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ABSTRACT

The problems of climate variability in Sahel regions with severe
rainfall anomalies bring serious challenges to the water resource
management and mitigation of the flood disasters. This paper
analyzes the effectiveness of a hybrid STL-ARIMA model to predict
monthly rainfall in Maiduguri, Nigeria, which is a town that was
affected by the 2024 floods. The article compares the hybrid,
traditional Seasonal ARIMA (SARIMA) and Exponential Smoothing by
Holt-Winter to assess previous rainfall data of 1981-2023. The
suggested method employs Seasonal-Trend Decomposition by
Loess (STL) to single out non-linear and seasonal trends that are too
complicated then subjecting the time series to ARIMA modeling.
With regards to performance, it can be seen that the STL-ARIMA
model is far ahead of the conventional approach with a Root mean
square error of 29.54mm, as opposed to 43.94mm and 43.01mm
using the SARIMA and Holt-Winter models respectively. The hybrid
model minimized the Mean Squared Error (MSE) by nearly 55% and it
was more effective in terms of capturing the sharp variance variation
and extreme wet-season peaks, which are characteristic of the area.
These results provide a strong scientific foundation in enhancing
flood early warning systems directly related to SDG 13 (Climate
Action) goals in Northeastern Nigeria.

INTRODUCTION

humans live. It impacts all elements of the ecosystem,

Climate change has a transpiring path as a long-term,
continual change in the average weather conditions that
differ greatly in both the time and the space (Karabulut et
al., 2008). This is a primary risk to all natural systems,
which threatens the development and survival of human
beings in both the economic, social, and political levels
(Oluwafemi et al., 2010). Furthermore, it is widely
acknowledged that developing nations in tropical areas,
like Nigeria, are significant affected by the climate than
their developed counterparts. Rainfall is one of the climate
parameters that affect the pattern and behavior in which
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including plants and animals. Therefore, the examination
of rainfall cannot be overemphasized (Obot and
Onyeukwu, 2010). In addition to its positive effects, rainfall
can also have negative effects, such as producing natural
disasters like floods, which can then lead to drought
(Ratnayake & Herath, 2005).

The Sahel Zone, running along West to East Africa, is
renowned for the very high variability in its climate and the
resultant environmental stressors (Epule et al., 2018).
Mitigating climate variability and change in the Sahel, as
elsewhere in Africa, is challenged by among other factors a
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dearth of suitable expertise, lack of preparedness, and
inadequate resources to deal with climate-related issues
(Washington et al., 2006). Sahel rainfall patterns have also
shown significant variability in the remote past (Zhang et
al., 2021; Nicholson et al., 2018), with forecasts indicating
that similar significant alterations are likely to occurin near
future (Chadwick et al., 2016). Though both drought and
flood are associated phenomena of the hydrological cycle,
studies have been biased towards drought since the 1970s
when there were drastic dry periods (Nicholson et al.,
2018). The floods in the Sahel have therefore been
relatively ignored. By 2018, scientific studies on drought
put floods research 44 percent behind, which has exposed
populations to immense risk (Epule et al., 2018). This
disparity aggravated the susceptibility of both humans and
the environment to the effects of flood (Canton 2021). In
addition, historical records of floods are usually not
standardized and are not rigorous (Elagib, 2021;
Umuakpero et al 2025).

The Intergovernmental Panel on Climate Change (IPCC,
2023) states thatthere is anincrease inrainfallin the world,
there are indications that it is rising on the African
continent through warming conditions (Biasutti et al.,
2019). The similarities in local data complications are
reflected in the variables in Nigeria, with earlier analyses of
meteorological stations indicating falling rainfall
conditions (Adefolalu, 1986), It is commonly observed
behavior of rainfall to increase or decrease depending on
the location and period of time of data analyzed
(Jayawardene et al., 2005). This can be particularly felt in
Maiduguri in northeast Nigeria whereby temperature
dynamics dominate the monsoon system. In 2024,
Maiduguri was hit by its highest precipitation of more than
300 mm in August after about 200mm in July. This rush took
over drainage systems causing severe flooding (Umar et
al., 2025). Without intervention, experts note that such
events will become the order of the day rather than being
the exception.

Mitigating such risks is in accordance with the global
sustainability models. Sustainable Development Goal 13
(climate action) requires urgent actions to boost resilience
and adaptive capacity towards climate related hazards
(United Nations, 2024). This is critical to the Sahel and
Nigeria that have a disproportionate load of climate
aberrations (WMO, 2024). In spite of mitigation activities in
the world, there is a growing disparity in developing
countries (UNEP, 2024; IPCC, 2023). Thus, the
operationalization of SDG 13 will require the use of an
advanced hydrological forecasting model, including the
hybrid methods put forward in this research. These models
would also promote the climate intelligence that
policymakers require to reposition disaster risk
governance away from reactive intervention models
toward proactive resilience strategies (Biermann et al.,
2025).
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In order to accomplish this predictive accuracy, in this
study time series forecasting methods of great strength
have been utilized. Autoregressive Integrated Moving
Average (ARIMA) is a popular statistical tool that employs
the past observations and lag error to predict future values
(Lem, 2024). Also, Seasonal- Trend Decomposition with
Loess (STL) is used to separate the time series data into
trend, seasonality and residual. This isolation improves the
performance of ARIMA in decisional action of seasonal
change by isolating the factors (Lem, 2024). Exponential
Smoothing State Space (ETS) models are also considered
in the study to emphasize recent data over the old data
(Hyndman et al., 2018). Considering STL before ETS or
Seasonal ARIMA (SARIMA), it eliminates the seasonality
factor, making the modeling process easier and
improvements in the forecasting business more frequent
(Ouyang et al., 2021; Hyndman et al., 2018).

Although such sophisticated statistical techniques are
available, there is a huge deficit in using the techniques to
Maiduguri, the micro-climate. The available literature on
the Sahel largely concentrates on drought indices or uses
individual forecasting models which might not be in a
position to represent the complex and non-linear volatility
of the recent years. The literature on the hybrids (STL-
ARIMA and STL-ETS) and their effectiveness in particular in
the context of the historic rain patterns witnessed in 2024
is lacking. Moreover, there is a lack of studies on the
connection between high-precision local predicting and
operationalization of SDG 13 targets in northeastern
Nigeria. This study aims to fill this gap through the
evaluation of comparative precision of hybrid ARIMA,
SARIMA and exponential smoothing in order to offer an
effective paradigm on the prediction of rainfalls in the area
in future.

Significant of Study

Research data on rainfall variability in northeast Nigeria
especially the Maiduguri is insufficient when compared to
other areas of the country. The proposed study will help to
address this gap, since it will produce localized
information and model methods, which can be utilized in
the event of a future climate-oriented research and
development.

MATERIALS AND METHODS

Study Area

Maiduguri is the state capital of Borno State, North Eastern
Nigeria. The state lies within latitude and longitude of the
state is 11°51’N and 13°40’E respectively with an Altitude
of 300m above mean sea level and borders with Chad,
Cameroun and Niger (Olofin, 1997). The land has an area
of 543km?” and has a population of about 357,104 people.
It is within the semi-arid climatic zone referred to as the
SAHEL zone. The city practically experiences two distinct
climatic seasons yearly. These are; a short rainy season
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usually from the month of June to September and along dry
season from October to May. The hottest months in the
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year are March, April and May having temperatures ranging
between 30°C-43°C (Alkali et al., 2017).
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Figure 1: Location Map of Maiduguri, Borno State

Study Dataset and Temporal Coverage

The data of 42 years of monthly rainfall (mm) was gathered
by the Nigerian Meteorological Agency (NiMet) at its
ground-based stations covering the period between 1981
and 2023. Being the official meteorology authority in
Nigeria, NiMet is the main provider of climate data, with the
information not being completely stored in the open-
access, open-global depositories, yet the data can be
obtained by formal data requests and working
partnerships, which both grants the data credibility and
traceability.

Model Training and Validation Strategy (Data Splitting)
The dataset of monthly rainfall that spans the years January
1981 to December 2023 was split into the training set and
testing set to obtain unbiased estimation of the model.
Since the climatic data is time dependent, a chronological
(non-random) division was made since it ensured that
temporal structure is maintained and information leakage
is not exhibited.

In particular, the data between January 1981 and
December 2015 (35 years; 420 months) served as a model
training and parameters estimation and January 2016-
December 2023 (8 years; 96 months) as an out of sample
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control and out of sample forecast validation. The division
offers an adequate time scale in which to learn the
dynamics of learning season and trends, whereas the
timing of the test covers the years of the past and the
present that are marked by high increases in rainfall
variation and extreme weather patterns.

All the models SARIMA, Holt-Winters, and the hybrid of
STL-ARIMA were only fitted using the training data. Multi-
step ahead forecasting technique was then used to
generate the forecasts on the period of testing and the
predicted values were compared to the actual data on
rainfall.

Mean Squared Error (MSE), Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) were measured in
the test set only. This out-of-sample validation model
guarantees just and standardized comparisons of
predictive accuracy of rival models.

Models

This research uses the ARIMA (Auto-Regressive Integrated
Moving Average) model in examining and predicting rainfall
patterns in Maiduguri, Nigeria. The ARIMA model is a
popular time series forecasting approach which
incorporates autoregressive (AR) and moving average (MA)
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components, as well as differencing to ensure that the data
becomes stationary. Under this model, the ordering is
done using the shape of the autocorrelation function plot
(ACF) and partial autocorrelation function plot (PACF) in
order to come up with appropriate orders forthe AR and MA
components. Model performance is also tested using
statistical indices such as Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE) that are compared to
determine how accurate the forecastis. Through the use of
the ARIMA model, the study will serve a solid base to the
interpretation and forecasting of the rainfall patterns of
Maiduguri thereby supporting flood risk prediction, early
warning systems, and proactive flood mitigation planning
within Maiduguri.

The Autoregressive (AR) Model

An autoregressive model of order, p, that is AR(p) an
autoregressive model assumes that the current value, x t,
is expressed as a linear combination of its past values in
the series of length p, plus an element of error. In general,
itis expressed as follows:

xx=c+ Z?:l i Xe—i T & (1
Where, X; is the dependent factor (monthly rainfall) at time
t, X._j areindependent factorsattimelagt — 1,t — 2,...t —
I, ¢i(¢p1, ¢z, ..., Pp) are the autoregressive coefficient to be
estimated, c is a constant (intercept) and g, is the white
noise term at time t, assumed to be independently
distributed with mean zero and constant variance.

The Moving Average (MA) model

The Moving Average model of order q is generally
represented as MA(q), and uses past forecast errors in a
regression-like model:

Xe = W+ & + Z?:l 0;& (2)
Where g_j is the error term predicted at time lags and t —
L,t—2,...,t —q, 6;(01,0,,..,0,) are the moving average
coefficients

The ARIMA Model
The ARIMA model is a generalization of the AR and MA
models in the sense that it adds differencing in order to
manage non-stationarity. An ARIMA(p, d, q) Model can be
represented as B, marking backward shift operator, where
by BX; = X;_; .
The model can be explained by the following equation:
$p(B)(1 — B)'X, = ¢ + 0, (B)e: (3)
Where, (1 — B)d is the differencing operator of order d,
which makes the non-stationary series X, stationary, @,,(B)
is the autoregressive polynomial of order p:
¢$p(B) =1—-¢B— ¢2B? — ¢3B° — ¢4B4_---_¢po

4)
04(B) is the moving average polynomial of order g:
6,(B) =1+ 6,B + 6,B* + 6;B% + 6,B*+...+6,B4

(5)
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Cis the constant
&; is the white noise error term

Seasonal ARIMA (SARIMA)

When a time series display a recurring seasonal pattern

after every s observation, it is said to have a seasonal

component. Forinstance, inmonthly data s = 12, while for

quarterly data s = 4. To effectively capture and model

seasonality, the ARIMA framework is extended into the

seasonal ARIMA (SARIMA) model.

The SARIMA model is denoted as ARIMA(p,d,q) X

(P,D, Q),,where (p,d, q) represents the non-seasonal part

and (P, D, Q), represents the seasonal part.

The general mathematical formulation is expressed using

the backshift operator B as follows:

®p(B%),(B)(1 — BS)P(1 — B)4X, = ¢ + 04 (B*)0,(B)e,
(6)

Where X; is the observed time series (monthly rainfall) at

time , s is the seasonal period (s = 12 for monthly rainfall),

&; is the white noise error term at term ¢.

Non-Seasonal Operators

¢, (B) is the non-seasonal Autoregressive (AR) polynomial
of order p.

¢p(B) =1 — ¢;B — ¢,B’—...—¢,BP 7)

04(B) is the non-seasonal moving average of order q.

0q(B) = 1+ 6,B + 6,B*+... +6,B9 (8)

(1 — B)4 is the non-seasonal differencing of order d.

Seasonal Operators

@, (B?®) is the Seasonal Autoregressive (SAR) polynomial of
order P

®p(B¥) =1— ®;B5 — ®,B?»—... —P,BF* 9)

04 (B®) is the Seasonal Moving Average (SMA) polynomial
of order Q.

0o(B°) =1+ 0,B° + 0,B* + -+ 0,B%

(1 — B)P is the Seasonal Differencing of order D.

(10)

Exponential Smoothing (Holt-Winter Multiplicative)
Given that rainfall data typically exhibits seasonality where
the amplitude of the seasonal variation is proportional to
the level of the series, the multiplicative Holt-Winter’s
method is used.

The observed rainfall series X; is modeled as the product
of the level (L;), trend (b;), and seasonal (S;)
components:

Xt = (Le + b)Se + &

The smoothing equations are

Level Equation
X

i + (1 —a)(Le—y + be_q)
Trend Equation

by =B(Ls — Le—g) + (1 = )by
Seasonal Equation

Se=v N + (1 —y)St—s

Lt—1+bt—q

(11)

Li=a (12)
(13)

(14)
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Where X, is the observed rainfall at time t, L;, b, S; are the
level, trend, and seasonal components respectively, , 5,y
are the smoothing parameters (0 <gq,B,y <1), s is
seasonal period (s = 12).

The h-step ahead prediction equation is:
Xipny, = (Le + hb)seen, —m(h + 1) (15)
Decomposition and Deseasonalization

The STL algorithm, first, is used to break down the original
time series Y, into seasonal (S;), trend (T;) and remainder
(R,) parts. The series, denoted as Y,4, is derived when
subtracting the seasonal series in the original series:
YtSAZYt_StZTt"‘Rt (16)
Forecasting (The Components Forecasted
Separately and then Recombined)

Seasonal Component (S;): Seasonal component is mostly
determined by seasonal naive approach as it is expected
that the latest pattern in the season will be repeated.
Seasonally Adjusted Component (YtSA): The non-seasonal
time series (trend and irregularity) is estimated when using
an ARIMA(p, d, g) model.

The next h—step forecast, Y., is a result of any
summation of the forecasts of seasonal component and
ARIMA forecast of seasonally adjusted series:

5 A 5 SA
Yeion = Stj-h + Yein (17)
Where S;,, is the forecasted seasonal component

are

corresponding to the future period and ?HhSA is the
forecast generated by ARIMA model for the seasonally
data.

STL-ARIMA Hybrid Modeling Framework

The forecasting algorithm is founded on a hybrid modeling
architecture that combines Loess-based Seasonal-Trend
decomposition techniques (STL) with the Autoregressive
Integrated Moving Average (ARIMA) model to capture the
complex temporal structure of rainfall time series (Figure
2). This approach integrates the strengths of
decomposition methods and stochastic time series
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modeling to improve predictive accuracy and model
interpretability.

Within this framework, STL decomposition is first applied
to disaggregate the original rainfall series into three
additive components: the trend, seasonal, and remainder
(residual) components. The trend component represents
long-term changes in rainfall behavior, the seasonal
component reflects repetitive periodic patterns driven by
climatic cycles, and the remainder component captures
non-periodic, irregular, and unpredictable fluctuations
that cannot be explained by the trend or seasonal
structures (Figure 2).

Each component is then modeled independently in a
manner consistent with its statistical characteristics. The
trend component is modeled using an ARIMA(1,1,0)
process, which represents long-term persistence and
gradual changes in rainfall dynamics. The seasonal
component is addressed through seasonal mapping,
which preserves and extrapolates the recurring structure of
the rainfall cycle. The remainder component is modeled
using an ARIMA(2,0,1) process to capture short-term
dependencies and stochastic variability (Figure 2).
Following component-wise modeling, forecasting and
recombination are performed by additively integrating the
forecasts of the trend, seasonal, and remainder models.
This recombination follows the additive structure of the
STL decomposition, ensuring that long-term trends,
seasonal variations, and stochastic disturbances are
collectively expressed in the final forecast output (Figure
2).

By isolating and modeling distinct temporal dynamics
independently, the hybrid STL-ARIMA architecture enables
more accurate and stable rainfall prediction without
forcing a single model to represent all underlying
processes. This methodology strengthens predictive
performance, enhances interpretability, and improves
robustness in non-stationary climatic environments.
Consequently, it is particularly well suited for applications
in hydroclimatic forecasting, climate risk assessment, and
resilience planning, as conceptually illustrated in Figure 2.
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Figure 2: Methodological flowchart of the STL-ARIMA hybrid forecasting framework

Statistical Evaluation

Evaluating the performance of a predictive model is a
critical component of the modelling process, particularly
when its effectiveness is assessed relative to alternative
modelling approaches. This process typically depends on
the use of particular statistical measures. Nevertheless,
models can have almost identical results for a particular
measure, using only one measure might not give a
comprehensive view of the performance of the model.
Each measure identifies only a specific feature of the
model's capacity to mimic actual data. Hence, it is
advisable to employ a set of statistical measures to
achieve a more complete and accurate assessment of
model performance so that more meaningful comparisons
between various modelling techniques can be made.
Among the most frequently used are MSE, RMSE and MAE.

1 =
RMSE =~ \[S7 (x; — %)) (18)
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n

1 o

MAE = —¥i, % — %l (19)
1 o

MSE = — 3 (x; — ;) (20)

Where; x;: is the actual value, X;: is the fitted value, n: is the
number of observations

RESULTS AND DISCUSSION

Data Source and Description

Figure 3 demonstrates how precipitation varied every
month in Maiduguri during the period. It also has a
pronounced seasonality with the rainfall being clusteringin
a limited number of months annually and it has near zero
values at the dry season. Some years have record-breaking
rainfall and this is especially the case after 2000 which
demonstrates higher intermittency and intensity of rainfall.
This high seasonality and non- stationary nature warrants
use of decomposition-based and hybrid forecasting model
e.g. STL-ARIMA.
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Maiduguri Rainfall Time Series
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Figure 3: Monthly rainfall time series plot for Maiduguri (1981-2023)

Figure 4 has demonstrated an average rainfall in Maiduguri
on monthly basis and it is evident that there is a strong
seasonality on the data. It receives a lot of rainfall during
May to September with July and August recording the
highest and the other months receiving the little or no rain.
It is understandable that seasonal lag features can be
incorporated in machine learning models when
seasonality is as prominent as this.

Figure 5 shows the annual change in total rain per year
between the years 1981 and 2023 which is erratic and in
other cases there are excessive years of rainfall. The
observation of high variability and non-stationarity of the
time series argues that the common time-series modelling
methods might not be sufficient to discover the underlying
patterns.
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Figure 4: Monthly Rainfall Distribution — Maiduguri (1981-2023)
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Figure 5: Rainfall Distribution by Year — Maiduguri

STL Decomposition

Figure 6 shows the Seasonal-Trend decomposition (STL) of
the monthly rainfall based on Loess (STL) applied on the
monthly rainfall series throughout the study time.
According to this approach, the observed rainfall is broken
down into four additive factors, that is, the original series,
long-term trend, seasonal term, and a residual factor,
which measures the irregular variations.

As indicated by the original rainfall sequence in the top
panel, there is a high rate of temporal variability whereby
intense rainfall occurs in the wet season, with very long dry
months of minimum rainfall. These peaks become clearly
more pronounced in the latter part of the record, which can
be interpreted as evidence of the magnification in the level
of rainfall in the recent years.

The trend component of the second panel shows the
process of the long run development of rainfall when
seasonal effects have been eliminated. Instead of the
simple linear trend, the trend is multi-decadal with up and
down swings at different time intervals. A clear increase
can be seen towards the end of 2010s, and then a steady
decline towards the end of the series. Such behaviour
indicates the impact of more widespread climatic forces
and indicates non-steadiness of long-term rainfall
variability.
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The third (seasonal) panel shows that the annual cycle is
quite strong and highly regular in nature, which confirms
that seasonality is the aspect of rain pattern that is still
dominant. Although the occurrence of seasonal peaks and
troughes largely remains unchanged over the period of the
study, there is observed to be a gradual rise in seasonal
amplitude over the last few decades which exhibits
increased rainfall within peak rainy months.

Short-term variation not accounted by both the trend and
the seasonal patternis reflected in the residual component
presented on the bottom panel. Though these residuals
tend to mean zero, in the end, they are getting more and
more dispersed, bigger, more frequent deviations can be
observed in recent years. This broadening dispersion
indicates growing variations in rainfall, which are
presumably due to local convection, short-lived
atmospheric disturbances.

On the whole, the STL decomposition shows that a non-
dominant but recurring seasonal cycle only serves as an
indicator of obvious non-stationarity of both long-run trend
and residual variability of the rainfall series. Such
characteristics suggest a challenge to the assumptions of
traditional linear time-series models and are the best
reason to use hybrid or nonlinear forms of modeling to
better forecast rainfall and assess flood risks.
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Observed (Raw Rainfall Data)
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Figure 6: STL Decomposition

Figure 7 gives the residual diagnostics results of the fitted
model ARIMA(2,0,1) and gives an indication regarding the
suitability of the model at explaining the underlying
structure of the time series of rainfalls.

The plot on the upper panel shows the plot of residuals
against time. The series of residuals reflects a random
movement around a zero mean and no observable pattern
or tendency implying that the model has captured the
primary linear dynamics in the data. Even though one or
two sporadic positive and negative spikes are noted
especiallyinthe elderly, these deviations are occasional as
opposed to chronic, which points to the fact that the
structure has not been misspecified.

The mid-panorama depicts a Autocorrelation Function
(ACF) of the residues. With the exception of the
insignificant spike at the lag zero, all the autocorration
coefficients fall within the 95% confidence limits. This
shows that the remaining series of residuals does not
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exhibit any statistically significant serial correlation which
means that the ARIMA(2,0,1) model has successfully
succeeded in eliminating any linear dependence of the
series.

On the same lower panel, there is also the Partial
Autocorrelation Function (PACF) of the residuals. All the
non-zero autocorrelations are negligible and fall within the
confidence limits further supporting that there is no further
autoregressive structure that is not explained by the
model.

In general, the diagnostics of the residual indicate that the
ARIMA(2, 0,1) modelis well elaborated. The residual values
seem to resemble white noise and meet the major
assumptions of independence and zero mean.
Accordingly, there is a possibility to assume that the
analyzed model is statistically sufficient and effective in
forecasting in the circumstances of the rainfall data under
consideration.
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ARIMA(2,0,1) Residuals (Error over Time)
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Figure 7: ACF and PACF of the remainder after decomposition

Comparative Forecasting Performance

In order to compare the predictive power of the proposed
hybrid framework with already known hydrological
forecasting models, the STL-ARIMA model was compared
to two of the already known hydrological forecasting

Table 1: Comparative Error Metrics of Forecasting Models

models Seasonal ARIMA (SARIMA) and the Exponential
Smoothing of Holt-Winter. Mean squared error (MSE), Root
mean square error (RMSE) and, Mean absolute error (MAE)
were used to measure the performance of various models.

Model MSE RMSE MAE

SARIMA 1931.08 43.94 25.22
Holt-Winter 1849.60 43.01 25.87
STL-ARIMA 872.63 29.54 16.77

The STL-ARIMA hybrid model proved to be the most
effective one as it outperformed all measures of error, as
shown in Table 1. The classical SARIMA model had the
worst error rates (MSE = 1931.08), presumably because of
its inability to capture the non-linear volatility which has
characterized the past few decades in the Maiduguri index
of rainfall. Although the method of HOLT-Winter offered a
slight decrease (MSE = 1849.60) in that the multiplicative
seasonality is well embraced, it still did not cover the issue
complexities of trend dynamism.

Conversely, the STL-ARIMA hybrid model minimized the
MSE than SARIMA by nearly 55%. The RMSE decreased to
29.54mm versus the original 43.94mm meaning that the
hybrid model will make significantly closer predictions to
those of the observed values of the rainfalls. This
significant decrease in error ascertains that by splitting the
series, more specific modelling of the different trend and
residual designs that individual modelling often mixture
can be achieved.
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Component Fitting Analysis

The strength of the hybrid method is that it is able to model
the trend and the residual components on their own using
optimised ARIMA structures. The decomposition could be
used to model effectively, as shown in Figure 8:

Trend Component An ARIMA(1,1,0) was estimated on the
trend extracted by STL. As the plot (Fig 8, top panel)
reveals, this specification is sensitive to the non-linear
variation in the rainfall over the long-term that is best
recorded in the multi-decadal increase and decrease,
which would go unnoticed by static regression models.
Residual Component: ARIMA(2, 0, 1) was also fitted to the
remaining series. Figure 8 (bottom panel) shows that this
model can effectively produce the irregular noise and
transient shocks so that the end result (forecast) is not
merely a repeat of seasonal averages but rather a dynamic
reaction to the recent shocks.
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Stage 1: How well does ARIMA capture the Trend?
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Figure 8: Fitting performance of the Hybrid components. Top: ARIMA(1,1,0) fitted to STL Trend. Bottom: ARIMA(2,0,1)

fitted to STL Residuals

Discussion

The results provide significant insights into rainfall
variability in Maiduguri. First, the STL decomposition
revealed that rainfall variability in the region is driven by a
strong seasonal cycle superimposed on a slowly evolving
long-term trend, confirming the presence of non-stationary
and non-linear behavior. Second, the superior
performance of the hybrid STL-ARIMA modelindicates that
separating these components prior to forecasting
significantly improves model interpretability and accuracy.
In particular, the hybrid framework demonstrated
enhanced ability to capture long-term trend shifts,
preserve seasonal structure, and reduce forecast errors
relative to SARIMA and Holt-Winters models. These
findings suggest that classical single-structure models are
limited in handling the complex rainfall dynamics of the
Sahelian climate, while component-wise modeling offers a
more reliable basis for long-term rainfall forecasting and
climate-informed decision-making.

CONCLUSION

This paper had an aim to model an effective rainfall
forecasting structure to Maiduguri, Nigeria, which would
help manage intricate seasonal and non-linear climatic
pattern of the area. The study found that a comparative
evaluation conducted over a 42-year period (1981-2023)
showed that the hybrid STL-ARIMA model outperformed
the traditional SARIMA and Holt-Winters methods in key
forecasting tasks, including accurate trend
representation, effective seasonal modeling, and
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improved forecast accuracy better than the traditional
SARIMA and Holt-Winter methods.

Key conclusions include:

Best Accuracy levels, SARIMA had higher root mean
square error levels (RMSE = 29.54mm), which is more than
30 times higher than the error levels in the STL-ARIMA
model.

Methodological Robustness: The analysis/breakdown of
the time series indicated that although seasonality is the
overriding factor, it is the erratic nature of the residual
component where the traditional models fail and the
hybrid model prospers.

Operational Relevance: As extreme weather occurrences
seem to be a rising phenomenon, including the 2024
floods, the added accuracy of this hybrid model represents
anindispensable resource to the policymakers. It provides
a scientific foundation to transition between the reactive
disaster relief and the proactive climate resilience
planning to directly achieve SDG 13 (Climate Action)
targets to Nigeria.

In the future, the study can be conducted by incorporating
exogenous factors thatinclude sea surface temperature or
humidity level to make the predictions of residual
components more precise and have a longer forecast
horizon on seasonal forecasts.
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