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A B S T R A C T  
The problems of climate variability in Sahel regions with severe 
rainfall anomalies bring serious challenges to the water resource 
management and mitigation of the flood disasters. This paper 
analyzes the effectiveness of a hybrid STL-ARIMA model to predict 
monthly rainfall in Maiduguri, Nigeria, which is a town that was 
affected by the 2024 floods. The article compares the hybrid, 
traditional Seasonal ARIMA (SARIMA) and Exponential Smoothing by 
Holt-Winter to assess previous rainfall data of 1981-2023. The 
suggested method employs Seasonal-Trend Decomposition by 
Loess (STL) to single out non-linear and seasonal trends that are too 
complicated then subjecting the time series to ARIMA modeling. 
With regards to performance, it can be seen that the STL-ARIMA 
model is far ahead of the conventional approach with a Root mean 
square error of 29.54mm, as opposed to 43.94mm and 43.01mm 
using the SARIMA and Holt-Winter models respectively. The hybrid 
model minimized the Mean Squared Error (MSE) by nearly 55% and it 
was more effective in terms of capturing the sharp variance variation 
and extreme wet-season peaks, which are characteristic of the area. 
These results provide a strong scientific foundation in enhancing 
flood early warning systems directly related to SDG 13 (Climate 
Action) goals in Northeastern Nigeria. 

 
INTRODUCTION 
Climate change has a transpiring path as a long-term, 
continual change in the average weather conditions that 
differ greatly in both the time and the space (Karabulut et 
al., 2008). This is a primary risk to all natural systems, 
which threatens the development and survival of human 
beings in both the economic, social, and political levels 
(Oluwafemi et al., 2010). Furthermore, it is widely 
acknowledged that developing nations in tropical areas, 
like Nigeria, are significant affected by the climate than 
their developed counterparts. Rainfall is one of the climate 
parameters that affect the pattern and behavior in which 

humans live. It impacts all elements of the ecosystem, 
including plants and animals. Therefore, the examination 
of rainfall cannot be overemphasized (Obot and 
Onyeukwu, 2010). In addition to its positive effects, rainfall 
can also have negative effects, such as producing natural 
disasters like floods, which can then lead to drought 
(Ratnayake & Herath, 2005). 
The Sahel Zone, running along West to East Africa, is 
renowned for the very high variability in its climate and the 
resultant environmental stressors (Epule et al., 2018). 
Mitigating climate variability and change in the Sahel, as 
elsewhere in Africa, is challenged by among other factors a 
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dearth of suitable expertise, lack of preparedness, and 
inadequate resources to deal with climate-related issues 
(Washington et al., 2006). Sahel rainfall patterns have also 
shown significant variability in the remote past (Zhang et 
al., 2021; Nicholson et al., 2018), with forecasts indicating 
that similar significant alterations are likely to occur in near 
future (Chadwick et al., 2016). Though both drought and 
flood are associated phenomena of the hydrological cycle, 
studies have been biased towards drought since the 1970s 
when there were drastic dry periods (Nicholson et al., 
2018). The floods in the Sahel have therefore been 
relatively ignored. By 2018, scientific studies on drought 
put floods research 44 percent behind, which has exposed 
populations to immense risk (Epule et al., 2018). This 
disparity aggravated the susceptibility of both humans and 
the environment to the effects of flood (Canton 2021). In 
addition, historical records of floods are usually not 
standardized and are not rigorous (Elagib, 2021; 
Umuakpero et al 2025). 
The Intergovernmental Panel on Climate Change (IPCC, 
2023) states that there is an increase in rainfall in the world, 
there are indications that it is rising on the African 
continent through warming conditions (Biasutti et al., 
2019). The similarities in local data complications are 
reflected in the variables in Nigeria, with earlier analyses of 
meteorological stations indicating falling rainfall 
conditions (Adefolalu, 1986), It is commonly observed 
behavior of rainfall to increase or decrease depending on 
the location and period of time of data analyzed 
(Jayawardene et al., 2005). This can be particularly felt in 
Maiduguri in northeast Nigeria whereby temperature 
dynamics dominate the monsoon system. In 2024, 
Maiduguri was hit by its highest precipitation of more than 
300 mm in August after about 200mm in July. This rush took 
over drainage systems causing severe flooding (Umar et 
al., 2025). Without intervention, experts note that such 
events will become the order of the day rather than being 
the exception. 
Mitigating such risks is in accordance with the global 
sustainability models. Sustainable Development Goal 13 
(climate action) requires urgent actions to boost resilience 
and adaptive capacity towards climate related hazards 
(United Nations, 2024). This is critical to the Sahel and 
Nigeria that have a disproportionate load of climate 
aberrations (WMO, 2024). In spite of mitigation activities in 
the world, there is a growing disparity in developing 
countries (UNEP, 2024; IPCC, 2023). Thus, the 
operationalization of SDG 13 will require the use of an 
advanced hydrological forecasting model, including the 
hybrid methods put forward in this research. These models 
would also promote the climate intelligence that 
policymakers require to reposition disaster risk 
governance away from reactive intervention models 
toward proactive resilience strategies (Biermann et al., 
2025). 

In order to accomplish this predictive accuracy, in this 
study time series forecasting methods of great strength 
have been utilized. Autoregressive Integrated Moving 
Average (ARIMA) is a popular statistical tool that employs 
the past observations and lag error to predict future values 
(Lem, 2024). Also, Seasonal- Trend Decomposition with 
Loess (STL) is used to separate the time series data into 
trend, seasonality and residual. This isolation improves the 
performance of ARIMA in decisional action of seasonal 
change by isolating the factors (Lem, 2024). Exponential 
Smoothing State Space (ETS) models are also considered 
in the study to emphasize recent data over the old data 
(Hyndman et al., 2018). Considering STL before ETS or 
Seasonal ARIMA (SARIMA), it eliminates the seasonality 
factor, making the modeling process easier and 
improvements in the forecasting business more frequent 
(Ouyang et al., 2021; Hyndman et al., 2018). 
Although such sophisticated statistical techniques are 
available, there is a huge deficit in using the techniques to 
Maiduguri, the micro-climate. The available literature on 
the Sahel largely concentrates on drought indices or uses 
individual forecasting models which might not be in a 
position to represent the complex and non-linear volatility 
of the recent years. The literature on the hybrids (STL-
ARIMA and STL-ETS) and their effectiveness in particular in 
the context of the historic rain patterns witnessed in 2024 
is lacking. Moreover, there is a lack of studies on the 
connection between high-precision local predicting and 
operationalization of SDG 13 targets in northeastern 
Nigeria. This study aims to fill this gap through the 
evaluation of comparative precision of hybrid ARIMA, 
SARIMA and exponential smoothing in order to offer an 
effective paradigm on the prediction of rainfalls in the area 
in future. 
 
Significant of Study 
Research data on rainfall variability in northeast Nigeria 
especially the Maiduguri is insufficient when compared to 
other areas of the country. The proposed study will help to 
address this gap, since it will produce localized 
information and model methods, which can be utilized in 
the event of a future climate-oriented research and 
development. 
 
MATERIALS AND METHODS 
Study Area 
Maiduguri is the state capital of Borno State, North Eastern 
Nigeria. The state lies within latitude and longitude of the 
state is 11°51’N and 13°40’E respectively with an Altitude 
of 300m above mean sea level and borders with Chad, 
Cameroun and Niger (Olofin, 1997). The land has an area 
of 543km² and has a population of about 357,104 people. 
It is within the semi-arid climatic zone referred to as the 
SAHEL zone. The city practically experiences two distinct 
climatic seasons yearly. These are; a short rainy season 
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usually from the month of June to September and a long dry 
season from October to May. The hottest months in the 

year are March, April and May having temperatures ranging 
between 30°C-43°C (Alkali et al., 2017). 

 

 
Figure 1: Location Map of Maiduguri, Borno State 
 
Study Dataset and Temporal Coverage 
The data of 42 years of monthly rainfall (mm) was gathered 
by the Nigerian Meteorological Agency (NiMet) at its 
ground-based stations covering the period between 1981 
and 2023. Being the official meteorology authority in 
Nigeria, NiMet is the main provider of climate data, with the 
information not being completely stored in the open-
access, open-global depositories, yet the data can be 
obtained by formal data requests and working 
partnerships, which both grants the data credibility and 
traceability. 
 
Model Training and Validation Strategy (Data Splitting) 
The dataset of monthly rainfall that spans the years January 
1981 to December 2023 was split into the training set and 
testing set to obtain unbiased estimation of the model. 
Since the climatic data is time dependent, a chronological 
(non-random) division was made since it ensured that 
temporal structure is maintained and information leakage 
is not exhibited. 
In particular, the data between January 1981 and 
December 2015 (35 years; 420 months) served as a model 
training and parameters estimation and January 2016-
December 2023 (8 years; 96 months) as an out of sample 

control and out of sample forecast validation. The division 
offers an adequate time scale in which to learn the 
dynamics of learning season and trends, whereas the 
timing of the test covers the years of the past and the 
present that are marked by high increases in rainfall 
variation and extreme weather patterns. 
All the models SARIMA, Holt-Winters, and the hybrid of 
STL-ARIMA were only fitted using the training data. Multi-
step ahead forecasting technique was then used to 
generate the forecasts on the period of testing and the 
predicted values were compared to the actual data on 
rainfall. 
Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE) and Mean Absolute Error (MAE) were measured in 
the test set only. This out-of-sample validation model 
guarantees just and standardized comparisons of 
predictive accuracy of rival models. 
 
Models 
This research uses the ARIMA (Auto-Regressive Integrated 
Moving Average) model in examining and predicting rainfall 
patterns in Maiduguri, Nigeria. The ARIMA model is a 
popular time series forecasting approach which 
incorporates autoregressive (AR) and moving average (MA) 
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components, as well as differencing to ensure that the data 
becomes stationary. Under this model, the ordering is 
done using the shape of the autocorrelation function plot 
(ACF) and partial autocorrelation function plot (PACF) in 
order to come up with appropriate orders for the AR and MA 
components. Model performance is also tested using 
statistical indices such as Root Mean Square Error (RMSE) 
and Mean Absolute Error (MAE) that are compared to 
determine how accurate the forecast is. Through the use of 
the ARIMA model, the study will serve a solid base to the 
interpretation and forecasting of the rainfall patterns of 
Maiduguri thereby supporting flood risk prediction, early 
warning systems, and proactive flood mitigation planning 
within Maiduguri. 
 
The Autoregressive (AR) Model  
An autoregressive model of order, p, that is AR(p) an 
autoregressive model assumes that the current value, x t, 
is expressed as a linear combination of its past values in 
the series of length p, plus an element of error. In general, 
it is expressed as follows: 
𝑥𝑡 = c + ∑ 𝜙i xt−i

𝑝
𝑖=1 + εt     (1) 

Where, xt is the dependent factor (monthly rainfall) at time 
t, xt−i are independent factors at time lag 𝑡 − 1, 𝑡 − 2, . . . 𝑡 −
𝐼, 𝜙i(𝜙1, 𝜙2, . . . , 𝜙p) are the autoregressive coefficient to be 
estimated, 𝑐 is a constant (intercept) and εt is the white 
noise term at time t, assumed to be independently 
distributed with mean zero and constant variance. 
 
The Moving Average (MA) model 
The Moving Average model of order q is generally 
represented as MA(q), and uses past forecast errors in a 
regression-like model: 
xt = µ + εt + ∑ θjεt−j

𝑞
𝑗=1     (2) 

Where εt−j is the error term predicted at time lags and 𝑡 −

1, 𝑡 − 2, . . . , 𝑡 − 𝑞, 𝜃𝑗(𝜃1, 𝜃2, . . , 𝜃𝑞)  are the moving average 
coefficients 
 
The ARIMA Model  
The ARIMA model is a generalization of the AR and MA 
models in the sense that it adds differencing in order to 
manage non-stationarity. An 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) Model can be 
represented as B, marking backward shift operator, where 
by Β𝑋𝑡 = 𝑋𝑡−1 . 
The model can be explained by the following equation: 
𝜙𝑝(Β)(1 − Β)𝑑𝑋𝑡 = 𝑐 + 𝜃𝑞(Β)𝜀𝑡   (3) 
Where, (1 − Β)𝑑 is the differencing operator of order d, 
which makes the non-stationary series 𝑋𝑡  stationary, ∅𝑝(Β) 
is the autoregressive polynomial of order p:  
𝜙𝑝(Β) = 1 − 𝜙1Β − 𝜙2Β2 − 𝜙3Β3 − 𝜙4Β4−. . . −𝜙𝑝Β𝑝

      (4) 
𝜃𝑞(Β) is the moving average polynomial of order q: 
𝜃𝑞(Β) = 1 + 𝜃1Β + 𝜃2Β2 + 𝜃3Β3 + 𝜃4Β4+. . . +𝜃𝑞Β𝑞  
      (5) 

C is the constant 
𝜀𝑡 is the white noise error term 
 
Seasonal ARIMA (SARIMA) 
When a time series display a recurring seasonal pattern 
after every s observation, it is said to have a seasonal 
component. For instance, in monthly data 𝑠 = 12, while for 
quarterly data 𝑠 = 4. To effectively capture and model 
seasonality, the ARIMA framework is extended into the 
seasonal ARIMA (SARIMA) model. 
The SARIMA model is denoted as 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) ×
(𝑃, 𝐷, 𝑄)𝑠, where (𝑝, 𝑑, 𝑞) represents the non-seasonal part 
and (𝑃, 𝐷, 𝑄)𝑠 represents the seasonal part. 
The general mathematical formulation is expressed using 
the backshift operator Β as follows: 
Φ𝑃(Β𝑠)𝜙𝑝(Β)(1 − Β𝑠)𝐷(1 − Β)𝑑𝑋𝑡 = 𝑐 + Θ𝑄(Β𝑠)𝜃𝑞(Β)𝜀𝑡  

      (6) 
Where 𝑋𝑡  is the observed time series (monthly rainfall) at 
time  , 𝑠 is the seasonal period (𝑠 = 12 for monthly rainfall), 
𝜀𝑡 is the white noise error term at term 𝑡. 
 
Non-Seasonal Operators 
𝜙𝑝(Β) is the non-seasonal Autoregressive (𝐴𝑅) polynomial 

of order p. 
𝜙𝑝(Β) = 1 − 𝜙1Β − 𝜙2Β2−. . . −𝜙𝑝Β𝑝  (7) 
𝜃𝑞(Β) is the non-seasonal moving average of order 𝑞. 
θq(Β) = 1 + θ1Β + θ2Β2+. . . +θqΒq  (8) 
(1 − Β)𝑑  is the non-seasonal differencing of order 𝑑. 
 
Seasonal Operators 
Φ𝑃(Β𝑠) is the Seasonal Autoregressive (SAR) polynomial of 
order P 
Φ𝑃(Β𝑠) = 1 − Φ1Β𝑠 − Φ2Β2𝑠−. . . −Φ𝑃Β𝑃𝑠  (9) 
Θ𝑄(Β𝑠) is the Seasonal Moving Average (SMA) polynomial 
of order Q. 
Θ𝑄(Β𝑠) = 1 + Θ1Β𝑠 + Θ2Β2𝑠 + ⋯ + Θ𝑄Β𝑄𝑠   (10) 
(1 − Β𝑠)𝐷  is the Seasonal Differencing of order D. 
 
Exponential Smoothing (Holt-Winter Multiplicative) 
Given that rainfall data typically exhibits seasonality where 
the amplitude of the seasonal variation is proportional to 
the level of the series, the multiplicative Holt-Winter’s 
method is used. 
The observed rainfall series 𝑋𝑡  is modeled as the product 
of the level (𝐿𝑡), trend (𝑏𝑡), and seasonal (𝑆𝑡) 
components: 
𝑋𝑡 = (𝐿𝑡 + 𝑏𝑡)𝑆𝑡 + 𝜀𝑡      (11) 
The smoothing equations are 
Level Equation 
𝐿𝑡 = 𝛼

𝑋𝑡

𝑆𝑡−𝑠
+ (1 − 𝛼)(𝐿𝑡−1 + 𝑏𝑡−1)       (12) 

Trend Equation 
𝑏𝑡 = 𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑏𝑡−1         (13) 
Seasonal Equation 
𝑆𝑡 = 𝛾

𝑋𝑡

𝐿𝑡−1+𝑏𝑡−1
+ (1 − 𝛾)𝑆𝑡−𝑠       (14) 
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Where 𝑋𝑡  is the observed rainfall at time t, 𝐿𝑡 , 𝑏𝑡 , 𝑆𝑡  are the 
level, trend, and seasonal components respectively, 𝛼, 𝛽, 𝛾 
are the smoothing parameters (0 ≤ 𝛼, 𝛽, 𝛾 ≤ 1), 𝑠 is 
seasonal period (𝑠 = 12). 
The h-step ahead prediction equation is: 
𝑋̂𝑡+ℎ

𝑡⁄ = (𝐿𝑡 + ℎ𝑏𝑡)𝑠𝑡+ℎ − 𝑚(ℎ + 1)  (15) 

 
Decomposition and Deseasonalization 
The STL algorithm, first, is used to break down the original 
time series  𝑌𝑡   into seasonal (𝑆𝑡), trend (𝑇𝑡)  and remainder 
(𝑅𝑡) parts. The series, denoted as 𝑌𝑡

𝑆𝐴, is derived when 
subtracting the seasonal series in the original series: 
𝑌𝑡

𝑆𝐴 = 𝑌𝑡 − 𝑆𝑡 = 𝑇𝑡 + 𝑅𝑡     (16) 
 
Forecasting (The Components are Forecasted 
Separately and then Recombined) 
Seasonal Component (𝑆𝑡): Seasonal component is mostly 
determined by seasonal naive approach as it is expected 
that the latest pattern in the season will be repeated. 
Seasonally Adjusted Component (𝑌𝑡

𝑆𝐴): The non-seasonal 
time series (trend and irregularity) is estimated when using 
an ARIMA(𝑝, 𝑑, 𝑞) model. 
The next ℎ −step forecast, 𝑌̂𝑡+ℎ is a result of any 
summation of the forecasts of seasonal component and 
ARIMA forecast of seasonally adjusted series: 
𝑌̂𝑡+ℎ = 𝑆̂𝑡+ℎ + 𝑌̂𝑡+ℎ

𝑆𝐴
     (17) 

Where 𝑆̂𝑡+ℎ is the forecasted seasonal component 
corresponding to the future period and 𝑌̂𝑡+ℎ

𝑆𝐴
 is the 

forecast generated by ARIMA model for the seasonally 
data. 
 
STL–ARIMA Hybrid Modeling Framework 
The forecasting algorithm is founded on a hybrid modeling 
architecture that combines Loess-based Seasonal-Trend 
decomposition techniques (STL) with the Autoregressive 
Integrated Moving Average (ARIMA) model to capture the 
complex temporal structure of rainfall time series (Figure 
2). This approach integrates the strengths of 
decomposition methods and stochastic time series 

modeling to improve predictive accuracy and model 
interpretability. 
Within this framework, STL decomposition is first applied 
to disaggregate the original rainfall series into three 
additive components: the trend, seasonal, and remainder 
(residual) components. The trend component represents 
long-term changes in rainfall behavior, the seasonal 
component reflects repetitive periodic patterns driven by 
climatic cycles, and the remainder component captures 
non-periodic, irregular, and unpredictable fluctuations 
that cannot be explained by the trend or seasonal 
structures (Figure 2). 
Each component is then modeled independently in a 
manner consistent with its statistical characteristics. The 
trend component is modeled using an ARIMA(1,1,0) 
process, which represents long-term persistence and 
gradual changes in rainfall dynamics. The seasonal 
component is addressed through seasonal mapping, 
which preserves and extrapolates the recurring structure of 
the rainfall cycle. The remainder component is modeled 
using an ARIMA(2,0,1) process to capture short-term 
dependencies and stochastic variability (Figure 2). 
Following component-wise modeling, forecasting and 
recombination are performed by additively integrating the 
forecasts of the trend, seasonal, and remainder models. 
This recombination follows the additive structure of the 
STL decomposition, ensuring that long-term trends, 
seasonal variations, and stochastic disturbances are 
collectively expressed in the final forecast output (Figure 
2). 
By isolating and modeling distinct temporal dynamics 
independently, the hybrid STL-ARIMA architecture enables 
more accurate and stable rainfall prediction without 
forcing a single model to represent all underlying 
processes. This methodology strengthens predictive 
performance, enhances interpretability, and improves 
robustness in non-stationary climatic environments. 
Consequently, it is particularly well suited for applications 
in hydroclimatic forecasting, climate risk assessment, and 
resilience planning, as conceptually illustrated in Figure 2. 
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Figure 2: Methodological flowchart of the STL-ARIMA hybrid forecasting framework 

 
Statistical Evaluation 
Evaluating the performance of a predictive model is a 
critical component of the modelling process, particularly 
when its effectiveness is assessed relative to alternative 
modelling approaches. This process typically depends on 
the use of particular statistical measures. Nevertheless, 
models can have almost identical results for a particular 
measure, using only one measure might not give a 
comprehensive view of the performance of the model. 
Each measure identifies only a specific feature of the 
model's capacity to mimic actual data. Hence, it is 
advisable to employ a set of statistical measures to 
achieve a more complete and accurate assessment of 
model performance so that more meaningful comparisons 
between various modelling techniques can be made. 
Among the most frequently used are MSE, RMSE and MAE. 
𝑅𝑀𝑆𝐸 =

1

𝑛
√∑ (𝑥𝑖 − 𝑥̂𝑖)

𝑛
𝑖=1     (18) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥𝑖 − 𝑥̂𝑖|𝑛

𝑖=1      (19) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑥𝑖 − 𝑥̂𝑖)

2𝑛
𝑖=1      (20) 

Where; 𝑥𝑖: is the actual value, 𝑥̂𝑖 : is the fitted value, 𝑛: is the 
number of observations  
 
RESULTS AND DISCUSSION 
Data Source and Description 
Figure 3 demonstrates how precipitation varied every 
month in Maiduguri during the period. It also has a 
pronounced seasonality with the rainfall being clustering in 
a limited number of months annually and it has near zero 
values at the dry season. Some years have record-breaking 
rainfall and this is especially the case after 2000 which 
demonstrates higher intermittency and intensity of rainfall. 
This high seasonality and non- stationary nature warrants 
use of decomposition-based and hybrid forecasting model 
e.g. STL-ARIMA. 
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Figure 3: Monthly rainfall time series plot for Maiduguri (1981–2023) 

 
Figure 4 has demonstrated an average rainfall in Maiduguri 
on monthly basis and it is evident that there is a strong 
seasonality on the data. It receives a lot of rainfall during 
May to September with July and August recording the 
highest and the other months receiving the little or no rain. 
It is understandable that seasonal lag features can be 
incorporated in machine learning models when 
seasonality is as prominent as this. 

Figure 5 shows the annual change in total rain per year 
between the years 1981 and 2023 which is erratic and in 
other cases there are excessive years of rainfall. The 
observation of high variability and non-stationarity of the 
time series argues that the common time-series modelling 
methods might not be sufficient to discover the underlying 
patterns.  

 

 
Figure 4: Monthly Rainfall Distribution – Maiduguri (1981-2023) 
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Figure 5: Rainfall Distribution by Year – Maiduguri 

 
STL Decomposition 
Figure 6 shows the Seasonal-Trend decomposition (STL) of 
the monthly rainfall based on Loess (STL) applied on the 
monthly rainfall series throughout the study time. 
According to this approach, the observed rainfall is broken 
down into four additive factors, that is, the original series, 
long-term trend, seasonal term, and a residual factor, 
which measures the irregular variations. 
As indicated by the original rainfall sequence in the top 
panel, there is a high rate of temporal variability whereby 
intense rainfall occurs in the wet season, with very long dry 
months of minimum rainfall. These peaks become clearly 
more pronounced in the latter part of the record, which can 
be interpreted as evidence of the magnification in the level 
of rainfall in the recent years. 
The trend component of the second panel shows the 
process of the long run development of rainfall when 
seasonal effects have been eliminated. Instead of the 
simple linear trend, the trend is multi-decadal with up and 
down swings at different time intervals. A clear increase 
can be seen towards the end of 2010s, and then a steady 
decline towards the end of the series. Such behaviour 
indicates the impact of more widespread climatic forces 
and indicates non-steadiness of long-term rainfall 
variability. 

The third (seasonal) panel shows that the annual cycle is 
quite strong and highly regular in nature, which confirms 
that seasonality is the aspect of rain pattern that is still 
dominant. Although the occurrence of seasonal peaks and 
troughes largely remains unchanged over the period of the 
study, there is observed to be a gradual rise in seasonal 
amplitude over the last few decades which exhibits 
increased rainfall within peak rainy months. 
Short-term variation not accounted by both the trend and 
the seasonal pattern is reflected in the residual component 
presented on the bottom panel. Though these residuals 
tend to mean zero, in the end, they are getting more and 
more dispersed, bigger, more frequent deviations can be 
observed in recent years. This broadening dispersion 
indicates growing variations in rainfall, which are 
presumably due to local convection, short-lived 
atmospheric disturbances. 
On the whole, the STL decomposition shows that a non-
dominant but recurring seasonal cycle only serves as an 
indicator of obvious non-stationarity of both long-run trend 
and residual variability of the rainfall series. Such 
characteristics suggest a challenge to the assumptions of 
traditional linear time-series models and are the best 
reason to use hybrid or nonlinear forms of modeling to 
better forecast rainfall and assess flood risks. 
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Figure 6: STL Decomposition 

 
Figure 7 gives the residual diagnostics results of the fitted 
model ARIMA(2,0,1) and gives an indication regarding the 
suitability of the model at explaining the underlying 
structure of the time series of rainfalls. 
The plot on the upper panel shows the plot of residuals 
against time. The series of residuals reflects a random 
movement around a zero mean and no observable pattern 
or tendency implying that the model has captured the 
primary linear dynamics in the data. Even though one or 
two sporadic positive and negative spikes are noted 
especially in the elderly, these deviations are occasional as 
opposed to chronic, which points to the fact that the 
structure has not been misspecified. 
The mid-panorama depicts a Autocorrelation Function 
(ACF) of the residues. With the exception of the 
insignificant spike at the lag zero, all the autocorration 
coefficients fall within the 95% confidence limits. This 
shows that the remaining series of residuals does not 

exhibit any statistically significant serial correlation which 
means that the ARIMA(2,0,1) model has successfully 
succeeded in eliminating any linear dependence of the 
series. 
On the same lower panel, there is also the Partial 
Autocorrelation Function (PACF) of the residuals. All the 
non-zero autocorrelations are negligible and fall within the 
confidence limits further supporting that there is no further 
autoregressive structure that is not explained by the 
model. 
In general, the diagnostics of the residual indicate that the 
ARIMA(2, 0,1) model is well elaborated. The residual values 
seem to resemble white noise and meet the major 
assumptions of independence and zero mean. 
Accordingly, there is a possibility to assume that the 
analyzed model is statistically sufficient and effective in 
forecasting in the circumstances of the rainfall data under 
consideration. 
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Figure 7: ACF and PACF of the remainder after decomposition 

 
Comparative Forecasting Performance 
In order to compare the predictive power of the proposed 
hybrid framework with already known hydrological 
forecasting models, the STL-ARIMA model was compared 
to two of the already known hydrological forecasting 

models Seasonal ARIMA (SARIMA) and the Exponential 
Smoothing of Holt-Winter. Mean squared error (MSE), Root 
mean square error (RMSE) and, Mean absolute error (MAE) 
were used to measure the performance of various models. 

 
Table 1:  Comparative Error Metrics of Forecasting Models 

Model MSE RMSE MAE 
SARIMA 1931.08 43.94 25.22 
Holt-Winter 1849.60 43.01 25.87 
STL-ARIMA 872.63 29.54 16.77 

 
The STL-ARIMA hybrid model proved to be the most 
effective one as it outperformed all measures of error, as 
shown in Table 1. The classical SARIMA model had the 
worst error rates (MSE = 1931.08), presumably because of 
its inability to capture the non-linear volatility which has 
characterized the past few decades in the Maiduguri index 
of rainfall. Although the method of HOLT-Winter offered a 
slight decrease (MSE = 1849.60) in that the multiplicative 
seasonality is well embraced, it still did not cover the issue 
complexities of trend dynamism. 
Conversely, the STL-ARIMA hybrid model minimized the 
MSE than SARIMA by nearly 55%. The RMSE decreased to 
29.54mm versus the original 43.94mm meaning that the 
hybrid model will make significantly closer predictions to 
those of the observed values of the rainfalls. This 
significant decrease in error ascertains that by splitting the 
series, more specific modelling of the different trend and 
residual designs that individual modelling often mixture 
can be achieved. 

Component Fitting Analysis 
The strength of the hybrid method is that it is able to model 
the trend and the residual components on their own using 
optimised ARIMA structures. The decomposition could be 
used to model effectively, as shown in Figure 8: 
Trend Component An ARIMA(1,1,0) was estimated on the 
trend extracted by STL. As the plot (Fig 8, top panel) 
reveals, this specification is sensitive to the non-linear 
variation in the rainfall over the long-term that is best 
recorded in the multi-decadal increase and decrease, 
which would go unnoticed by static regression models. 
Residual Component: ARIMA(2, 0, 1) was also fitted to the 
remaining series. Figure 8 (bottom panel) shows that this 
model can effectively produce the irregular noise and 
transient shocks so that the end result (forecast) is not 
merely a repeat of seasonal averages but rather a dynamic 
reaction to the recent shocks. 
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Figure 8: Fitting performance of the Hybrid components. Top: ARIMA(1,1,0) fitted to STL Trend. Bottom: ARIMA(2,0,1) 
fitted to STL Residuals 

 
Discussion 
The results provide significant insights into rainfall 
variability in Maiduguri. First, the STL decomposition 
revealed that rainfall variability in the region is driven by a 
strong seasonal cycle superimposed on a slowly evolving 
long-term trend, confirming the presence of non-stationary 
and non-linear behavior. Second, the superior 
performance of the hybrid STL–ARIMA model indicates that 
separating these components prior to forecasting 
significantly improves model interpretability and accuracy. 
In particular, the hybrid framework demonstrated 
enhanced ability to capture long-term trend shifts, 
preserve seasonal structure, and reduce forecast errors 
relative to SARIMA and Holt–Winters models. These 
findings suggest that classical single-structure models are 
limited in handling the complex rainfall dynamics of the 
Sahelian climate, while component-wise modeling offers a 
more reliable basis for long-term rainfall forecasting and 
climate-informed decision-making. 
 
CONCLUSION 
This paper had an aim to model an effective rainfall 
forecasting structure to Maiduguri, Nigeria, which would 
help manage intricate seasonal and non-linear climatic 
pattern of the area. The study found that a comparative 
evaluation conducted over a 42-year period (1981–2023) 
showed that the hybrid STL–ARIMA model outperformed 
the traditional SARIMA and Holt–Winters methods in key 
forecasting tasks, including accurate trend 
representation, effective seasonal modeling, and 

improved forecast accuracy better than the traditional 
SARIMA and Holt-Winter methods. 
Key conclusions include: 
Best Accuracy levels, SARIMA had higher root mean 
square error levels (RMSE = 29.54mm), which is more than 
30 times higher than the error levels in the STL-ARIMA 
model. 
Methodological Robustness: The analysis/breakdown of 
the time series indicated that although seasonality is the 
overriding factor, it is the erratic nature of the residual 
component where the traditional models fail and the 
hybrid model prospers. 
Operational Relevance: As extreme weather occurrences 
seem to be a rising phenomenon, including the 2024 
floods, the added accuracy of this hybrid model represents 
an indispensable resource to the policymakers. It provides 
a scientific foundation to transition between the reactive 
disaster relief and the proactive climate resilience 
planning to directly achieve SDG 13 (Climate Action) 
targets to Nigeria. 
In the future, the study can be conducted by incorporating 
exogenous factors that include sea surface temperature or 
humidity level to make the predictions of residual 
components more precise and have a longer forecast 
horizon on seasonal forecasts. 
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