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A B S T R A C T  
Rapid urbanization and increasing vehicular demand have 
intensified traffic congestion, exposing the limitations of 
conventional static traffic signal control systems. This study 
proposes a novel hybrid intelligent traffic control framework that 
integrates an Adaptive Neuro-Fuzzy Inference System, Genetic 
Algorithm, and Reinforcement Learning (ANFIS–GA–RL) to achieve 
real-time adaptive signal optimization. The proposed approach 
uniquely combines interpretable fuzzy reasoning for managing 
uncertainty, genetic algorithms for global parameter optimization, 
and reinforcement learning for closed-loop, real-time decision-
making, distinguishing it from existing standalone and partially 
hybrid methods. Performance is evaluated in a MATLAB-based urban 
traffic simulation using eight performance indicators, travel time, 
average vehicle speed, throughput, traffic density, queue length, 
delay time, intersection delay, and computational time. 
Comparative results against conventional Fuzzy Logic, standalone 
Genetic Algorithm, Artificial Neural Network, ANFIS, and ANFIS–GA 
controllers demonstrate consistent and measurable performance 
gains. Relative to the baseline fuzzy logic controller, the proposed 
ANFIS–GA–RL model achieves an overall improvement of 64.9%, 
characterized by substantial reductions in travel time delay, 
intersection delay, and computational overhead, alongside 
enhanced throughput and traffic flow stability. These findings 
confirm the robustness, scalability, and real-time applicability of the 
proposed framework for intelligent urban traffic signal control, with 
future work focusing on IoT-enabled deployment and field validation. 

 
INTRODUCTION 
Intelligent traffic optimization has emerged as a critical 
solution to the growing challenges of urbanization, traffic 
congestion, and road safety in modern transportation 
systems. With the rapid expansion of urban populations 
which is projected to reach 68% of the global population by 

2050 (Javed et al., 2024) cities worldwide face escalating 
traffic inefficiencies, environmental pollution, and 
economic losses. In developing regions, such as Africa, 
rapid urbanization has led to the rise of "accidental 
megacities," such as Lagos, Nigeria, where infrastructural 
deficiencies and poor traffic management exacerbate 
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congestion (Oyewo & Oyewale, 2023). The consequences 
are severe: prolonged travel times, increased accidents, 
and significant economic burdens, with road traffic 
crashes costing nations an estimated 3% of their GDP 
annually (WHO, 2018). 
Road transport dominates Nigeria, accounting for 80% of 
all traffic (Aderibigbe et al., 2024), yet the sector suffers 
from inadequate infrastructure, insufficient funding, and 
outdated traffic control systems. While developed nations 
leverage advanced technologies such as AI and IoT for 
traffic management, many developing countries still rely 
on static or semi-dynamic systems that fail to adapt to 
real-time conditions (Faheem et al., 2024). Traditional 
methods, such as fixed-time traffic signals, lack 
responsiveness, while actuated control systems struggle 
with predictive capabilities (Jutury et al., 2023). Manual 
interventions are inefficient and error-prone, highlighting 
the urgent need for intelligent, adaptive solutions. Recent 
advancements in artificial intelligence particularly fuzzy 
logic, genetic algorithms (GA), and deep reinforcement 
learning (DRL) offer promising avenues for traffic 
optimization. Fuzzy logic handles uncertainty in traffic data 
but requires complex tuning (Jutury et al., 2023). GA 
optimizes signal timing but faces slow convergence 
(Yektamoghadam et al., 2024), while DRL enables 
autonomous learning but demands extensive training data 
(Nookala et al., 2023). Hybrid approaches, such as 
integrating Adaptive Neuro-Fuzzy Inference Systems 
(ANFIS) with GA and DRL, aim to overcome these 
limitations by combining adaptability, optimization, and 
real-time learning (Bi et al., 2024). This survey explores the 
integration of ANFIS, GA, and DRL in Intelligent Traffic 
Optimization Systems (ITOS), evaluating their 
effectiveness in reducing congestion, improving safety, 
and enhancing traffic flow efficiency. By synthesizing key 
studies and methodologies, we highlight the potential of 
hybrid AI models to transform urban mobility, particularly 
in underserved regions like Nigeria. The discussion also 
addresses challenges such as computational costs and 

real-world deployment and proposes future directions, 
including IoT integration and scalable implementations. 
The findings underscore the transformative potential of AI-
driven traffic management, offering a roadmap for 
policymakers and researchers to develop sustainable, 
adaptive transportation systems in an increasingly 
urbanized world. 
 
Related Work 
Traffic congestion is a global issue, costing economies 
billions annually (INRIX, 2023). Traditional systems, such 
as fixed-time signals and actuated control, fail to adapt to 
dynamic traffic conditions (Vieira et al., 2024). Machine 
learning and computational intelligence have emerged as 
promising solutions, yet challenges like computational 
overhead and real-time adaptability persist (Merbah et al., 
2023). Traffic optimization is crucial for addressing the 
challenges posed by urbanization, congestion, and road 
safety while promoting environmental sustainability 
(Alamoudi et al., 2024); (Niu et al., 2023). The integration of 
intelligent transportation systems (ITS) offers a promising 
solution to mitigate traffic congestion and reduce carbon 
emissions, aligning with the development of smart citie (Lv 
& Shang, 2023). However, unique challenges persist, 
particularly in developing countries, necessitating tailored 
strategies (Mai-Tan et al., 2020).  
 
Global Traffic Congestion and Its Economic Impact 
Traffic congestion presents a significant economic burden 
globally. In 2022, the United States experienced losses of 
$120 billion due to congestion, with drivers spending an 
average of 51 hours in traffic (Dimri et al., 2024). London 
stands out as the most congested city in Europe, where 
drivers lose approximately 148 hours annually due to 
traffic delays (Dimri et al., 2024). In Asia, cities such as 
Mumbai and Bangkok encounter severe congestion, with 
average speeds plummeting to 10 km/h during peak hours 
(Dimri et al., 2024. 

 

 
Figure 1: Annual Time Spent in Traffic Congestion (in Hours) Among the Top Ten Nations 
with the Largest Recorded Traffic in 2022 Source: (Dimri et al., 2024) 
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Several factors contribute to traffic congestion, including 
the increasing number of vehicles, inadequate 
transportation infrastructure, and the lack of effective 
traffic management systems (Mai-Tan et al., 2020); 
(Praveen & Raj, 2020). Addressing these underlying causes 
is essential to alleviate congestion and minimize its 
economic impact. 
 
Road Safety: A Critical Global Challenge 
Road safety is another critical challenge globally. The 
World Health Organization (WHO) reported that 
approximately 1.3 million people die annually due to road 

traffic accidents, with low- and middle-income countries 
accounting for 93% of fatalities despite having only 60% of 
the world's vehicles (WHO, 2023). Inefficient traffic 
management systems, poor infrastructure, and lack of 
real-time monitoring exacerbate these issues. According 
to the World Bank and World Health Organization (WHO) 
reports, road traffic injuries were ranked as the 9th leading 
cause of death worldwide in 2004. Projections suggested 
that by 2030, road traffic accidents would rise to become 
the 5th leading cause of death, surpassing diseases like 
tuberculosis and HIV/AIDS. 

 

 
Figure 2: Projected Global Leading Causes of Death (2004–2030) Source: World Health Statistics. 
http://www.who.int/whosis/whostat/2008/en/index.html. 

 
Intelligent Transportation Systems for Enhanced Traffic 
Management 
Intelligent transportation systems (ITS) offer innovative 
approaches to enhance traffic management, improve road 
safety, and reduce environmental impact (Lv & Shang, 

2023). These systems integrate advanced technologies, 
such as artificial intelligence (AI), the Internet of Things 
(IoT), and machine learning, to optimize traffic flow and 
provide real-time information to drivers (Muhammad et al., 
2020); (Ma et al., 2019). 

 

 
Figure 3: Intelligent Traffic Control Source: (Lv & Shang, 2023) 

 

http://www.who.int/whosis/whostat/2008/en/index.html
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Intelligent Traffic Control Systems (ITCS) significantly 
reduce traffic congestion and travel time (Jaleel et al., 
2020), enhance road safety with fewer accidents (Uma & 
Eswari, 2021), lower fuel consumption and vehicle 
emissions (Lv & Shang, 2023), and improve mobility and 
accessibility for all road users (Alamoudi et al., 2024). 
 
Traffic Management Strategies 
Based on the analyzed data, ITS employs various traffic 
management strategies to optimize traffic flow (Amador et 
al., 2024); (Ren et al., 2011). These strategies include: 

1. Adaptive Traffic Signal Control: Adjusting traffic signal 
timings in real-time based on current traffic 
conditions (Jaleel et al., 2020). 

2. Rerouting: Providing drivers with alternative routes to 
avoid congested areas (Khatri et al., 2020). 

3. Incident Management: Quickly detecting and 
responding to traffic accidents to minimize disruption 
(Liu et al., 2023). 

 
Data Sources for Intelligent Traffic Monitoring and 
Prediction 
Intelligent traffic monitoring uses fixed sensors, mobile 
data, and contextual information for accurate prediction. 
Inductive loops, RFID, and cameras track flow and 
congestion (Upadhyay et al., 2024; Alsahfi et al., 2024; 
Salunke et al., 2024; Pan et al., 2024; Qiu et al., 2024). 
Mobile sources like GPS, probe vehicles, Bluetooth, and 
GSM provide continuous traffic state data (Jeevan et al., 
2024; Babiyola et al., 2023; Zhang et al., 2023; Carrese et 
al., 2021; Amer et al., 2024; Rabinovich, 2023), while event, 
weather, and social media inputs improve non-recurrent 
congestion prediction (Zhang et al., 2024; Das et al., 2024; 
Celar et al., 2024; Kim et al., 2025; Jain et al., 2023). Smart 
motorways and vehicular networks enhance real-time 
data and cooperative management (Krishna et al., 2024; 
Bintoro, 2024; Pasupuleti, 2024). 
 
ANFIS GA RL and Hybrid Traffic Optimization Models  
ANFIS Optimization Models 
ANFIS-based approaches outperform traditional models 
like MLR, ANN, and SVM in traffic applications due to their 
ability to handle nonlinear and uncertain systems, 
achieving high accuracy and reducing delay and queue 
length (Udofia, 2019; Dong, 2018; Tripathi & Sharma, 
2024). Hybrid ANFIS models using PSO, clustering, or 
wavelet preprocessing improve robustness and predictive 
performance (Mai & Ngo, 2021; Chen & Zhai, 2022). ANFIS 
is also applied in public transport optimization, pavement 
assessment, congestion risk modeling, ITS security, and 
V2V systems (Pilevari et al., 2021; Alawad & Kaewunruen, 
2020; Usha et al., 2025). However, reliance on offline 
training and simulation-based validation limits real-time 
scalability (Ujong et al., 2025). 
 

GA Optimization Models 
Single Genetic Algorithm (GA) approaches have proven 
effective for traffic signal optimization by reducing travel 
time, delay, and queue lengths, with improvements up to 
40% over fixed-time control (Mao et al., 2019). These 
methods optimize signal timings using selection, 
crossover, and mutation, sometimes enhanced with 
simple fuzzy rules or adaptive operators to improve 
convergence and stability (Fu, 2022; Hai et al., 2022). 
While most studies rely on simulations and small-scale 
networks, GA consistently outperforms traditional timing 
methods, providing a robust foundation for traffic 
management. Limitations include computational intensity 
and reduced scalability for complex real-world networks 
(Manh et al., 2020; Tiberio et al., 2022). 
 
RL Optimization Models 
Deep reinforcement learning (DRL) has emerged as a 
highly effective approach for adaptive traffic management, 
outperforming traditional fixed-time and actuated 
controls. Models such as DQN, PPO, Actor–Critic, and 
multi-agent DRL consistently reduce vehicle waiting times, 
queue lengths, and overall travel time, with improvements 
ranging from 25% to over 80% across single and multiple 
intersections (Ma et al., 2021; Wang et al., 2022; Pan, 2024; 
Faqir et al., 2024). Integrating advanced techniques like 
graph neural networks and LSTM forecasting enhances 
anticipatory control and network-wide coordination, 
improving throughput and reducing congestion (Hu, 2025; 
Yang et al., 2025; Abrol et al., 2024). DRL also enables joint 
optimization of safety, fuel consumption, and emissions 
while maintaining real-time adaptability. Although 
computationally intensive and dependent on high-quality 
traffic data, DRL’s ability to learn from dynamic traffic 
conditions makes it a robust and scalable solution for 
modern urban traffic systems. 
 
Hybrid Optimization Models  
Hybrid traffic optimization approaches combining ANFIS, 
Genetic Algorithms (GA), and Deep Reinforcement 
Learning (DRL) have shown significant improvements in 
urban traffic management. GA-enhanced ANFIS models 
achieve superior traffic flow prediction (R² up to 99.8%) 
and improved signal timing (Olayode et al., 2023; Shahkar 
et al., 2023). Integrating fuzzy preprocessing with DRL 
reduces traffic conflicts and waiting times by 16–59%, 
while multi-agent DRL frameworks achieve up to 63% 
reductions in queues and waiting times (Bangalee & 
Ahmed, 2024; Mirbakhsh & Azizi, 2024; Moreno-Malo et al., 
2024; Kumar et al., 2021). Hybrid GA–ML methods further 
accelerate convergence and decrease travel time by up to 
45% under incident conditions (Mao et al., 2022). Overall, 
these hybrid systems provide dynamic, real-time, and 
scalable traffic control, though they require careful tuning 
and higher computational resources. 
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MATERIALS AND METHODS 
This section presents the materials, data sources, system 
modeling approach, and methodological framework 
employed for the development of the proposed intelligent 
traffic signal control system. A model-driven and 
simulation-based research design was adopted to ensure 
analytical rigor, reproducibility, and applicability to real-
time urban traffic environments. 
 
Materials and Data Sources 
The traffic state information used in this study includes 
vehicle arrival rate, queue length, traffic density, and 
delay, which collectively characterize real-time 
intersection conditions. These data were obtained from 
the U.S. Traffic Signal Dataset (Data.gov, 2023 URL: 
https://catalog.data.gov/dataset/traffic-signal-
a46dd/resource/f724f512-df30-45f6-af28-9fdf620847e1) 
and subsequently adjusted to reflect traffic characteristics 
typical of developing urban environments, particularly 
Nigerian cities. For a typical Nigerian urban highway, the 
standard capacity is (Cmax = 2000) vehicles/hour (HCM, 
2022). Parameter scaling was performed on vehicle flow 
rates, saturation flow, and signal timing distributions 
based on standard traffic engineering guidelines. All 
simulations, model training, and performance evaluations 
were implemented in MATLAB R2023b. 
 
Problem Formulation 
The objective of this study is to develop a fully actuated 
and adaptive intelligent traffic control agent capable of 
managing signalized intersections in real time under 
dynamic and uncertain traffic conditions. Unlike 
conventional traffic control systems that rely on fixed 
schedules, handcrafted features, or offline optimization, 
the proposed framework adopts an end-to-end learning 
strategy in which real-time traffic states, obtained from 

sensors or vision-based systems, are directly translated 
into optimal traffic signal control actions. This enables 
responsive and continuous adaptation to fluctuating 
traffic demand. 
Urban traffic signal control is formulated as a sequential 
decision-making problem, in which the operation of a 
signalized intersection evolves over discrete time steps. At 
each decision instant, the controller observes the current 
traffic condition and selects a control action that 
influences subsequent traffic states. This interaction is 
modeled as a Markov Decision Process (MDP), defined as: 
E =  ⟨S, A, P, R, γ⟩     (1) 
In this formulation, the state space S represents real-time 
traffic conditions characterized by variables such as 
queue length, vehicle delay, traffic density, and arrival 
rate. The action space A consists of feasible traffic signal 
control decisions, including signal phase selection and 
green-time extension. The state transition probability P(s′ ∣
s, a) describes the likelihood of the system evolving from 
the current traffic state s to a subsequent state s′ following 
the execution of action a. The reward function 𝑅(𝑠, 𝑎) 
quantifies the immediate performance of each control 
decision and is designed to penalize congestion indicators 
such as excessive delay, queue accumulation, and 
frequent vehicle stops, while encouraging efficient traffic 
flow. The discount factor  𝛾 ∈ (0,1) governs the trade-off 
between short-term performance gains and long-term 
traffic optimization objectives. 
The system aims to minimize average delay, queue length, 
and stops, while maximizing throughput and traffic flow 
efficiency. Figure 4 illustrates possible signal phases, 
vehicle movements, and the intersection grid layout, 
providing the structural basis for the sequential decision-
making formulation. 

 

 
Figure 4: Possible Signal Phases and Vehicle Movements and an illustration of Intersection Grid 
Adapted (FHWA, 2017) 

 
Methods 
The Core Integrated Methodological Modules of the Hybrid 
Intelligent Traffic Optimization Framework consist of the 
following Modules; 

Adaptive Neuro-Fuzzy Inference System (ANFIS) 
Module  
The ANFIS module integrates fuzzy logic and neural 
networks to dynamically infer traffic patterns and optimize 

https://catalog.data.gov/dataset/traffic-signal-a46dd/resource/f724f512-df30-45f6-af28-9fdf620847e1
https://catalog.data.gov/dataset/traffic-signal-a46dd/resource/f724f512-df30-45f6-af28-9fdf620847e1
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signal timings. Fuzzy membership functions categorize 
congestion into low, medium, and high levels, while neural 
learning refines control decisions using historical traffic 
data. Overall, ANFIS provides robust handling of uncertain 
and nonlinear traffic dynamics, models complex traffic 
relationships through fuzzy rules, and supports adaptive 
learning from data to continuously enhance rule-based 
decision-making. 
 
ANFIS Layer 
The ANFIS layer maps traffic inputs to control outputs 
using fuzzy inference, providing interpretable and adaptive 
decision-making. The operations include: 
Fuzzification: Converts crisp traffic inputs (𝑥𝑖) into fuzzy 
variables using membership functions (𝜇(𝑥𝑖)): 
𝜇𝐴(𝑥) =

1

1+(
𝑥−𝑐

𝑎
)

2𝑏     (2) 

where (a, b, c) are membership function parameters 
(Olayode et al., 2023). 
Fuzzy Inference: Applies rules of the form: 
𝑅𝑗:IF 𝜌 is 𝐴𝑗 AND 𝑞 is 𝐵𝑗  THEN 𝑦𝑗 = 𝑓𝑗(𝐱)   (3) 
where (𝑦𝑗) is the output of the (j)-th fuzzy rule and (𝑓𝑗(𝐱)) 
is a linear function of the inputs(Olayode et al., 2023).. 
Defuzzification: Aggregates rule outputs into a crisp 
control signal (y): 

𝑦 =
∑ 𝑤𝑗𝑦𝑗

𝑁

𝑗=1

∑ 𝑤𝑗

𝑁

𝑗=1

      (4) 

𝑤𝑗 = ∏ 𝜇𝐴𝑖𝑗
(𝑥𝑖) 

𝑖
    (5) 

Where, 𝑤𝑗  represents the firing strength of each rule 
(Olayode et al., 2023). 
 
Genetic Algorithm (GA) for Optimization  
The Genetic Algorithm (GA) enhances traffic control by 
iteratively evolving optimal strategies for signal timing, 
lane prioritization, and emergency vehicle management. 
Its fitness function assesses performance based on 
metrics such as queue reduction, improved traffic flow, 
and minimized delays. In essence, the genetic algorithm 
(GA) plays a critical optimization role by refining ANFIS 
parameters, including membership functions and fuzzy 
rules, identifying optimal traffic signal control strategies 
for efficient intersection operation, and supporting the 
tuning of reinforcement learning parameters to enhance 
adaptive and responsive traffic control under dynamic 
conditions. 
 
GA Optimization 
The GA optimizes the ANFIS parameters (a, b, c) and rule 
weights to minimize the prediction error, defined by the 
Mean Square Error (MSE): 

MSE =
1

𝑛
∑ (𝑦𝑘 − 𝑦

^

𝑘
 )2

𝑛

𝑘=1
    (6) 

where 𝑦𝑘 is the actual output and 𝑦
^

𝑘
 is the ANFIS output 

(Agbaogun et al., 2023).. 
GA operates through iterative selection, crossover, and 
mutation: 

1. Selection: Chooses high-fitness chromosomes 
minimizing MSE. 

2. Crossover: Exchanges parameter segments between 
parents. 

3. Mutation: Introduces small random changes to 
parameters to maintain diversity. 

The optimized ANFIS parameters define the state for the RL 
agent. 
 
Reinforcement Learning (RL) Module 
The proposed framework employs Reinforcement Learning 
(RL) to enable adaptive and data-driven traffic signal 
control under dynamic urban traffic conditions. The RL 
agent interacts continuously with the traffic environment, 
observes the current traffic state, selects appropriate 
signal control actions, and receives feedback in the form 
of rewards that reflect traffic performance objectives. 
In this study, Q-learning is adopted as the core RL 
algorithm due to its simplicity, stability, and proven 
effectiveness in traffic signal control applications reported 
in the literature (Wei et al., 2022; Saadi et al., 2025). The 
traffic state space SSS comprises parameters such as 
queue length, traffic density, waiting time, and flow rate, 
while the action space A represents signal phase selection 
and green-time adjustment. The Q-value update rule is 
defined as: 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] 

      (7) 
Where 𝑠𝑡 ∈ 𝑆 is the current traffic state,𝑎𝑡 ∈ 𝐴 is the 
selected control action,𝑟𝑡  is the reward (e.g., reduction in 
queue length), and 𝛼 is the learning rate and 𝛾is the 
discount factor(Wei et al., 2022: Saadi, et al., 2025). 
The RL agent iteratively improves traffic signal timing by 
continuously interacting with the environment. 
where 𝑠𝑡 ∈ 𝑆 denotes the current traffic state, at ∈ A is the 
selected control action, 𝑟𝑡  is the immediate reward (e.g., 
reduction in queue length or delay), α is the learning rate, 
and γ is the discount factor. 
The RL agent iteratively improves traffic signal timing by 
balancing exploration and exploitation, enabling it to adapt 
to fluctuating traffic demands and non-stationary traffic 
patterns. Within the proposed hybrid framework, ANFIS 
provides high-level traffic state estimation, GA optimizes 
system and learning parameters, and RL performs online 
decision refinement, resulting in improved convergence 
speed, reduced congestion, and enhanced traffic 
throughput. 
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Traffic Signal Control Execution  
Final traffic signal decisions, including green light 
durations, phase sequences, and other timing 
parameters, are determined by integrating outputs from 
ANFIS, GA, and DRL. These parameters are dynamically 
updated to optimize traffic flow in real time while 
maintaining overall efficiency. 
 
Feedback Loop  
A continuous feedback mechanism ensures the system 
adapts to changing traffic conditions. Real-time 
measurements are fed back into the ANFIS, GA, and DRL 
modules, enabling ongoing learning and policy refinement. 

Key Features 
The proposed framework adopts a multi-layer hybrid 
architecture that balances interpretability, global 
optimization, and adaptive control, enabling effective 
decision-making across varying traffic conditions. Its 
closed-loop design continuously incorporates real-time 
traffic feedback to refine signal control actions, while the 
modular structure ensures scalability and reliable 
performance in complex and densely populated urban 
traffic networks. 
 

 
Figure 5: Integrated Methodology for Hybrid Intelligent Traffic Optimization System (Adapted from: 
Olayode et al., 2023; Michailidis et al.,2025; Author, 2025)  

 
Figure 5 illustrates the workflow of the proposed hybrid 
ANFIS–GA–Reinforcement Learning intelligent traffic 
optimization methodology, which was adapted from 
existing studies and further refined to suit the objectives of 
this research. Variables are first processed by ANFIS 
through fuzzification, rule-based inference, and 
defuzzification to produce initial signal control outputs. GA 
then optimizes the ANFIS membership functions and rule 
weights by minimizing mean square error, improving 
robustness under varying traffic conditions. The optimized 
outputs form the state for a Q-learning–based 
reinforcement learning agent, which selects signal control 
actions using reward-driven updates. Implemented in a 
closed-loop manner, the system continuously 
incorporates real-time feedback, enabling adaptive signal 
control and sustained congestion reduction in dynamic 
urban traffic environments. 
 
Evaluation Metrics 
The Key Performance Indicators (KPIs) of the proposed 
traffic optimization model was evaluated using eight 
standard metrics widely adopted in transportation 

engineering. These indicators capture travel efficiency, 
congestion intensity, and intersection performance. 
 
Travel Time (TT) 
Travel Time denotes the average time required for a vehicle 
to traverse a specified route: 
TT =

𝐷

𝑆
       (8) 

where (D) is the travel distance and (S) is the vehicle speed 
(Transportation Research Board [TRB], 2022; 
Papageorgiou et al., 2021). 
 
Traffic Density (TD) 
Traffic Density measures the level of congestion within a 
road network: 
TD =

𝑁

𝐴
       (9) 

where (N) is the total number of vehicles and (A) represents 
the network area (TRB, 2022; Zheng et al., 2020). 
 
Average Vehicle Speed (AVS) 
The mean speed of all vehicles in the system is computed 
as: 
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AVS =
∑ 𝑆𝑖

𝑁
𝑖=1

𝑁
      (10) 

where 𝑆𝑖is the speed of the (i)-th vehicle and (N) is the total 
vehicle count (Wei et al., 2022; FHWA, 2023). 
 
Queue Length (QL) 
Queue Length quantifies the number of vehicles waiting at 
signalized intersections: 
QL = 𝑁queue      (11) 
where 𝑁queue denotes the total queued vehicles (TRB, 
2022). 
 
Delay Time (DT) 
Delay Time measures additional time experienced due to 
congestion: 
DT = TTactual − TTfree-flow     (12) 
where TTactual is observed travel time and TTfree-flow is travel 
time under ideal conditions (TRB, 2022; FHWA, 2023). 
 
Throughput (TP) 
Throughput represents the number of vehicles passing a 
fixed point per time unit: 
TP =

𝑁vehicles

𝑇
      (13) 

where 𝑁vehicles is the number of passing vehicles and (T) is 
the observation window (Wei et al., 2022; Zhang et al., 
2025). 
 
Intersection Delay (ID) 
Intersection Delay captures time lost by vehicles while 
traversing intersections: 

ID =
∑ (TTintersection,𝑖−TTfree-flow)𝑁

𝑖=1

𝑁
     (14) 

where TTintersection, 𝑖 is actual intersection travel time and 
TTfree-flow is ideal crossing time (TRB, 2022). 
 
Clearance Time (CT) 
Clearance Time is the duration required for all queued 
vehicles to clear the intersection: 
CT =

QL

𝑆flow
     (15) 

where QL is the queue length and𝑆flow is the saturation flow 
rate (Wei et al., 2022). 
 
Exact Normalization and Percentage Improvement 
Equation 
For each performance Metric m, Normalization is defining 
as: 
For minimization metrics (↓): 

𝑁𝑚 =
𝑋𝑚

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝑋𝑚
𝑚𝑜𝑑𝑒𝑙

𝑋𝑚
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒      (16) 

For Maximization metrics (↑) 

𝑁𝑚 =
𝑋𝑚

𝑚𝑜𝑑𝑒𝑙−𝑋𝑚
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑋𝑚
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒      (17) 

For Overall Percentage Improvement (OPI) for a model is 
computed as 
𝑂𝑃𝐼% =  

1

𝑀
∑ 𝑁𝑚

𝑀
𝑚=1  𝑥 100    (18) 

Where M is the total number of evaluated metrics and the 
baseline model is fuzzy logic (Wei et al., 2022). 
 
Dataset and Adaptation 
The proposed model utilized the U.S. Traffic Signal Dataset 
(Data.gov, 2023, URL: 
https://catalog.data.gov/dataset/traffic-signal-
a46dd/resource/f724f512-df30-45f6-af28-9fdf620847e1 ) 
as a reference framework. To ensure relevance to Nigerian 
urban traffic conditions, key parameters including vehicle 
flow, traffic density, and signal timing were adapted using 
proportional scaling based on observed traffic data from 
major cities: Kaduna (2,651 veh/h/lane), Kano 
(3,675 veh/h/lane), and Lagos (3,896 veh/h/lane). 
Data preprocessing involved normalization, outlier 
filtering, and temporal aggregation to generate realistic 
traffic flow patterns. Baseline traffic density 
( 𝑋𝑚

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ; TD_base) and travel time 
(𝑋𝑚

𝑚𝑜𝑑𝑒𝑙 ; TT_base) were derived from the Fuzzy Logic 
model, while TD_model and TT_model corresponded to 
the optimized models, following the methodology of Wei et 
al. (2022). The baseline metrics were TT_0 = 0.57 h, TD_0 = 
12 veh/km², and AVS_0 = 70.34 km/h. 
This adaptation framework enabled the static U.S. dataset 
to accurately reflect Nigerian traffic behavior while 
supporting real-time simulation and performance 
evaluation of the proposed ANFIS-GA-RL traffic signal 
optimization model. 
 
The Architecture of Intelligent Traffic Optimization 
Framework 
The proposed framework integrates ANFIS, Genetic 
Algorithms, and Reinforcement Learning to achieve 
adaptive traffic signal control. ANFIS captures nonlinear 
traffic dynamics, GA optimizes its parameters, and RL 
selects optimal signal actions using performance-based 
rewards. The closed-loop system adapts in real time, 
improving congestion reduction, delay minimization, and 
overall traffic efficiency. 

 

https://catalog.data.gov/dataset/traffic-signal-a46dd/resource/f724f512-df30-45f6-af28-9fdf620847e1
https://catalog.data.gov/dataset/traffic-signal-a46dd/resource/f724f512-df30-45f6-af28-9fdf620847e1
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Figure 6: Architecture of Intelligent Traffic Optimization System Flow Diagram (Author, 2024) 

 
Figure 6 illustrates a closed-loop hybrid framework that 
integrates ANFIS, Genetic Algorithm (GA), and Actor–Critic 
Deep Reinforcement Learning (AC-DRL) for adaptive traffic 
signal control. Real-time traffic inputs are processed by 
ANFIS to generate initial decisions, while GA optimizes its 
parameters to improve state accuracy. The optimized 
states are used by an AC-DRL agent, trained under a 
centralized training and decentralized execution scheme, 
to learn optimal signal timing and phase-switching actions 
aimed at reducing congestion and delay while improving 
throughput. Continuous feedback ensures adaptability to 
dynamic traffic conditions. Implemented in MATLAB 
R2023b and calibrated with data from U.S. Traffic Signal 
Dataset (Data.gov, 2023), adjusting parameters like 
vehicle flow, density, and signal timing to reflect Nigerian 
traffic conditions using proportional scaling, across key 
traffic efficiency metrics. 
 
 

The Algorithm of Hybrid ANFIS–GA–RL Intelligent Traffic 
Optimization System (ITOS)  
Step 1: Traffic State Initialization 
Acquire real-time traffic data from sensors or camera 
systems at the intersection. Normalize and structure the 
inputs to form the current traffic state vector.  
Input: 
Real-time traffic data: traffic density (veh/km), queue 
length (veh), vehicle arrival rate (veh/s) 
Output: 
Optimized traffic signal timings (green duration, phase 
sequence) 
Step 2: ANFIS-Based Fuzzy Processing 
Convert the crisp traffic inputs into fuzzy linguistic 
variables using predefined membership functions. Apply 
fuzzy inference rules to model traffic conditions and 
generate intermediate control outputs. Aggregate and 
defuzzify the rule outputs to obtain an initial traffic signal 
control action. 

 
Algorithm 1: ANFIS Traffic Control Evaluation 

1. Input: Traffic state x=[ρ,q,λ]  
Output: Crisp control signal y 

2. Fuzzify x using membership functions defined by (a,b,c) 
3. Apply fuzzy rules: y_j = f_j(x) 
4. Compute firing strength w_j 
5. Defuzzify: y = (Σ w_j y_j) / (Σ w_j) 
6. Return y 

 
Step 3: Genetic Algorithm Optimization 
Encode ANFIS membership function parameters and rule 
weights into chromosomes. Evaluate fitness using Mean 

Square Error (MSE). Apply selection, crossover, and 
mutation iteratively until convergence. Update ANFIS 
parameters with the globally optimized solution. 
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Algorithm 2: GA Optimization of ANFIS Parameters 
1. Input: Training data x=[ρ,q,λ]  

Output: Optimized (a,b,c) and rule weights 
2. Initialize population P with chromosomes encoding (a,b,c) 
3. Evaluate fitness using MSE = (1/N) Σ (y_actual − y_ANFIS)^2 
4. Generation ← 0 
5. while termination criterion not satisfied do 
6. Generation ← Generation + 1 
7. Select chromosomes with minimum MSE 
8. Apply crossover with probability pc 
9. Apply mutation with probability pm 
10. Re-evaluate population fitness (MSE) 
11. end while 
12. Return best chromosome → optimized (a,b,c) 

 
Step 4: Reinforcement Learning Decision Making 
Define the optimized ANFIS output as the system state. 
Select a traffic signal action using a Q-learning policy. 

Execute the action and compute the reward based on 
traffic improvement (e.g., reduced queue length). Update 
the Q-table accordingly. 

 
Algorithm 3: Reinforcement Learning (Q-Learning) Signal Control 

1. State: S={x,y}  
Action: A (signal phase / green time) 

2. Initialize Q(S,A) arbitrarily 
3. Set learning rate α, discount factor γ, exploration ε 
4. for episode = 1 to M do 
5. Observe current state s ∈ S 
6. for t = 1 to T do 
7. With probability ε select random action a 
8. Else select a = argmax_a Q(s,a) 
9. Execute a, observe reward r and next state s′ 
10. Update Q(s,a) ← Q(s,a) + α[r + γ max_a′ Q(s′,a′) − Q(s,a)] 
11. s ← s′ 
12. end for 
13. end for 

 
Step 5: Traffic Signal Execution 
Implement the selected signal timing parameters in the 
traffic signal controller in real time. 
 

Step 6: Feedback and Adaptation 
Observe the updated traffic environment and feed new 
measurements back into the system. Repeat Steps 2–5 
continuously to ensure adaptive optimization. 

 
Algorithm 4: Integrated Execution and Feedback Loop 

1. while system is active do 
2. Acquire real-time traffic data x=[ρ,q,λ] 
3. y ← ANFIS(x | optimized (a,b,c))  
4. s ← {x,y} 
5. Select action a using Q(s,a) 
6. Execute traffic signal action a 
7. Observe updated traffic state x′ 
8. Compute reward r (queue reduction / flow improvement) 
9. Update Q-table 
10. end while 

 
Simulation and Experiment Set-up 
The proposed traffic control models, including Fuzzy Logic, 
ANN, ANFIS, GA, ANFIS-GA, and the novel ANFIS-GA-

Reinforcement Learning (ANFIS-GA-RL) framework, were 
implemented in MATLAB R2023b using Simulink and Fuzzy 
Logic Toolbox. Simulations were conducted on a 4×4 urban 
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intersection grid with four approaches per intersection and 
two lanes per approach, enabling realistic bidirectional 
traffic flow. Traffic signal phases followed standard green-
yellow-red cycles, and pedestrian crossings were 
incorporated. Traffic demand scenarios spanned low to 
high congestion, with vehicle arrival rates of 300–1200 
vehicles/hour per approach, modeled using a Poisson 
process to capture stochastic variability. Model 
hyperparameters were selected via preliminary tuning. The 
ANN used two hidden layers with 15 neurons each, a 
learning rate of 0.01, and 500 training epochs. The ANFIS 
employed three Gaussian membership functions per input 

and a hybrid learning algorithm. The GA used a population 
size of 50, crossover probability of 0.8, mutation rate of 
0.05, and ran for 100 generations. The Reinforcement 
Learning component utilized Q-learning with a learning 
rate α = 0.1, discount factor γ = 0.9, and an ε-greedy policy 
with ε = 0.1. Performance was evaluated using Total Travel 
Time (TT), Average Vehicle Speed (AVS), Throughput (TP), 
Traffic Density (TD), Queue Length (QL), Delay Time (DT), 
Intersection Delay (ID), and Computational Time (CT), with 
30 independent simulation runs per scenario to ensure 
statistical robustness. 

 

 
Figure 7: Simulation and Experiment Set-up  

 
RESULTS AND DISCUSSION 
The performance of the proposed hybrid traffic control 
framework was evaluated against benchmark models 

using eight standard Key Performance Indicators (KPIs). 
The comparative simulation results obtained in MATLAB 
are summarized in Table 1. 

 
Table 1: Comparative Performance of Traffic Control Models Across Key Performance Indicators (KPIs) 

Model TT(h↓ AVS 
(km/h) ↑ 

TP 
(veh/h)↑ 

TD 
(veh/km²) ↓ 

QL 
(veh↓ 

DT (h)↓ ID (h)↓ CT (h)↓ Overall 
Improvement (%) 

Fuzzy Logic 0.57 70.34 129 12 15 0.67 0.02 0.013 — 
GA 
(Standalone) 

0.54 67.95 143 12 23 0.59 0.03 0.0142 9.1 

ANN 0.42 71.39 139 11 18 0.52 0.01 0.0121 26.3 
ANFIS 0.49 72.10 145 10 17 0.54 0.04 0.0134 18.4 
ANFIS–GA 0.24 73.64 148 10 20 0.52 0.021 0.0122 57.9 
Proposed 
ANFIS–GA–RL 

0.20 72.36 150 10 20 0.50 0.01 0.0111 64.9 

Note: ↓ and ↑ indicate minimization and maximization objectives, respectively. Overall improvement is computed relative to 
the fuzzy logic baseline Eqn.(16, 17 &18 ) Baseline values: (𝑋𝑚

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_0 = 0.57) h, (𝑋𝑚
𝑚𝑜𝑑𝑒𝑙_0 = 12) veh/km², (AVS_0 = 70.34) km/h. 

 
Comparative Analysis of Eight KPIs for Congestion 
Mitigation and Flow Efficiency  
Figure 8-15 illustrates the line-graph comparison of eight 
Key Performance Indicators (KPIs) across six traffic control 

models: Fuzzy Logic, GA, ANN, ANFIS, ANFIS–GA, and the 
proposed ANFIS–GA–RL framework. Each line graph 
highlights the performance trajectory and relative 
dominance of the models for a specific KPI. 
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Figure 8: Travel Time (TT ↓) 

 
Figure 8 the travel time line graph shows a nonlinear but 
consistently decreasing trend as model intelligence 
increases. Conventional Fuzzy Logic and GA exhibit the 
highest travel times, while ANN provides a noticeable 
reduction. A sharp decline is observed with ANFIS–GA, and 

the proposed ANFIS–GA–RL achieves the minimum travel 
time (0.20 h). This confirms the strong capability of 
reinforcement learning to continuously adapt signal timing 
decisions and minimize total journey duration under 
varying traffic conditions. 

 
Figure 9: Average Vehicle Speed (AVS ↑) 

 
Figure 9 the AVS line graph demonstrates a general upward 
trend, indicating improved traffic fluidity with 
hybridization. While GA shows a temporary dip due to its 
non-adaptive nature, ANN and ANFIS stabilize speed 
performance. ANFIS–GA reaches the peak AVS, whereas 

the proposed ANFIS–GA–RL maintains high and stable 
average speeds, reflecting smoother flow with reduced 
speed oscillations—an important indicator of driving 
comfort and safety. 
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Figure 10: Traffic Throughput (TP ↑) 

 
Figure 10 the throughput graph exhibits a monotonically 
increasing trajectory, culminating in the proposed ANFIS–
GA–RL model with 150 veh/h, the highest among all 
models. This trend confirms that means of combining fuzzy 

inference, evolutionary optimization, and reinforcement 
learning enables superior utilization of intersection 
capacity and maximized vehicle discharge rates. 

 

 
Figure 11: Traffic Density (TD ↓) 

 
Figure 11 the traffic density line graph shows a clear 
stepwise reduction from conventional to hybrid models. 
While Fuzzy Logic and GA remain at higher density levels, 
ANFIS and subsequent hybrid models stabilize at the 

minimum density of 10 veh/km². The flat tail of the curve 
for ANFIS–GA and ANFIS–GA–RL indicates congestion 
suppression consistency under adaptive control. 
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Figure 12: Queue Length (QL ↓) 

 
Figure 12 the queue length trend reveals fluctuations 
across models, with GA producing the highest queue 
accumulation, highlighting its sensitivity to demand 
variation. In contrast, ANFIS-based models demonstrate 

improved queue regulation. The proposed ANFIS–GA–RL 
maintains moderate and stable queue lengths, signifying 
efficient queue dissipation rather than aggressive 
clearance that could destabilize upstream intersections. 

 

 
Figure 13: Delay Time (DT ↓) 

 
Figure 13 the delay time graph displays a strong downward 
trend, particularly after the introduction of learning-based 
control. The proposed ANFIS–GA–RL achieves the lowest 
delay (0.50 h), indicating reduced stop durations and fewer 

red-light waiting cycles. This confirms the model’s 
effectiveness in minimizing temporal inefficiencies at 
signalized intersections. 
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Figure 14: Intersection Delay (ID ↓) 

 
Figure 14 the Intersection Delay shows a highly sensitive 
response to model structure. ANFIS alone records a spike 
due to fuzzy rule complexity without adaptive feedback. In 
contrast, ANN and the proposed ANFIS–GA–RL achieve the 

minimum idle delay (0.01 h). The proposed model sustains 
this low idle time while simultaneously optimizing other 
KPIs, demonstrating robust multi-objective learning. 

 

 
Figure 15: Computational Time (CT ↓) 

 
Figure 15 the computational time graph highlights the 
efficiency of algorithmic integration. Despite its 
architectural complexity, the proposed ANFIS–GA–RL 
records the lowest computational time (0.0111 h). The 
declining trend confirms that reinforcement learning 
improves convergence efficiency and does not impose 
excessive computational overhead, making the model 
suitable for real-time deployment. 
Across all eight key performance indicators, our results 
show progressive improvements rather than isolated 
gains, indicating systematic enhancement across multiple 
traffic efficiency dimensions. These outcomes are 
consistent with the broader literature on hybrid and 

reinforcement learning–based traffic signal control, which 
consistently demonstrates superior performance 
compared with traditional and standalone models. 
For example, Dhulkefl et al. (2025) showed that a hybrid K 
Nearest Neighbor + Deep Reinforcement Learning system 
implemented in SUMO reduced average waiting time by 
48%, decreased the number of stops by 58%, and 
improved throughput by 57% relative to fixed timing and 
single algorithm methods, indicating a marked 
performance increase over baseline controllers.  
Similarly, reinforcement learning based traffic signal 
optimization has been shown to significantly reduce 
congestion metrics. Haider et al. (2025) reported that RL 
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approaches reduced delays by up to 45%, reduced queue 
lengths by over 40 meters, increased throughput by 28%, 
and lowered CO₂ emissions by 19% compared with 
baseline control methods in SUMO simulations, 
highlighting the effectiveness of RL in dynamic traffic 
environments.  
Hybrid frameworks that integrate fuzzy logic with 
reinforcement learning also report notable performance 
gains. In Intelligent Traffic Control Decision Making Based 
on Type 2 Fuzzy and Reinforcement Learning, Bi et al. 
(2024) demonstrated that incorporating fuzzy reasoning 
into deep Q network strategies significantly improved 
online learning and control responsiveness, yielding better 
traffic efficiency than classical DQN approaches.  
In the present study, the proposed ANFIS–GA–RL 
framework consistently outperformed standalone models 
across delay related, flow related, density related, and 
efficiency related metrics, corroborating these prior 
findings. The observed ≈ 64.9% overall improvement and 
Pareto optimal behavior show that synergistic 
hybridization combining neuro fuzzy inference for 
structural interpretation, genetic algorithms for global 
optimization, and reinforcement learning for adaptive 
control effectively addresses the nonlinear and stochastic 
nature of urban traffic dynamics. Consequently, the 
proposed approach not only aligns with but also advances 
state of the art methodologies in intelligent urban traffic 
signal control. 
 
CONCLUSION  
This study validates the effectiveness of a hybrid ANFIS–
GA–RL framework for intelligent traffic signal optimization. 
Unlike conventional and standalone intelligent models, 
the proposed approach addresses the multi-objective and 
dynamic nature of urban traffic control. Results show that 
the ANFIS–GA–RL model achieved the lowest travel time 
(0.20 h), delay (0.50 h), Intersection delay (0.01 h), and 
computational time (0.0111 h), while maximizing traffic 
throughput (150 veh/h) and maintaining reduced traffic 
density and stable queue lengths. Line-graph trend 
analysis confirmed that performance gains were 
progressive, stable, and sustained, rather than metric-
specific. Overall, the framework delivered a 64.9% 
performance improvement, demonstrating robustness, 
scalability, and suitability for real-time smart urban traffic 
management. 
 
Future Research Directions  
Future work should prioritize real-world deployment and 
large-scale validation of hybrid learning-based traffic 
control systems to assess performance under practical 
uncertainties. Integrating the framework with IoT-enabled 
smart city infrastructure, connected vehicles, and edge 
computing can further enhance real-time adaptability. 
Extending the model to multi-intersection and network-

level coordination is essential for mitigating spillback 
effects and improving corridor-wide traffic efficiency. 
Additional research should incorporate environmental 
sustainability metrics, including emissions and fuel 
consumption, to quantify ecological benefits and exploring 
advanced communication and computational paradigms 
such as 6G-enabled ITS and quantum-assisted 
optimization present promising directions for scalable and 
future-proof intelligent traffic management systems. 
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