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model in Caputo derivative. The activities that the model uses to
manage the disease are treatment and vaccination to study the
effects of the controls on the disease dynamics. The theory of
Lyapunov functions determines and verifies the existence and
uniqueness of solutions within the frame of the fractional order and
the stability of the endemic equilibrium point. The model is
numerically obtained with the help of the fractional Adams-
Bashforth-Moulton algorithm that will indicate the alteration of the
model parameters, and the fractional orders of the model
parameters to the impact of each of the mentioned parameters on
the course of the disease. It has been established through the
application of simulation that the more the disease is treated and
vaccinated the less the prevalence of malaria and that the fractional-
order models have high level of flexibility and realism than the
classical integer order equations. The paper identifies the
importance of fractional modeling in the description of the
interactions between the effects of memory and nonlocal interaction
between the biological systems and this enhances the
understanding and control of infectious diseases. The model does
however assume that the population is homogeneous mixed and
hypothetical values of the parameters thus preventing the empirical
validation. To make the model more predictive and practical to use
in the formulation of effective control schemes against malaria, then
the future research must be capable of addressing the spatial
heterogeneity, stochasticity.
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INTRODUCTION

The bite of infected females Anopheles mosquitoes is the
way the Plasmodium parasite enters the body of a man and
leads to malaria. Since hundreds of thousands of years
this protozoan parasite has been causing malaria
epidemics and it is one of the key world health problems
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(Global Malaria Prevention and Treatment Foundation,
2013). In spite of tremendous advances in control and
treatment, malaria continues to cause a huge public
health burden especially in tropical and subtropical areas
of Africa, Asia, and South America (World Health
Organization [WHQ], 2011). The disease is endemic in
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more than 100 countries and it poses a threat to the lives
of more than one-third of the world population (WHO,
2011). About 216 million cases of malaria were reported to
have occurred in the world in 2010, with an estimated
655,000 deaths (WHO, 2011, 2012). Thisis particularly true
of children below five years old and the percentage of
malaria mortality attributed to them is a significant
percentage (Chiyaka et al., 2006). Despite the production
and continuous improvement of malaria vaccines, the
overall prevention strategies are still necessary. Such are
the vectority control activities, the use of insecticide
impregnated nets, interior residual spraying and effective
antimalarial drugs treatments (Esteva et al., 2009; Fillinger
et al., 2009; Rhee et al., 2005; Roberts et al., 1997; WHO,
2011; Ziet al., 2012).

Mathematical modeling is important in deciphering the
dynamics of malaria transmission and guiding
interventions by the population health. By using the
mathematical framework, scientists have the opportunity
to study the processes that cause disease transmission
and assess the efficacy of different control tools.
Nonetheless, the traditional integer-order models
frequently do not provide biological memory effects and
long-term dependencies of epidemiological systems. To
overcome such limitations, fractional-order models use
non-local operators to consider the memory and
hereditary characteristics of the disease transmission
processes (Diethelm, 2022).

FD equations Fractional different equations (FDEs) are a
generalization of the classical methods of modeling to
allow a more general and detailed approach to analysis.
Thisresearch paper develops a fractional-order model that
helps study the dynamics of malaria transmission taking
into consideration prevention and treatment controls. The
model is more realistic in the effects of memory by
incorporating the effects of memory via the use of the
fractional calculus; this enables the model to provide a
realistic understanding of the infection progression and
the effects of interventions. The control measures are
considered in order to identify effective interventions in
reducing the prevalence of malaria.

In biological modeling, the reason why fractional
derivatives are particularly useful is due to the fact that
they are able to reproduce memory and hereditary
properties, which contribute to the progression of
diseases. In contrast to classical derivatives, fractional
derivatives enable the current situation of the system to be
based on its historical behavior. This attribute allows
analyzing more precisely the role of pastinfections, history
of treatment and the level of immunity in the perpetuation
of infection. Fractional models can therefore help shed
light on chronic issues like drug resistance, re-infection
and limitations on health care.

The current advances in fractional calculus have proven
that it is useful in the modeling of complex dynamic
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systems (Atokolo et al., 2022). Although classical integer-
order models mainly model the behavior of the local
system, of the global system, the fractional-order models
can include the dynamics of the global system as the
memory-dependent processes. This feature is what helps
fractional models to be more appropriate when it comes to
representing real-world epidemiological trends.
Fractional derivatives that are commonly used in biology
are Caputo and RiemannLiouville derivatives, which are
singular in nature (Milici et al., 2018). More recently, non-
singular, e.g. the MittagLeffler and AtanganaBaleanu,
derivatives have become more popular because of their
better mathematical features and use in modeling actual
systems.

It has been demonstrated that many studies have been
able to use the fractional modeling techniques in the
dynamics of infectious diseases. Atokolo et al. (2022)
established a model of the fractional-order sterile insect
technology that is controlled by Laplace-Adomian
Decomposition Method (LADM) to reduce Zika virus
outbreaks. In a similar manner, Atokolo et al. (2024)
explored the dynamics of transmissions of the Lassa fever
through a fractional framework to assess the effect of
vaccination and treatment measures. Yunus et al. (2023)
used a fractional derivatives approach to forecasting
Lassa fever dynamics and Omede et al. (2024) developed
a Caputo-based fractional compartmental model of soil-
transmitted helminth infections and showed that LADM
was more flexible in modeling the dynamics of solutions.
Amos et al. (2024) developed the fractional model of
hepatitis C transmission and used the
AdamsBashfordMoulton numerical scheme to
demonstrate that the contact rates and improvement of
treatment had a massive impact on the reduction of
disease transmission. The fractional approaches to
HIV/AIDS and diphtheria, used by Philip et al. (2024) and
Abah et al. (2024) respectively, point at the flexibility and
strength of the fractional systems in relation to classical
models. A model of fractional Chlamydia transmission
developed by Joseph et al. (2025) based on the generalized
AdamsBashforthMoulton method showed that improving
treatment and vaccine coverage was an effective way to
lower the prevalence of infections. Ahmed et al. (2021)
developed an ABC fractional-order model to investigate
the dynamics of HIV and COVID-19 co-infection, whereas
Smith et al. (2023) performed a systematic review of
hepatitis C and COVID-19 co-infection modeling strategies
to identify the methodological issues and gaps in the
literature. Das et al. (2024) also investigated the dynamics
of hepatitis C and co-infection with COVID-19 in low- and
middle-income states, with a particular focus on practical
and structural issues in the process of disease modelling.
Besides this, Ullah et al. (2020) proposed a hybrid Laplace
transform and Adomian Decomposition Method to solve
the fuzzy Volterra integral equations, which is an
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improvement in the analytical methods of fractional
systems. Ali et al. (2017) studied the solutions and stability
of the fractional problems of the boundary value,
particularly the Ulam stability and enhancing the theory of
the fractional differential equations.

In general, the concept of fractional-order modeling is an
effective and versatile tool in the analysis of the dynamics
of infectious diseases. Fractional differential equations
can capture memory effects and non-local interactions,
which are of interest in the study of epidemiology and
control policies; hence, it is specifically effective when
analyzing the transmission of malaria and its control
measures.

This paper aims to prepare conditions to the presence and
uniqueness of solutions in a Malaria model of the
fractional-order; Stability analysis of the endemic
equilibrium with the method of Lyapunov function; Solve
the model numerically using the fractional Adams -Bash
ford Moulton method; Simulate to find the dynamics of the
model. Since the comprehensive literature review
demonstrates that the past researchers did not combine
the use of fractional calculus and Adams-Bashforth-
Moulton method to model Malaria disease and control it.

Preliminary

Here, we introduce the fundamental concepts and initial
findings of fractional calculus. Our analysis incorporates
both the right and left Caputo fractional derivatives,
building on the models established by Milici et al. (2018)
and Bonyah et al. (2020). We also explore the practical
applications of this mathematics, demonstrating its use in
solving real-world problems across diverse fields like
physics, engineering, and bio-mathematics.

Definition 1
Let f € A”(R) then the left and right Caputo fractional

derivative of the function f is given by
— -(n-p) (d\"
CDPF() = (tODt (£ f(t))

CDEf(®) = s Jy (6 = D™ P71 (D) d,

The same way
coff@ = (07" (29 r o)

Dpfe) =S Ta-0"" frava

(1)

Definition 2
The generalized Mittag-Leffler function E, g(x) for x € R is
given by

[ee) xn
E,p(x) = ¥neo ooy VP >0 (2)

101

JOSRAR 3(1) JAN-FEB 2026 99-113

which can also be represented as

1
Epy () =xEppiyo + 15

Epy(x) = L[tY 7 Epyzare)] =

(3)
sP-Y

E;;zu

Proposition 1

Let fEAY(R)NC(R)andp ER,N—1<p <n,
therefore, the conditions given below holds:

1. §DIPf(E) = f(t)

NS GIOEFIOED)

n—ktk

k=0 1, fE(to)

Model Formulation

In modeling the dynamics, the population is divided into
eight groups: Susceptible human population(Sy), Exposed
human population(Ey), Vaccinated human
population(V},),Infected human population(l;,), humans
on malaria treatment (T},), Recovered human population
(Ry), Susceptible vector population(S,), Infected vector
population(l,). The susceptible humans are recruited at
the rate of A, while the susceptible vector are recruited at
the rate of Ay, Contact rate between the susceptible
humans and infected vector population with malaria,
Contact rate between the susceptible vectors and infected
human population with malaria are §,andf, respectively.
Natural death rate of human population and vector
population are upanduyrespectively. Death induced rate
due to an attempt by vectors to bite humans §, Disease
induced death rate of malaria infected humans, Disease
induced death rate of humans on malaria treatment are
6,andé,respectively.  Mosquitoes  biting rate b,
Vaccination rate of susceptible human population against
malaria 7;, Waning rate vaccine 7,, Progression rate from
Exposed human population to malaria infected human
population ¢, Treatment rate of malaria infected human
population 6, Recovery rate due to treatment of malaria
n,natural recovery rate of infected human population «.

Model Assumptions
1. We assume an imperfect vaccine in the human

population

2. We assume exogenous re-infection in human
population

3. We assume natural death in the population

4. We assume disease induced death in the
population

5. We assume natural recovery in the human

population due to strong body immunity.
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Malaria Model Flow Chart
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HySr (53 + iy ) I,

Figure 1: Malaria model flow Diagram

Flgurg 1 .denotes s.hows the transmission dynarplcs of dd% =0, — ( + 8, + u)Ty,
malaria incorporating treatment and vaccination as 4, — aly, +qTs — (@ + @R
control measures. @ h T THp Hp)Kp,
d_tv =Ny — AySy — Sy,
tl;'l:larla Model Equations %, = 1Sy — (85 + u)ly.
—_— = /\h + Tth + CL)Rh - thh - (Tl + ‘Llh)Sh
ddEth ’ Where
s Sy — (@ + up)Ep, Ay = bBrlySh , = BvinSv.
avp Np Np
e = TiSh = (@ Vi, Table 1 presents a comprehensive description of the
% =@E, — (0 +a+6; +uply, (5) model variables and parameters employed in this study.

Table 1: Model Variables and Parameters Description

Variables Descriptions

Sh Susceptible human population to malaria

Ey, Exposed human population to malaria

Vi Vaccinated human population against malaria

I Infected human population with malaria

Ty Human population on malaria treatment

Ry, Recovered human population from malaria

Sy Susceptible vector population to malaria

Iy Infected vector population with malaria

Parameters Descriptions

N Recruitment rate of human population

Ny Recruitment rate of vector population

T Vaccination rate of human population

Bn Contact rate between susceptible humans and infected vector population
By Contact rate between susceptible vectors and infected human population
T, Waning rate of vaccine in the human population
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Progression rate from Exposed human population to infected human population

Un Natural death rate of human population

Uy Natural death rate of vector population

¢

0 Treatment rate of infected human population

n Recovery due to treatment rate of human population

a Natural recovery rate of human population due to strong body immunity
w Rate at which recovered humans become susceptible again

01 Disease induced death rate of infected humans with malaria

&, Disease induced death rate of humans on malaria treatment

O3 Death induced due to an attempt of vectors to bite humans

Model Analysis

Fractional Malaria Mathematical Model

In this section, we provide the enhancement of the integer
model of Malaria represented in Equation (5) with the
Caputo fractional derivative operator. The revised model
that uses the Caputo fractional derivative operator is more
flexible than the classical model in Equation (5) because
the response of the fractional model can be manipulated
in order to obtain different responses. The fractional
Malaria model is, therefore, presented with the following
introduction:

D.’S, = Ap + 1,V + @Ry, — 4,8, — KySp,
D."Ep, = 2pSh — Kz En,

DV, = 1,8, — K3V,

DIy, = PE, — Kuly,

°p,’T, = 61, — KsT,,

‘DR, = aly, + nT, — K¢R),

CDtpSV =Ny — WSy — K75y,

‘D1, = A,S, — Kgl.

Where

Ky = (1 +up) Ky = (@ + pp), Kz = (12 + ), Ky = (60 +
a+ 8+ pup),Ks = (m+ 6, + pp),

Ke = (0 + pp), K7 = py, Kg = (85 + wy).
Subject to positive initial conditions

Sp(0) = Spo, En(0) = Epg, Vi (0) = Vo, 1,,(0) = I, T, (0) =
Tho» Rp(0) = Rpg, Vi (0) = SV, In(0) = I (7)

Positivity of Model Equation
We considered the non-negativity of the initial values

Ny (t) <M a5 too
Hh

Secondly, iflimsupNhO(t)S%, then our model
h

feasible domain is given by:

O = {(Su En Vi InTi R ) © RG: (S + B + Vi + Iy +
An

Tot+ Ry ) <2,

and Q= {(SV, I,) € R2: (S, I,) < ;i}so that,
%4

N=0,x0, cRE,

hence Qis positively invariant.

If (Sho» Enos Vios Ino» Tno» Rro» Svo, Iyo)are non-negative, then
the solution of model (6) will be non-negative for t> 0. From
Eq. (6), selecting the first equation, we obtained;
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DSy = Ap + Vi + @Ry — A, — Ky Sy,
CDtpSh + (/‘thh + K]_Sh’) = /\h + Tth + (,l)Rh
But A, + 7,V + wR),, = Othen
D,” Sy + (AnSn + KiSp,) = O..
Applying the Laplace transform we obtained;
L[ °D,"Sp] + L[(2Sk + K1Sn)] = 0.
ShSn(sn) =S "Sp(0) + (A + P)S(s) 2 0,

st
Sp(s) = Wsh(o) (8)
By taking the inverse Laplace transform, we obtained:
Sp(t) = Erp 1 (—(Ap + KEP) Spo- (9)
Now since the term on the right-hand side of Eq. (9) is
positive, we conclude that S, = 0 for t = 0. In the same
way, we also have that (E, =0,V,=0,1, =0,T, >
0,R, =0,S, = 0,1, = 0). that is positives; therefore, the
solution will remain in RS for all t > 0 with positive initial
conditions.

Boundedness of Fractional Model Equation
The total human population from our model is given by;
Np(t) = Sp(8) + En(6) + Vi (8) + 1n(8) + Ty (t) + Ru(6)

dNy
— . —==8+ 1.
Likewise, the total vector population is dt

So from our fractional model (6), we now obtain

D Ny(6) = “D"Su(®) + D En(t) + D" Vi(0) +
DS 1,(0) + DT, (t) + DRy (D).

¢D{ Ny (t) = A, — upNy (t)

Taking the Laplace transformation of (10) we obtained:
L[cDf Ny ()] = LA, = ualNp (D]

SHNk () = SP"Na(0) + i (s) < 51,

sP1 A
< _"h —Th
Np(s) < P N,(0) + Sh(sfz*'ﬂh) (11)

Taking the inverse Laplace transform of Eq. (11) we have;
Np(t) < Epp s (nt?INp(0) + ApEpp ps1 (unt?) (12)
Att — oo, the limit of Eq. (12) becomes:

LimSupN, () = ;ﬁ similarly, we havelimSupNy (t) = ;i
—00 h —00 v
This means that, if Ny < %andNVO(t) < 2—"
h 14
then N, (t) < %andNVO(t) < ;i which implies that, N, (t)
h v

is bounded.
We now conclude that, this region Q = Qp, X Qy, is well
posed and equally feasible epidemiologically.
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Existence and Uniqueness of our Model Solution
Let the real non-negative be Wwe consider P = [0, W].
All continuous function that exist on P belongs to N2, (W) with norm as;
IKIl = Sup{IK(©)|,t eW}.
The modeled system (6) along with specified initial (8) enables solving for a system of differential equations presented in
(13).
‘DPK() = Z(t,K(t),0 <t <W < oo, (13)
K(0) = K,.
Where K (t) = (S, Ep, Vi, I, Tn, Ry, Sy, I,). represents the classes and Z be a continuous function defined as follows;

/\h + T2Vh + (IJRh - bﬁ};v;;:Sh - (Tl + ‘uh)Sh‘

Z; (t' Sh (t)) bBrlySh

PBulvSn g — (¢ + up)E
Z,(t, En(t)) N n— (@ + ur) h,
Z5(t, V(1) 715h — (T2 + up) Vi,

E,—O@+a+6 + I

Z(t, K (1)) = Z, (& 1,(0) | _ Ey _( a5 1+ Uiy, 0
Zs(t, Tp(1) Ol — (N + 65 + up)Ty,
Z(t, Ry(1)) al, + 1T, — (w + up)Rp, (14)
Z,(t, Sy (1)) A, — BvinSv _
v UySy,

Zg(t, I (1)) Nn

IpS
ﬁVN% — (63 + w)ly.
Using proposition (2.1), we have that,
Sh(t) = ShO + Itp [Ah + Tth + (,L)Rh - - (Tl + ‘Llh)Sh‘:l,
bBRIVS
En(8) = Eno + If [PPA1 S, — (¢ + i) En | (15)
Va(®) = Vyo + 1f [Tlsh — (12 + :uh)Vh,]:
L) = I, + IZ[QE, — (0 + a + 6, + )],
Tp(t) = Ty + 17101, — (0 + 8, + up)Ty],
Ry(t) = Ryo + If [l + 1T, — (@ + )R],
Sy(t) = Syo + 1 [AV M VSV,[]]
() = Iy +1° [BV’hSV (5 + )l ]
1% = lyo 3+ u)ly

We obtain the Picard iteration of (15) as follows;

bBnlySh
Np

Sp(t) = Spo + o )f (t =P 72, (Ahish(n 1)(/1h)) d Ap,

Ep(t) = Epo + o )f (t = )P Zy (A, Engne1y(An)) d Ay Vi(£) = Vo + %p)fot(t — )P Z5 (A, Vin—1y(An)) d Ay,
(16)

In(t) = Ino + ; — [t = 2)P 7 Zy (A, Ingne1y(An)) d A,

Tu() = Tho + ; — [t = )P Zs (A, Tagn-1y (W) d A,

Ru() = Rno + 75 — [t = 2)P"Zg (A, Rpgn-1y(A)) d A,

Sy (®) = Syo + = Jy € = A7 Z7 (A Syenny () d A, 1y (©) = Iyo +
Transforming equation eq. (13) to get

X(®) = X(0) + 7 [y (¢ = )P Z (A, X(An)) d Ap. (17)
Lemma 1, The equation (14) gives us the definition of the Lipchitz condition which vector satisfies; Z(t, K(t)) on a set
[0, W[]8] with the Lipchitz constant given as;

© =max ((By + 11+ 1n), ( + 1a), (T3 + 1), (6 + @+ 8, + 1), (1 + 8 + 1), (@ + 1), (), (85 + 1) ).
Proof:

1Z1(t, Sp) = Z1(t, Spo)l,
= ||/\,1 + 1,V + wRy, —

o )f (t = 2P~ Zg (A, lyn- 1)@}1)) dAp.

bBIyS
B’IIVV L — (Ty + 1p)Sh — Ap + T,V + WRy — — (o + Mh)s’””’

= ||_Ah + 7,V + wRy — - (r + #h)(sh - Shl) + .uh(Sh - 5h1)|| < (.3;1 +7; + .uh)”Sh = Snall + upllSp — Spall,
1Z1(t, Sp) — Z1 (8, Sp)ll < (ﬂ; +7; + ﬂh)"sh = Snall.

bBrlySh
N

bBrly
N,
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Similarly, we obtained the following:

HZ2 (t.E,)-Z,(t.E, )H <(¢+u,)|E,~E

HZ3 (£.V,)=Z,(1.V, )H <(7,+4) L
|z, (t.1,) -2, (t.1,)|<(0+a+6+p,)|1, -1

HZS(t’Th)_ZS(t’T51)HS(77+52"‘ﬂh) p Al

IZe(t,Rn ) —Zg(t,Rpy Il < (@ + up)lIR, — Rp4l,
1Z;(t, Sy) — Z7(t, Sy DIl < Ww)ISy — Svall,

1Zg(t, Iy ) —Zg(t,Iy1 DI < (63 + u)llly — Il
Where we obtained:

1Z(t, K@) — Z(t K, < wllK; — Kl

W = max ((ﬁ; +17 + .Uh)' (@ +up), (t2 +up), 0+ a + 61 + pp), (n + 65 + pp), (0 + pp), (uy), (85 + MV))- 19

(18)

Lemma 2

The initial value problem (6), (7) in Eq. (19) exists and will have a unique solution
K(t) € D2(E).

Applying PicardLindeléfand fixed-point conjecture, we consider the solution of
K(t) = Sp(K(8))

where S is defined as the Picard operator expressed as ;

Sn:DY(E,R8) —» DO (E,R?).

Therefore,

Su(K (D) = K(O) + 75 Jy (6 = 1)°7Z (A, K1) d A,
which becomes,
[KACAGIEMGAG)]|

= ||r( )[f (t = 2)P 7 2, Ky (W) = Z (R Ko () d 2

f (t = 2)P N ZAp, Ky (AR)) — Z(Ap, K2 (A1) d Ayl

F(p)
< w6 = )P HIKy — Kalldd,.
IISh(Kl(t)) sh(Kz(t))ll < s (20)
When Sp <
(p +1)

then the Picard operator gives a contradiction, so Eq. (6), (7) solution is unique.
Lemma 2: The initial value problem (6), (7) in Eq. (19) exists and will have a unique solution.

X(t) € A%().

Using Picard-Lindelof and fixed- point theory, we consider the solution of

X(t) = Sp(X (),

where S is defined as the Picard operator expressed as;

Sn: A(f,RY) > AX(f,RY).

Therefore,

S(X(©) = X(0) + 7 ;¢ = A7 Z (A, X (1)) d .

This becomes,

IISh(Xl(t)) Sp(Xa NI

= ||,( [ = 2P 200 Xy ) = ZO X)) d 2| < 75 J3 (€ = 1) 12 X () = Z (s Ko () d Al <

f(t—/'ln)" HiX, — X, lda.

rp) -0

P
||sh(xl(t>) = Su KON < 7o (21)
When o +1) Sp <1, then the Picard operator gives a contradiction,

So Eq. (6), (7) solution is unique.
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Disease Free Equilibrium Point of Malaria Model
Disease free Equilibrium point is the steady state where there is no disease in the population. At DFE
S, #0,E,=0,V,#0,1,=0T,=0,R,=0,S, #0,[,, =0.

— (CO [0 170 70 10 po0 c0 70y — (_An(T2tpn) T1/n Av
€0 = (SR, ER, Vi IR, TR, R, $9,19) = (et o, — 1 — 0,0,0,%2 0, (22)

Basic Reproduction Number of Malaria

Basic Reproduction number is the secondary cases of infection when an infected vector is introduced into a susceptible
human population.

It is represented by RY = pFV~! where p is the dominant Eigen value, F is the non-negative matrix and V is the other
transition term.

bBp(T2+un)
0 0 0 (r2+T1+up) Ay 0 0 0
0 0 0 ¢ A, O 0
F=lo o o andV={ o 5 4, o
BvAviun 0 0 0 0 0 A4
Appy
= 0 0 0
A
w00
D I (23)
AzA1A3  AzA3 E 0
0 0o 0 —
Ay
0 0 bfr(t2+up)
(t2+T1+1p)As
_ 0 0 0 0
=l 0 0 0 24)
Bvvind  BvAvin 0 0
AntvA142  AplvA;
RM — VARMy AL Az (T2 +T1+1n) Aa Bu vl @D Br (T2 +1in) (25)
o= AntpA1Az(T2+T1+Up)As '

which is the dominant Eigen value

Endemic Equilibrium Point of Malaria Model

Endemic equilibrium point is a point where malaria persists in the population.
At endemic equilibrium point

Sp #0,E, #0,V, #0,1, #0, T, # O,R, # 0,S, # 0,I,, # 0.

§ = AnK3K2K4KsKe
h T (~KeKaAn+K D)Ko+ An paw)Ks+nwdOAn)K3+K KaKsKe 1o’
= AnK3K3KsKeAp
h (((@wp—KKaKe)Ap—KeKaKo K1 )Ks+1wpOAp )K3+KzK4KsKeT1T2'
V= AnK2K4KsKeTy (26)
h (((~2n-K1)K3+7172)KaKe Ky +Appawks )Ks+1wdOKs A
— An\nKsKeK3
(((@wd~KoKaKe)Ap—KsKaKo Ky )Ks+10$0AR | K3+KzK4KsKeT1 7o
T}: - _ An\RKeK3 6 :
(((awd~K2K4Ke)Ks+11p@8) A ~KsKeK1 Kz K4 )K3+KoKaKsKeT1T2
R = — AnAnK3P(aKs+n6) ’
AwPK3KsAp+1wPOKs A —K1 Ko K3KoKsKe—KoK3KaKsKeAp+K2K4KsKeT1To
. Ay
VT i
. Ay

V' Autky)Kg'

- . . . bBulyS Ins
Substituting these into the force of infection A, = % and A, = 2nsv,

Np

We obtain;
Qulf + QA+ Q3 =0 (27)

Where
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Q1 = a?P?K:*Ks*K,*Kg + 2anp?0K;* K K, 2Ky + 2ap?0K;* K K K, 2Ky
+2a¢? K K2 KoK, 2 Ky + ap? K32 Ks* K KAy By + 2apKs 2K K2 K K, * K
+1%p20%K;%K,*Kg + 2n¢p20%K:2 K K, *Kg + 212 0K:* KKK, %K
+NP20K 2K K Koy By + 2nPpOK: 2K, Ks K K,*Kg + 202K 2K 2 K,* Kg
+2¢20K;*Ks KK, *Kg + p20K:*Ks K2 KeAy By + K32 K2 K * K, * Ky
+@2K3 2 K2 K2 KoMy By + 200K3 2K, K KoK, Kg + 20K3 2K, K2 KK, K

+PK3 2K K * K *Kgy By + K3 K, 2K 2 KoK, Kg + a? 2 K3 KK, Ky
+2an$20K; 2K K, Kg + 2ap?0K,*Ks KKy Kg + 2ap? K32 Ks* KK Kg
+2a¢pKs K, KK K, Kg + 2n9p20%K32 K K, Kg + 2np20K32Ks KoK Kg
+2npOK;* K, KK Ko Kg + p20% K32 K> Ko Kg + 220K * K K 2K, Ky
+¢2K3 2K 2K P KoKy + 200K, 2K K Ko * Ko Kg + 2K ° K, Ks“K 2K, Ky
+K3%K, 2K 2K * K, Kg,

Q, = 2apK,K:*K,Ks* KoK, 2Ky + 20K, K3 K, K52 K K, * Ko, + 200K, K3° K, Ks KK, % Kg
+2np0K,K: K, Ks Ks K2 Koy + 200K, K-> K, Ks K2 K2 Kg + 20K, K3 K, Ks K2 K, 2 KgTy
+20K,K:? K, Ks* K2 K2 Kg + K, K32 Ky Ks“ K2 Ky By + 20K, Ko Ky Ks* K2 K2 Kg Ty
+PK, K3 K K2 K> KMy By Ty + 2K, K32 Ky Ks* K2 K2 Kg + 2K, K3 K, 2 K2 K Ko 2 Koy
+2apK, K32 K K2 Ko Ko Kg + 2apK, Ko Ky K2 Ko Ko Koty + 290K, K22 K, K Ko Ko Ky
+2nPOK, KKy Ks KoK Koy + 200K, K3* Ky Ks Ko 2 Ko Kg + 200K, Ko Ky K K2 Ko Ko T,
+20K,K:? K, Ks* K2 K, Kg + 20K, K3 K, Ks* K * Ko Koty + 2K, K32 K, 2 Ks* Ko * K K
+2K, KK, 2K K Ko KgT4,

Qs = K2°Ks*K,*Ks* Ko * K77 Kg + (1 — (R))?) (28)
This implies that the model has an unstable endemic equilibrium point.

Sensitivity Analysis
The parameters for infection spread control determination are investigated through sensitivity analysis methods.
The Malaria model reproduces the sensitivity index of its reproduction number as a function of specific parameter p given

by:
(\,R(I)VI — 0R(I)VI P
P ap ~RY
R _ 6 R«
S0 = 20+2a+281+2u, 0.2054,5," = 20+2a+281+2uy 0.00924,
M M
sRo — $*2n _ 50015, SR = L _ _ (14994, 29)
¢ 2¢+2up 71 2tat2tit2in
u 27,47, +
58 =12 ARG g g5
(ry+7+ ) (7, +11,)
R _ R 1 RM 1
SEhM = 1’SBV M— 2’5/\V M— ~
I U ; S———
Sap = 2,51, =15 = Porzarzeitam 0.28523,
Réw — _ 83 — R(I)VI _ ~63—2uy
553 = T ety 0'2222”SMV = earem = 0.7778.
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Figure 2: Malaria Sensitivity Bar chart

0.8

Interpretation of Malaria Sensitivity Bar Chart

The figure 2 shows the sensitivity indices of basic reproduction number of malaria disease. The value of the malaria model
parameters is positive and specific values are used to establish the ability of the malaria model index to increase the
spread of the disease when the index increases. When any parameter changes in a certain direction, the basic
reproduction number will likewise change in that direction. Disease-burden reducing parameters increase in value when
they act as disease protective factors which cause the reduced basic reproduction numbers.

Numerical Results of the Fractional-Order Model

To replicate the dynamics of our malaria model, we employed a numerical approach known as the generalized fractional
Adams-Bashforth-Moulton method, based on the methodology outlined by Amos et al. (2024). The simulations were
carried out using the parameter values presented in Table 1, with various fractional orders examined to assess their
impact on the results (p)

Implementation of the Fractional Adams-Bashforth-Moulton Method
In this paper we use a fractional Adams-Bashforth-Moulton algorithm, as in the study of Diethelm (2012),and Baskonus
et al. (2015), to estimate the solution of our fractional malaria model (6). The presentation of this model is modified after
Amos et al. (2024) and it is provided as follows:
‘DPM(t) = N(t,m(t)),0 <t <1,
M™(0) = M{,n =1,0,...,m,m = p].
Where M = (S,*I, E,*l, V,:, I;,T,:, R;, S{;,I{; ) € RE and Q(t,m(t)) is areal valued function that is continous.
Eqg. (27) can be consequently be denoted using the notion of fractional integral as follows:
- tn 1t p-1
M(t) = S0 Mg S+ 15 [, (=) R(y.m()dy.
We apply the method described by Amos et al.(2024), let consider the step size g = %,N € N with a grid that is uniform
on [0,y]. Where t, = cr,c = 0,1,1,... N. This implies that, the fractional order model of malaria model presented in (6)

can approximately be expressed as:
P
Shk+1) () = Spo + _F(z+2) {An + 12V + wRy — 4,5y — (74 + wp)Sp} +

p
l_(f))+2) Z;c;:() dy, k + 1{/\}1 + Tthy + thy - Ahshy - (Tl + [lh)Shy’},

p
Epk+1)() = Epo + ﬁ{;{hsi? — (¢ + up)Ep} +

p
['(ﬁ+2) Z;c’:o dy' k + 1{Ahshy - (¢ + :uh)Ehy,}f (30)
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Vh(k+1)(t) = Vo + 7 +2) {Tlsh (T2 + )V} +
Zy ody, k + 1{T15hy — (1 + .“h)Vhy}

I'(p+2)

1h(k+1)(t) = Ipo + r(p+2) — S PE; — (6 +a+6 +u)li} +
r(p”) YK ody. k + 1{¢Ehy 0+ a+ 6, + uplny ),
Th(k+1)(t) =Tho + r(p+2) ——{0Iy —(n + 6, + u )T} +
,.(p+2) Yy-ody k + 1{91hy —(n+6,+ .uh)Thy}
Rh(k+1)(t) =Rpo + o +2) ——{aly +nTy' — (w + up)Rp} +
r(p+2) Y_ody k + 1{alhy NThy — (0 + .uh)Rhy}f
Syk+1)(t) = Syo + Tiz){ — Sy — Syt +
r(ﬁiz)Z 0dy, k + 1{AV AVSVy - #VSVy{}}

1V(k+1)(t) =Iyo + r( 2 ——{AS) — (63 + w)I}} +

Yk ody, k+ 1{AySyy, — (85 + wy)lyy -
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(t: + .uh)Shy,}'

I'(p+2)

Where

Shk+1) () = Spo + r(p) — o fy ket {An + T2Viy + @Rpy — ApSny —
Enge+1)(t) = Epg + r(p) Zy o fyk+1 {Ahshy (¢ + ,uh)Ehy,}:
Vige+1) () = Vio + r(p) Zy o fyk+1 {Tlshy (r2 + .uh)Vhy}:
I+ () = Ing + _Zy o fyk+1 {¢Ehy -O+a+6 + .uh)lhy,}:
Thie+1)(t) = Tpo + r(p) Zy o fyk+1 {elhy m+6, + ,uh)Thy}:
Rpr+1)(£) = Rpo + Zy o fy kst {a[hy + 1Ty — (0 + .uh)Rhy}:

F(p)
Syk+1) () = Sy + mZy ofyk+1 {AV = Syy —
Iye+y () = Iyo + r(p) Zy o fyk+1 {AVSVy (63 + .“V)IVy}-
We obtained the result below from (30) and (31).
dy,k+1=KP*' —(k —p)(k +p)P,y =

k—y+2)PT 1+ (k—p)Pt =2k —y+1D)PL1<y<k

lLLy=k+1
and

P
fruer =21k =y +1)P(k =)L 0<y < k.

Numerical Simulation
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Figure 3a: Simulation of susceptible humans to malaria
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Figure 3g: Simulation of cumulative new cases of malaria

The Figure (3a) illustrates how the malaria rate among the
susceptible population is simulated under the influence of
the rate of vaccination(t,). It can be noted that, when the
rate of vaccinated people (z;) is high, the number of
susceptible people is less. Figure (3b) illustrates the
simulation of the effect of the rate of vaccinated people
(t1) on the malaria in the Exposed population. It is seen
that, with the increase in the vaccinated rate (t;) , the
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60

number of Exposed individuals reduces. Figure (3c)
illustrates the simulation of the influence of the vaccinated
rate (t;) in the human population of malaria on the
vaccinated individuals. It is seen that the higher the
vaccinated rate (t,)the higher the vaccinated human
population.

Figure (3d) Demonstrate the modeling of the impact of the
vaccinated rate (t;) of malaria in the infected human
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population. One may also note that, with increase in the
vaccinated rate (7,) on the one hand, there is a decreasing
trend in the number of people infected with malaria in the
treatment human population which is simulated in Figure
(3e). It is noted that, the higher the rate of vaccination(t,),
the more the human population is treated. Figure (3f)
illustrates how the vaccinated rate (7,) of the vaccination
affects the malaria in the recovered human population. As
is seen, with the increasing vaccinated rate (t;), the

JOSRAR 3(1) JAN-FEB 2026 99-113

illustrates the simulation of the vaccinated rate (7;)on
malaria cumulative new cases of malaria. It is seen that,
with increase in the vaccinated rate (t;) the cumulative
new cases of malaria reduces. Figure (3h) shows the
simulation of the rate of treatment(@), that is, rate of
vaccination(t;) on the cumulative new cases of malaria. It
is noted that the more the treatment rate (6) is, the lower
the cumulative number of new cases of malaria.

Table 2 presents a comprehensive model parameters

recovered human population declines. Figure (3g) values and their sources employed in this study.
Table 2: Parameter Values and Sources

Parameter Value Source

N 0.564 Esteva et al.(2009)

Ny 0.245 Esteva et al.(2009)

Un 0.00004 Zietal.(2012)

Un 0.05 Zietal.(2012)

B, 0.18 Esteva et al.(2009)

By 0.8333 Zietal.(2012)

61 0.0003454 Zietal.(2012)

&, 0.03454 Assumed

O 0.00003454 Assumed

[0) 0.54 Zietal.(2012)

b 0.1 Estimated

6 0.43 Estimated

w 0.0014 Zietal.(2012)

a 0.3 Zietal.(2012)

T 0.67 Assumed

T, 0.43 Assumed
CONCLUSION differential techniques, Eur. Phys. J. Plus 136 (2021)

In this paper, we provide a mathematical model to analyze
the malaria transmission and control measures that use
the Caputo fractional derivative. Due to the importance of
the fractional modeling, a detailed theoretical study of the
fractional malaria model, in terms of the presence and
uniqueness of solutions and the stability of the equilibrium
points, was carried out. Fractional
AdamsMoultonBashforth method, which is used in
numerical solutions was employed. The impact of model
parameters and various fractional orders of Caputo
operator on the incidence of disease were studied by
means of simulations. We also explored how the important
parameters can be manipulated, including the rate of
vaccination and treatment. The results show that both the
rates of vaccination and treatment can be used to
successfully decrease the incidence of malaria within the
population. Further studies would be interested in the use
of symbolic computing methods like those suggested by
Zang et al (2022) to address nonlinear partial differential
equations and find an analytical solution.
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