2𝐾3

2𝐾4𝐾5𝐾6
2𝐾7

2𝐾8 + 2𝜙𝜃𝐾2𝐾3𝐾4𝐾5𝐾6
2𝐾7

2𝐾8𝜏1  
+2𝜙𝐾2𝐾3

2𝐾4𝐾5
2𝐾6

2𝐾7
2𝐾8 + 𝜙𝐾2𝐾3

2𝐾4𝐾5
2𝐾6

2𝐾8Λ𝑉𝛽𝑉 + 2𝜙𝐾2𝐾3𝐾4𝐾5
2𝐾6

2𝐾7
2𝐾8𝜏1  

+𝜙𝐾2𝐾3𝐾4𝐾5
2𝐾6

2𝐾8Λ𝑉𝛽𝑉𝜏1 + 2𝐾2𝐾3
2𝐾4

2𝐾5
2𝐾6

2𝐾7
2𝐾8 + 2𝐾2𝐾3𝐾4

2𝐾5
2𝐾6

2𝐾7
2𝐾8𝜏1  

+2𝛼𝜙𝐾2𝐾3
2𝐾4𝐾5

2𝐾6𝐾7𝐾8 + 2𝛼𝜙𝐾2𝐾3𝐾4𝐾5
2𝐾6𝐾7𝐾8𝜏1 + 2𝜂𝜙𝜃𝐾2𝐾3

2𝐾4𝐾5𝐾6𝐾7𝐾8  
+2𝜂𝜙𝜃𝐾2𝐾3𝐾4𝐾5𝐾6𝐾7𝐾8𝜏1 + 2𝜙𝜃𝐾2𝐾3

2𝐾4𝐾5𝐾6
2𝐾7𝐾8 + 2𝜙𝜃𝐾2𝐾3𝐾4𝐾5𝐾6

2𝐾7𝐾8𝜏1  
+2𝜙𝐾2𝐾3

2𝐾4𝐾5
2𝐾6

2𝐾7𝐾8 + 2𝜙𝐾2𝐾3𝐾4𝐾5
2𝐾6

2𝐾7𝐾8𝜏1 + 2𝐾2𝐾3
2𝐾4

2𝐾5
2𝐾6

2𝐾7𝐾8  
+2𝐾2𝐾3𝐾4

2𝐾5
2𝐾6

2𝐾7𝐾8𝜏1,

      
𝑄3 = 𝐾2

2𝐾3
2𝐾4

2𝐾5
2𝐾6

2𝐾7
2𝐾8 + (1 − (𝑅0

𝑀)2)        (28)
 This implies that the model has an unstable endemic equilibrium point. 

 
Sensitivity Analysis  
The parameters for infection spread control determination are investigated through sensitivity analysis methods. 
The Malaria model reproduces the sensitivity index of its reproduction number as a function of specific parameter p given 
by: 

ℑ𝑝
𝑅0
𝑀

=
∂𝑅0

𝑀

∂𝑝
×

𝑝

𝑅0
𝑀   

𝑆𝜃
𝑅0
𝑀

= −
𝜃

2𝜃+2𝛼+2𝛿1+2𝜇ℎ
= −0.2054, 𝑆𝛼

𝑅0
𝑀

= −
𝛼

2𝜃+2𝛼+2𝛿1+2𝜇ℎ
= −0.00924, 

𝑆𝜙
𝑅0
𝑀

=
𝜙+2𝜇ℎ

2𝜙+2𝜇ℎ
= 0.50015, , 𝑆𝜏1

𝑅0
𝑀

= −
𝜏1

2𝜏2+2𝜏1+2𝜇ℎ
= −0.14994,      (29) 

( )

( )( )
0

2

1 2 2

2 1 2

2
1/ 2 0.64956,

M hR

h h

S

   

    

+ +
= =

+ + +

 

𝑆𝛽ℎ
𝑅0
𝑀

= 1, 𝑆𝛽𝑉
𝑅0
𝑀

=
1

2
, 𝑆Λ𝑉

𝑅0
𝑀

=
1

2
,    

𝑆Λℎ
𝑅0
𝑀

= −
1

2
, 𝑆𝑏

𝑅0
𝑀

= 1 ,𝑆𝛿1
𝑅0
𝑀

= −
𝛿1

2𝜃+2𝛼+2𝛿1+2𝜇ℎ
= −0.28523, 

𝑆𝛿3
𝑅0
𝑀

= −
𝛿3

2𝛿3+2𝜇𝑉
= −0.2222, , 𝑆𝜇𝑉

𝑅0
𝑀

=
−𝛿3−2𝜇𝑉

2𝛿3+2𝜇𝑉
= −0.7778.

 



Agonoh et al.,  JOSRAR 3(1) JAN-FEB 2026 99-113 
 

108 

 
Figure 2: Malaria Sensitivity Bar chart 

 
Interpretation of Malaria Sensitivity Bar Chart 
The figure 2  shows the sensitivity indices of basic reproduction number of malaria disease. The value of the malaria model 
parameters is positive and specific values are used to establish the ability of the malaria model index to increase the 
spread of the disease when the index increases. When any parameter changes in a certain direction, the basic 
reproduction number will likewise change in that direction. Disease-burden reducing parameters increase in value when 
they act as disease protective factors which cause the reduced basic reproduction numbers. 
 
Numerical Results of the Fractional-Order Model 
To replicate the dynamics of our malaria model, we employed a numerical approach known as the generalized fractional 
Adams-Bashforth-Moulton method, based on the methodology outlined by Amos et al. (2024). The simulations were 
carried out using the parameter values presented in Table 1, with various fractional orders examined to assess their 
impact on the results

 
(𝜌) 

 
Implementation of the Fractional Adams-Bashforth-Moulton Method 
In this paper we use a fractional Adams-Bashforth-Moulton algorithm, as in the study of Diethelm (2012),and Baskonus 
et al. (2015), to estimate the solution of our fractional malaria model (6). The presentation of this model is modified after 
Amos et al. (2024) and it is provided as follows: 
𝐷𝑐 𝑡
𝜌
𝑀(𝑡) = 𝑁(𝑡,𝑚(𝑡)), 0 < 𝑡 < 𝜓,  

𝑀(𝑛)(0) = 𝑀0
(𝑛), 𝑛 = 1,0, . . . , 𝑚,𝑚 = [𝜌].  

Where 𝑀 = (𝑆ℎ
* , 𝐸ℎ

* , 𝑉ℎ
*, 𝐼ℎ

* , 𝑇ℎ
*, 𝑅ℎ

* , 𝑆𝑉
* , 𝐼𝑉

* ) ∈ 𝑅+
8  and 𝑄(𝑡,𝑚(𝑡)) is a real valued function that is continous. 

Eq. (27) can be consequently be denoted using the notion of fractional integral as follows: 

𝑀(𝑡) = ∑ 𝑀0
(𝑛)𝑚−1

𝑛=0
𝑡𝑛

𝑛!
+

1

Γ(𝜌)
∫ (𝑡 − 𝑦)
𝑡

0

𝜌−1
𝑅(𝑦,𝑚(𝑦))𝑑𝑦.  

We apply  the method described by Amos et al.(2024), let consider  the step size 𝑔 = 𝜓

𝑁
, 𝑁 ∈ Ν with a grid that is uniform 

on  [0, 𝜓]. Where 𝑡𝑐 = 𝑐𝑟, 𝑐 = 0,1,1, . . . 𝑁. This implies that, the fractional order model of malaria model presented in (6) 
can  approximately be expressed as:  

𝑆ℎ(𝑘+1)(𝑡) = 𝑆ℎ0 +
𝑔𝜌

Γ(𝜌+2)
{Λℎ + 𝜏2𝑉ℎ

𝑛 +𝜔𝑅ℎ
𝑛 − 𝜆ℎ𝑆ℎ

𝑛 − (𝜏1 + 𝜇ℎ)𝑆ℎ
𝑛} +  

𝑔𝜌

Γ(𝜌+2)
∑ 𝑑𝑦, 𝑘 + 1{Λℎ + 𝜏2𝑉ℎ𝑦 + 𝜔𝑅ℎ𝑦 − 𝜆ℎ𝑆ℎ𝑦 − (𝜏1 + 𝜇ℎ)𝑆ℎ𝑦,}𝑘
𝑦=0 , 

 

   

𝐸ℎ(𝑘+1)(𝑡) = 𝐸ℎ0 +
𝑔𝜌

Γ(𝜌+2)
{𝜆ℎ𝑆ℎ

𝑛 − (𝜙 + 𝜇ℎ)𝐸ℎ
𝑛} + 

𝑔𝜌

Γ(𝜌+2)
∑ 𝑑𝑦, 𝑘 + 1{𝜆ℎ𝑆ℎ𝑦 − (𝜙 + 𝜇ℎ)𝐸ℎ𝑦,}
𝑘
𝑦=0 ,        (30)
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𝑉ℎ(𝑘+1)(𝑡) = 𝑉ℎ0 +
𝑔𝜌

Γ(𝜌+2)
{𝜏1𝑆ℎ

𝑛 − (𝜏2 + 𝜇ℎ)𝑉ℎ
𝑛} +  

𝑔𝜌

Γ(𝜌+2)
∑ 𝑑𝑦, 𝑘 + 1{𝜏1𝑆ℎ𝑦 − (𝜏2 + 𝜇ℎ)𝑉ℎ𝑦}
𝑘
𝑦=0 , 

 

𝐼ℎ(𝑘+1)(𝑡) = 𝐼ℎ0 +
𝑔𝜌

Γ(𝜌+2)
{𝜙𝐸ℎ

𝑛 − (𝜃 + 𝛼 + 𝛿1 + 𝜇ℎ)𝐼ℎ
𝑛} +  

𝑔𝜌

Γ(𝜌+2)
∑ 𝑑𝑦, 𝑘 + 1{𝜙𝐸ℎ𝑦 − (𝜃 + 𝛼 + 𝛿1 + 𝜇ℎ)𝐼ℎ𝑦,}
𝑘
𝑦=0 , 

 

𝑇ℎ(𝑘+1)(𝑡) = 𝑇ℎ0 +
𝑔𝜌

Γ(𝜌+2)
{𝜃𝐼ℎ

𝑛 − (𝜂 + 𝛿2 + 𝜇ℎ)𝑇ℎ
𝑛} +  

𝑔𝜌

Γ(𝜌+2)
∑ 𝑑𝑦, 𝑘 + 1{𝜃𝐼ℎ𝑦 − (𝜂 + 𝛿2 + 𝜇ℎ)𝑇ℎ𝑦}
𝑘
𝑦=0 , 

 

𝑅ℎ(𝑘+1)(𝑡) = 𝑅ℎ0 +
𝑔𝜌

Γ(𝜌+2)
{𝛼𝐼ℎ

𝑛 + 𝜂𝑇ℎ
𝑛 − (𝜔 + 𝜇ℎ)𝑅ℎ

𝑛} +  

𝑔𝜌

Γ(𝜌+2)
∑ 𝑑𝑦, 𝑘 + 1{𝛼𝐼ℎ𝑦 + 𝜂𝑇ℎ𝑦 − (𝜔 + 𝜇ℎ)𝑅ℎ𝑦}
𝑘
𝑦=0 , 

 

𝑆𝑉(𝑘+1)(𝑡) = 𝑆𝑉0 +
𝑔𝜌

Γ(𝜌+2)
{Λ𝑉 − 𝜆𝑉𝑆𝑉𝑛 − 𝜇𝑉𝑆𝑉𝑛} +  

𝑔𝜌

Γ(𝜌+2)
∑ 𝑑𝑦, 𝑘 + 1{Λ𝑉 − 𝜆𝑉𝑆𝑉𝑦 − 𝜇𝑉𝑆𝑉𝑦{}}
𝑘∑
𝑦=0  

 

𝐼𝑉(𝑘+1)(𝑡) = 𝐼𝑉0 +
𝑔𝜌

Γ(𝜌+2)
{𝜆𝑉𝑆𝑉

𝑛 − (𝛿3 + 𝜇𝑉)𝐼𝑉
𝑛} +  

𝑔𝜌

Γ(𝜌+2)
∑ 𝑑𝑦, 𝑘 + 1{𝜆𝑉𝑆𝑉𝑦 − (𝛿3 + 𝜇𝑉)𝐼𝑉𝑦}
𝑘
𝑦=0 . 

 

Where 
𝑆ℎ(𝑘+1)(𝑡) = 𝑆ℎ0 +

1

Γ(𝜌)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {Λℎ + 𝜏2𝑉ℎ𝑦 +𝜔𝑅ℎ𝑦 − 𝜆ℎ𝑆ℎ𝑦 − (𝜏1 + 𝜇ℎ)𝑆ℎ𝑦,},  

𝐸ℎ(𝑘+1)(𝑡) = 𝐸ℎ0 +
1

Γ(𝜌)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝜆ℎ𝑆ℎ𝑦 − (𝜙 + 𝜇ℎ)𝐸ℎ𝑦,},  

𝑉ℎ(𝑘+1)(𝑡) = 𝑉ℎ0 +
1

Γ(𝜌)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝜏1𝑆ℎ𝑦 − (𝜏2 + 𝜇ℎ)𝑉ℎ𝑦},  

𝐼ℎ(𝑘+1)(𝑡) = 𝐼ℎ0 +
1

Γ(𝜌)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝜙𝐸ℎ𝑦 − (𝜃 + 𝛼 + 𝛿1 + 𝜇ℎ)𝐼ℎ𝑦,},      (31) 

𝑇ℎ(𝑘+1)(𝑡) = 𝑇ℎ0 +
1

Γ(𝜌)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝜃𝐼ℎ𝑦 − (𝜂 + 𝛿2 + 𝜇ℎ)𝑇ℎ𝑦}, 

 𝑅ℎ(𝑘+1)(𝑡) = 𝑅ℎ0 +
1

Γ(𝜌)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝛼𝐼ℎ𝑦 + 𝜂𝑇ℎ𝑦 − (𝜔 + 𝜇ℎ)𝑅ℎ𝑦}, 

 𝑆𝑉(𝑘+1)(𝑡) = 𝑆𝑉0 +
1

Γ(𝜌)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {Λ𝑉 − 𝜆𝑉𝑆𝑉𝑦 − 𝜇𝑉𝑆𝑉𝑦{ }}  

𝐼𝑉(𝑘+1)(𝑡) = 𝐼𝑉0 +
1

Γ(𝜌)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝜆𝑉𝑆𝑉𝑦 − (𝛿3 + 𝜇𝑉)𝐼𝑉𝑦}.  

We obtained the result below from (30) and (31). 
𝑑𝑦,𝐾+1= 𝐾

𝜌+1 − (𝑘 − 𝜌)(𝑘 + 𝜌)𝜌, 𝑦 = 0  
(𝑘 − 𝑦 + 2)𝜌+1 + (𝑘 − 𝜌)𝜌+1 − 2(𝑘 − 𝑦 + 1)𝜌+1, 1 ≤ 𝑦 ≤ 𝑘  
1, 𝑦 = 𝑘 + 1  
and  

𝑓𝑦,𝑘+1 =
𝑔𝜌

𝜌
[(𝑘 − 𝑦 + 1)𝜌(𝑘 − 𝑦)𝜌], 0 ≤ 𝑦 ≤ 𝑘.  

 
Numerical Simulation 

 
Figure 3a: Simulation of susceptible humans to malaria 

 
Figure 3b: Simulation of Exposed humans to malaria 
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Figure 3c: Simulation of vaccinated humans against malaria 

 
Figure 3d: Simulation of infected humans with malaria 
 

 
Figure 3e: Simulation of humans on treatment of malaria 

 
Figure 3f: Simulation of Recovered humans from malaria 

 
Figure 3g: Simulation of cumulative new cases of malaria 

 
Figure 3h: Simulation of cumulative new cases of 
malaria 

 
The Figure (3a) illustrates how the malaria rate among the 
susceptible population is simulated under the influence of 
the rate of vaccination(𝜏1). It can be noted that, when the 
rate of vaccinated people (𝜏1) 

is high, the number of 
susceptible people is less. Figure (3b) illustrates the 
simulation of the effect of the rate of vaccinated people 
(𝜏1) 

on the malaria in the Exposed population. It is seen 
that, with the increase in the vaccinated rate (𝜏1)  , the 

number of Exposed individuals reduces.  Figure (3c) 
illustrates the simulation of the influence of the vaccinated 
rate (𝜏1) in the human population of malaria on the 
vaccinated individuals. It is seen that the higher the 
vaccinated rate (𝜏1)the higher the vaccinated human 
population.  
Figure (3d) Demonstrate the modeling of the impact of the 
vaccinated rate (𝜏1) of malaria in the infected human 
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population. One may also note that, with increase in the 
vaccinated rate (𝜏1) 

on the one hand, there is a decreasing 
trend in the number of people infected with malaria in the 
treatment human population which is simulated in Figure 
(3e). It is noted that, the higher the rate of vaccination(𝜏1), 
the more the human population is treated.  Figure (3f) 
illustrates how the vaccinated rate (𝜏1) of the vaccination 
affects the malaria in the recovered human population. As 
is seen, with the increasing vaccinated rate (𝜏1), the 
recovered human population declines. Figure (3g) 

illustrates the simulation of the vaccinated rate (𝜏1)on 
malaria cumulative new cases of malaria. It is seen that, 
with increase in the vaccinated rate (𝜏1) the cumulative 
new cases of malaria reduces. Figure (3h) shows the 
simulation of the rate of treatment(𝜃), that is, rate of 
vaccination(𝜏1) on the cumulative new cases of malaria. It 
is noted that the more the treatment rate  (𝜃) is, the lower 
the cumulative number of new cases of malaria.  
Table 2 presents a comprehensive model parameters 
values and their sources employed in this study. 

 
Table 2: Parameter Values and Sources  

Parameter Value Source 
Λℎ 0.564 Esteva et al.(2009) 
Λ𝑉  0.245 Esteva et al.(2009) 
𝜇ℎ 0.00004 Zi et al.(2012) 
𝜇ℎ 0.05   Zi et al.(2012) 
𝛽ℎ 0.18 Esteva et al.(2009) 
𝛽𝑉  0.8333 Zi et al.(2012) 
𝛿1 0.0003454 Zi et al.(2012) 
𝛿2 0.03454 Assumed 
𝛿3 0.00003454 Assumed 
𝜙 0.54 Zi et al.(2012) 
𝑏 0.1 Estimated 
𝜃 0.43 Estimated 
𝜔 0.0014  Zi et al.(2012) 
𝛼 0.3 Zi et al.(2012) 
𝜏1 0.67 Assumed 
𝜏2 0.43 Assumed 

 
CONCLUSION 
In this paper, we provide a mathematical model to analyze 
the malaria transmission and control measures that use 
the Caputo fractional derivative. Due to the importance of 
the fractional modeling, a detailed theoretical study of the 
fractional malaria model, in terms of the presence and 
uniqueness of solutions and the stability of the equilibrium 
points, was carried out. Fractional 
AdamsMoultonBashforth method, which is used in 
numerical solutions was employed. The impact of model 
parameters and various fractional orders of Caputo 
operator on the incidence of disease were studied by 
means of simulations. We also explored how the important 
parameters can be manipulated, including the rate of 
vaccination and treatment. The results show that both the 
rates of vaccination and treatment can be used to 
successfully decrease the incidence of malaria within the 
population. Further studies would be interested in the use 
of symbolic computing methods like those suggested by 
Zang et al (2022) to address nonlinear partial differential 
equations and find an analytical solution. 
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