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ABSTRACT
Rapid urbanization and increasing vehicular demand have
intensified traffic congestion, exposing the limitations of

conventional static traffic signal control systems. This study
proposes a novel hybrid intelligent traffic control framework that
integrates an Adaptive Neuro-Fuzzy Inference System, Genetic
Algorithm, and Reinforcement Learning (ANFIS-GA-RL) to achieve
real-time adaptive signal optimization. The proposed approach
uniquely combines interpretable fuzzy reasoning for managing
uncertainty, genetic algorithms for global parameter optimization,
and reinforcement learning for closed-loop, real-time decision-
making, distinguishing it from existing standalone and partially
hybrid methods. Performance is evaluated in a MATLAB-based urban
traffic simulation using eight performance indicators, travel time,
average vehicle speed, throughput, traffic density, queue length,
delay time, intersection delay, and computational time.
Comparative results against conventional Fuzzy Logic, standalone
Genetic Algorithm, Artificial Neural Network, ANFIS, and ANFIS-GA
controllers demonstrate consistent and measurable performance
gains. Relative to the baseline fuzzy logic controller, the proposed
ANFIS-GA-RL model achieves an overall improvement of 64.9%,
characterized by substantial reductions in travel time delay,
intersection delay, and computational overhead, alongside
enhanced throughput and traffic flow stability. These findings
confirm the robustness, scalability, and real-time applicability of the
proposed framework for intelligent urban traffic signal control, with
future work focusing on loT-enabled deployment and field validation.

INTRODUCTION

Intelligent traffic optimization has emerged as a critical

2050 (Javed et al., 2024) cities worldwide face escalating
traffic inefficiencies, environmental pollution, and

solution to the growing challenges of urbanization, traffic
congestion, and road safety in modern transportation
systems. With the rapid expansion of urban populations
which is projected to reach 68% of the global population by

This work is licensed under the Creative Commons
Attribution 4.0 International License

economic losses. In developing regions, such as Africa,
rapid urbanization has led to the rise of "accidental
megacities," such as Lagos, Nigeria, where infrastructural
deficiencies and poor traffic management exacerbate
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congestion (Oyewo & Oyewale, 2023). The consequences
are severe: prolonged travel times, increased accidents,
and significant economic burdens, with road traffic
crashes costing nations an estimated 3% of their GDP
annually (WHO, 2018).

Road transport dominates Nigeria, accounting for 80% of
all traffic (Aderibigbe et al., 2024), yet the sector suffers
from inadequate infrastructure, insufficient funding, and
outdated traffic control systems. While developed nations
leverage advanced technologies such as Al and loT for
traffic management, many developing countries still rely
on static or semi-dynamic systems that fail to adapt to
real-time conditions (Faheem et al., 2024). Traditional
methods, such as fixed-time traffic signals, lack
responsiveness, while actuated control systems struggle
with predictive capabilities (Jutury et al., 2023). Manual
interventions are inefficient and error-prone, highlighting
the urgent need for intelligent, adaptive solutions. Recent
advancements in artificial intelligence particularly fuzzy
logic, genetic algorithms (GA), and deep reinforcement
learning (DRL) offer promising avenues for traffic
optimization. Fuzzy logic handles uncertainty in traffic data
but requires complex tuning (Jutury et al., 2023). GA
optimizes signal timing but faces slow convergence
(Yektamoghadam et al., 2024), while DRL enables
autonomous learning but demands extensive training data
(Nookala et al., 2023). Hybrid approaches, such as
integrating Adaptive Neuro-Fuzzy Inference Systems
(ANFIS) with GA and DRL, aim to overcome these
limitations by combining adaptability, optimization, and
real-time learning (Bi et al., 2024). This survey explores the
integration of ANFIS, GA, and DRL in Intelligent Traffic
Optimization Systems  (ITOS), evaluating  their
effectiveness in reducing congestion, improving safety,
and enhancing traffic flow efficiency. By synthesizing key
studies and methodologies, we highlight the potential of
hybrid Al models to transform urban mobility, particularly
in underserved regions like Nigeria. The discussion also
addresses challenges such as computational costs and
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real-world deployment and proposes future directions,
including loT integration and scalable implementations.
The findings underscore the transformative potential of Al-
driven traffic management, offering a roadmap for
policymakers and researchers to develop sustainable,
adaptive transportation systems in an increasingly
urbanized world.

Related Work

Traffic congestion is a global issue, costing economies
billions annually (INRIX, 2023). Traditional systems, such
as fixed-time signals and actuated control, fail to adapt to
dynamic traffic conditions (Vieira et al., 2024). Machine
learning and computational intelligence have emerged as
promising solutions, yet challenges like computational
overhead and real-time adaptability persist (Merbah et al.,
2023). Traffic optimization is crucial for addressing the
challenges posed by urbanization, congestion, and road
safety while promoting environmental sustainability
(Alamoudi et al., 2024); (Niu et al., 2023). The integration of
intelligent transportation systems (ITS) offers a promising
solution to mitigate traffic congestion and reduce carbon
emissions, aligning with the development of smart citie (Lv
& Shang, 2023). However, unique challenges persist,
particularly in developing countries, necessitating tailored
strategies (Mai-Tan et al., 2020).

Global Traffic Congestion and Its Economic Impact
Traffic congestion presents a significant economic burden
globally. In 2022, the United States experienced losses of
$120 billion due to congestion, with drivers spending an
average of 51 hours in traffic (Dimri et al., 2024). London
stands out as the most congested city in Europe, where
drivers lose approximately 148 hours annually due to
traffic delays (Dimri et al., 2024). In Asia, cities such as
Mumbai and Bangkok encounter severe congestion, with
average speeds plummeting to 10 km/h during peak hours
(Dimri et al., 2024.

Annual time spent in traffic congestion (in hours) among the top ten
nations with the largest recorded traffic in 2022

[ S Ry S R [y S R S Ry W R S Ly Ry S—

London Milan
(United

Kingdom)

Dublin  Bucharest Bengaluru
(Ireland) (Romania) (India)

(Italy)

Lima Pune
(Peru)

Bogota Paris
(India) (Colombia) (France)

Sapporo
(Japan)

Figure 1: Annual Time Spent in Traffic Congestion (in Hours) Among the Top Ten Nations
with the Largest Recorded Traffic in 2022 Source: (Dimri et al., 2024)
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Several factors contribute to traffic congestion, including
the increasing number of vehicles, inadequate
transportation infrastructure, and the lack of effective
traffic management systems (Mai-Tan et al.,, 2020);
(Praveen & Raj, 2020). Addressing these underlying causes
is essential to alleviate congestion and minimize its
economic impact.

Road Safety: A Critical Global Challenge

Road safety is another critical challenge globally. The
World Health Organization (WHO) reported that
approximately 1.3 million people die annually due to road
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traffic accidents, with low- and middle-income countries
accounting for 93% of fatalities despite having only 60% of
the world's vehicles (WHO, 2023). Inefficient traffic
management systems, poor infrastructure, and lack of
real-time monitoring exacerbate these issues. According
to the World Bank and World Health Organization (WHO)
reports, road traffic injuries were ranked as the 9th leading
cause of death worldwide in 2004. Projections suggested
that by 2030, road traffic accidents would rise to become
the 5th leading cause of death, surpassing diseases like
tuberculosis and HIV/AIDS.

Leading causes of death, 2004 and 2030 compared

TOTAL 2004

TOTAL 2030

ran LeaDING cAUSE >
L Isch heart d 12.2 L) Isch heart di 12.2
=2 Cerebrovastulor disease 9.7 =2 Cerebrovasculor disease 9.7
= Lower respiratory infections 70 = Chronic obstructive pulmonary disease 7.0
- Chronic obstructive pulmonary disease S0 < Lower respiratory infections 5.1
s Diarrhoeal diseases 3.6 s Road traffic injuries 3.6
S HIV/AIDS 3.5 - Trachea, bronchus, lung cancers 35
rd Tuberculosis 2.5 rd Diabetes mellitus 2.5
= Trachea, bronchus, lung cancers 2.3 = Hypertensive heart disease 23
> Road traffic injuries 2.2 L2 Stomach cancer 2.2
10 Prematurity and low birth weight 2.0 10 HIV/AIDS 2.0
LB Neonatal infections and other 7 ) LA Nephritis and nephrosis 3 )
= Diabetes mellitus LS. = Self-inflicted injuries 1.9
=3 Malaria 3By e == Liver cancer 1.7
14 Hypertensive heart disease VT 1a Colon and rectum cancer AT
s Birth ia and birth tfrauma 1.5 s Oesophogus cancer 1.5
16 Self-inflicted injuries 1.4 16 Violence 1.4
7 Stomach cancer 1.4 7 Alzheimer and other dementias 1.4
s Cirrhosis of the liver 1.3 s Cirrhosis of the liver 1.3
9 Nephritis and nephrosis 1.3 e Breast cancer 1.3
20 Colon and rectum cancers 1.1 20 Tuberculosis 1.1

Source: World health statistics 2008 (http:, .who.int/wh h

/2008/en/index.html)

Figure 2: Projected Global Leading Causes of Death (2004-2030) Source: World Health Statistics.
http://www.who.int/whosis/whostat/2008/en/index.html.

Intelligent Transportation Systems for Enhanced Traffic
Management

Intelligent transportation systems (ITS) offer innovative
approaches to enhance traffic management, improve road
safety, and reduce environmental impact (Lv & Shang,
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2023). These systems integrate advanced technologies,
such as artificial intelligence (Al), the Internet of Things
(loT), and machine learning, to optimize traffic flow and
provide real-time information to drivers (Muhammad et al.,
2020); (Ma et al., 2019).
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Figure 3: Intelligent Traffic Control Source: (Lv & Shang, 2023)
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Intelligent Traffic Control Systems (ITCS) significantly
reduce traffic congestion and travel time (Jaleel et al.,
2020), enhance road safety with fewer accidents (Uma &
Eswari, 2021), lower fuel consumption and vehicle
emissions (Lv & Shang, 2023), and improve mobility and
accessibility for all road users (Alamoudi et al., 2024).

Traffic Management Strategies
Based on the analyzed data, ITS employs various traffic
management strategies to optimize traffic flow (Amador et
al., 2024); (Ren et al., 2011). These strategies include:
1. Adaptive Traffic Signal Control: Adjusting traffic signal
timings in real-time based on current traffic
conditions (Jaleel et al., 2020).

2. Rerouting: Providing drivers with alternative routes to
avoid congested areas (Khatri et al., 2020).
3. Incident Management: Quickly detecting and

responding to traffic accidents to minimize disruption
(Liu et al., 2023).

Data Sources for Intelligent Traffic Monitoring and
Prediction

Intelligent traffic monitoring uses fixed sensors, mobile
data, and contextual information for accurate prediction.
Inductive loops, RFID, and cameras track flow and
congestion (Upadhyay et al., 2024; Alsahfi et al., 2024;
Salunke et al., 2024; Pan et al., 2024; Qiu et al., 2024).
Mobile sources like GPS, probe vehicles, Bluetooth, and
GSM provide continuous traffic state data (Jeevan et al.,
2024; Babiyola et al., 2023; Zhang et al., 2023; Carrese et
al.,2021; Amer et al., 2024; Rabinovich, 2023), while event,
weather, and social media inputs improve non-recurrent
congestion prediction (Zhang et al., 2024; Das et al., 2024;
Celaretal., 2024; Kim et al., 2025; Jain et al., 2023). Smart
motorways and vehicular networks enhance real-time
data and cooperative management (Krishna et al., 2024;
Bintoro, 2024; Pasupuleti, 2024).

ANFIS GA RL and Hybrid Traffic Optimization Models
ANFIS Optimization Models

ANFIS-based approaches outperform traditional models
like MLR, ANN, and SVM in traffic applications due to their
ability to handle nonlinear and uncertain systems,
achieving high accuracy and reducing delay and queue
length (Udofia, 2019; Dong, 2018; Tripathi & Sharma,
2024). Hybrid ANFIS models using PSO, clustering, or
wavelet preprocessing improve robustness and predictive
performance (Mai & Ngo, 2021; Chen & Zhai, 2022). ANFIS
is also applied in public transport optimization, pavement
assessment, congestion risk modeling, ITS security, and
V2V systems (Pilevari et al., 2021; Alawad & Kaewunruen,
2020; Usha et al., 2025). However, reliance on offline
training and simulation-based validation limits real-time
scalability (Ujong et al., 2025).

24
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GA Optimization Models

Single Genetic Algorithm (GA) approaches have proven
effective for traffic signal optimization by reducing travel
time, delay, and queue lengths, with improvements up to
40% over fixed-time control (Mao et al.,, 2019). These
methods optimize signal timings using selection,
crossover, and mutation, sometimes enhanced with
simple fuzzy rules or adaptive operators to improve
convergence and stability (Fu, 2022; Hai et al., 2022).
While most studies rely on simulations and small-scale
networks, GA consistently outperforms traditional timing
methods, providing a robust foundation for traffic
management. Limitations include computational intensity
and reduced scalability for complex real-world networks
(Manh et al., 2020; Tiberio et al., 2022).

RL Optimization Models

Deep reinforcement learning (DRL) has emerged as a
highly effective approach for adaptive traffic management,
outperforming traditional fixed-time and actuated
controls. Models such as DQN, PPO, Actor-Critic, and
multi-agent DRL consistently reduce vehicle waiting times,
queue lengths, and overall travel time, with improvements
ranging from 25% to over 80% across single and multiple
intersections (Ma etal., 2021; Wanget al., 2022; Pan, 2024;
Faqir et al., 2024). Integrating advanced techniques like
graph neural networks and LSTM forecasting enhances
anticipatory control and network-wide coordination,
improving throughput and reducing congestion (Hu, 2025;
Yang et al., 2025; Abrol et al., 2024). DRL also enables joint
optimization of safety, fuel consumption, and emissions
while maintaining real-time adaptability. Although
computationally intensive and dependent on high-quality
traffic data, DRL’s ability to learn from dynamic traffic
conditions makes it a robust and scalable solution for
modern urban traffic systems.

Hybrid Optimization Models

Hybrid traffic optimization approaches combining ANFIS,
Genetic Algorithms (GA), and Deep Reinforcement
Learning (DRL) have shown significant improvements in
urban traffic management. GA-enhanced ANFIS models
achieve superior traffic flow prediction (R2 up to 99.8%)
and improved signal timing (Olayode et al., 2023; Shahkar
et al., 2023). Integrating fuzzy preprocessing with DRL
reduces traffic conflicts and waiting times by 16-59%,
while multi-agent DRL frameworks achieve up to 63%
reductions in queues and waiting times (Bangalee &
Ahmed, 2024; Mirbakhsh & Azizi, 2024; Moreno-Malo et al.,
2024; Kumar et al., 2021). Hybrid GA-ML methods further
accelerate convergence and decrease travel time by up to
45% under incident conditions (Mao et al., 2022). Overall,
these hybrid systems provide dynamic, real-time, and
scalable traffic control, though they require careful tuning
and higher computational resources.
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MATERIALS AND METHODS

This section presents the materials, data sources, system
modeling approach, and methodological framework
employed for the development of the proposed intelligent
traffic signal control system. A model-driven and
simulation-based research design was adopted to ensure
analytical rigor, reproducibility, and applicability to real-
time urban traffic environments.

Materials and Data Sources

The traffic state information used in this study includes
vehicle arrival rate, queue length, traffic density, and
delay, which collectively characterize real-time
intersection conditions. These data were obtained from
the U.S. Traffic Signal Dataset (Data.gov, 2023 URL:
https://catalog.data.gov/dataset/traffic-signal-
ad6dd/resource/f724f512-df30-45f6-af28-9fdf620847e1)
and subsequently adjusted to reflect traffic characteristics
typical of developing urban environments, particularly
Nigerian cities. For a typical Nigerian urban highway, the
standard capacity is (Cmax = 2000) vehicles/hour (HCM,
2022). Parameter scaling was performed on vehicle flow
rates, saturation flow, and signal timing distributions
based on standard traffic engineering guidelines. All
simulations, model training, and performance evaluations
were implemented in MATLAB R2023b.

Problem Formulation

The objective of this study is to develop a fully actuated
and adaptive intelligent traffic control agent capable of
managing signalized intersections in real time under
dynamic and uncertain traffic conditions. Unlike
conventional traffic control systems that rely on fixed
schedules, handcrafted features, or offline optimization,
the proposed framework adopts an end-to-end learning
strategy in which real-time traffic states, obtained from
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sensors or vision-based systems, are directly translated
into optimal traffic signal control actions. This enables
responsive and continuous adaptation to fluctuating
traffic demand.

Urban traffic signal control is formulated as a sequential
decision-making problem, in which the operation of a
signalized intersection evolves over discrete time steps. At
each decision instant, the controller observes the current
traffic condition and selects a control action that
influences subsequent traffic states. This interaction is
modeled as a Markov Decision Process (MDP), defined as:
E= (S, A PR Y (1)

In this formulation, the state space S represents real-time
traffic conditions characterized by variables such as
queue length, vehicle delay, traffic density, and arrival
rate. The action space A consists of feasible traffic signal
control decisions, including signal phase selection and
green-time extension. The state transition probability P(s’ |
s,a) describes the likelihood of the system evolving from
the current traffic state s to a subsequent state s'following
the execution of action a. The reward function R(s,a)
quantifies the immediate performance of each control
decision and is designed to penalize congestion indicators
such as excessive delay, queue accumulation, and
frequent vehicle stops, while encouraging efficient traffic
flow. The discount factor y € (0,1) governs the trade-off
between short-term performance gains and long-term
traffic optimization objectives.

The system aims to minimize average delay, queue length,
and stops, while maximizing throughput and traffic flow
efficiency. Figure 4 illustrates possible signal phases,
vehicle movements, and the intersection grid layout,
providing the structural basis for the sequential decision-
making formulation.
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Figure 4: Possible Signal Phases and Vehicle Movements and an illustration of Intersection Grid

Adapted (FHWA, 2017)

Methods

The Core Integrated Methodological Modules of the Hybrid
Intelligent Traffic Optimization Framework consist of the
following Modules;

Adaptive Neuro-Fuzzy Inference System (ANFIS)
Module

The ANFIS module integrates fuzzy logic and neural
networks to dynamically infer traffic patterns and optimize
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signal timings. Fuzzy membership functions categorize
congestion into low, medium, and high levels, while neural
learning refines control decisions using historical traffic
data. Overall, ANFIS provides robust handling of uncertain
and nonlinear traffic dynamics, models complex traffic
relationships through fuzzy rules, and supports adaptive
learning from data to continuously enhance rule-based
decision-making.

ANFIS Layer

The ANFIS layer maps traffic inputs to control outputs
using fuzzy inference, providing interpretable and adaptive
decision-making. The operations include:

Fuzzification: Converts crisp traffic inputs (X;) into fuzzy
variables using membership functions (u(x;)):

pa(x) = W 2

where (a, b, c) are membership function parameters
(Olayode et al., 2023).

Fuzzy Inference: Applies rules of the form:

R;:IF pis Aj AND qis B; THEN y; = f;(x) (3)
where (¥;) is the output of the (j)-th fuzzy rule and (fj(X))
is a linear function of the inputs(Olayode et al., 2023)..
Defuzzification: Aggregates rule outputs into a crisp

control signal (y):
N

y=27"7vle
2

wj = H'MAU(XL’) (5)

Where, ;v]- represents the firing strength of each rule

(Olayode et al., 2023).

(4)

Genetic Algorithm (GA) for Optimization

The Genetic Algorithm (GA) enhances traffic control by
iteratively evolving optimal strategies for signal timing,
lane prioritization, and emergency vehicle management.
Its fitness function assesses performance based on
metrics such as queue reduction, improved traffic flow,
and minimized delays. In essence, the genetic algorithm
(GA) plays a critical optimization role by refining ANFIS
parameters, including membership functions and fuzzy
rules, identifying optimal traffic signal control strategies
for efficient intersection operation, and supporting the
tuning of reinforcement learning parameters to enhance
adaptive and responsive traffic control under dynamic
conditions.

GA Optimization

The GA optimizes the ANFIS parameters (a, b, c) and rule
weights to minimize the prediction error, defined by the
Mean Square Error (MSE):

n
MSE = iz
n k=1

Ok — 3, )? (6)
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where Ykis the actual output and }A,k is the ANFIS output
(Agbaogun et al., 2023)..

GA operates through iterative selection, crossover, and
mutation:

1. Selection: Chooses high-fithness chromosomes
minimizing MSE.

2. Crossover: Exchanges parameter segments between
parents.

3. Mutation: Introduces small random changes to

parameters to maintain diversity.
The optimized ANFIS parameters define the state for the RL
agent.

Reinforcement Learning (RL) Module
The proposed framework employs Reinforcement Learning
(RL) to enable adaptive and data-driven traffic signal
control under dynamic urban traffic conditions. The RL
agent interacts continuously with the traffic environment,
observes the current traffic state, selects appropriate
signal control actions, and receives feedback in the form
of rewards that reflect traffic performance objectives.
In this study, Q-learning is adopted as the core RL
algorithm due to its simplicity, stability, and proven
effectiveness in traffic signal control applications reported
in the literature (Wei et al., 2022; Saadi et al., 2025). The
traffic state space SSS comprises parameters such as
queue length, traffic density, waiting time, and flow rate,
while the action space A represents signal phase selection
and green-time adjustment. The Q-value update rule is
defined as:
Qse, ) < Q(seyap) + a|r + ymaxQ(ses1, @) = Q(sp, )|
(7)
Where s, €S is the current traffic state,a; € Ais the
selected control action,t is the reward (e.g., reduction in
queue length), and a is the learning rate and Yis the
discount factor(Wei et al., 2022: Saadi, et al., 2025).
The RL agent iteratively improves traffic signal timing by
continuously interacting with the environment.
where s; € S denotes the current traffic state, at € A is the
selected control action, 7t is the immediate reward (e.g.,
reduction in queue length or delay), a is the learning rate,
andy is the discount factor.
The RL agent iteratively improves traffic signal timing by
balancing exploration and exploitation, enabling it to adapt
to fluctuating traffic demands and non-stationary traffic
patterns. Within the proposed hybrid framework, ANFIS
provides high-level traffic state estimation, GA optimizes
system and learning parameters, and RL performs online
decision refinement, resulting in improved convergence
speed, reduced congestion, and enhanced traffic
throughput.
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Traffic Signal Control Execution

Final traffic signal decisions, including green light
durations, phase sequences, and other timing
parameters, are determined by integrating outputs from
ANFIS, GA, and DRL. These parameters are dynamically
updated to optimize traffic flow in real time while
maintaining overall efficiency.

Feedback Loop
A continuous feedback mechanism ensures the system
adapts to changing traffic conditions. Real-time

measurements are fed back into the ANFIS, GA, and DRL
modules, enabling ongoing learning and policy refinement.

GA Parameter
Lernnch__: Optimization

Reinforcement
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Key Features

The proposed framework adopts a multi-layer hybrid
architecture that balances interpretability, global
optimization, and adaptive control, enabling effective
decision-making across varying traffic conditions. Its
closed-loop design continuously incorporates real-time
traffic feedback to refine signal control actions, while the
modular structure ensures scalability and reliable
performance in complex and densely populated urban
traffic networks.

Reinforcement Learning:
Q-Learning Policy

Reinforcement Learning:
Q-Learning Policy

v

Optimized ANFIS parameters
(a, b, ¢) and rule weights
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Figure 5: Integrated Methodology for Hybrid Intelligent Traffic Optimization System (Adapted from:
Olayode et al., 2023; Michailidis et al.,2025; Author, 2025)

Figure 5 illustrates the workflow of the proposed hybrid
ANFIS-GA-Reinforcement Learning intelligent traffic
optimization methodology, which was adapted from
existing studies and further refined to suit the objectives of
this research. Variables are first processed by ANFIS
through  fuzzification, rule-based inference, and
defuzzification to produce initial signal control outputs. GA
then optimizes the ANFIS membership functions and rule
weights by minimizing mean square error, improving
robustness under varying traffic conditions. The optimized
outputs form the state for a Q-learning-based
reinforcement learning agent, which selects signal control
actions using reward-driven updates. Implemented in a
closed-loop manner, the system continuously
incorporates real-time feedback, enabling adaptive signal
control and sustained congestion reduction in dynamic
urban traffic environments.

Evaluation Metrics

The Key Performance Indicators (KPls) of the proposed
traffic optimization model was evaluated using eight
standard metrics widely adopted in transportation

27

engineering. These indicators capture travel efficiency,
congestion intensity, and intersection performance.

Travel Time (TT)
Travel Time denotes the average time required for a vehicle
to traverse a specified route:

=2 (8)
where (D) is the travel distance and (S) is the vehicle speed
(Transportation Research Board [TRB], 2022;

Papageorgiou et al., 2021).

Traffic Density (TD)
Traffic Density measures the level of congestion within a
road network:

D=2 (9)
where (N) is the total number of vehicles and (A) represents

the network area (TRB, 2022; Zheng et al., 2020).

Average Vehicle Speed (AVS)
The mean speed of all vehicles in the system is computed
as:
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N
AVS = Zi=1Si (10)

where §;is the speed of the (i)-th vehicle and (N) is the total
vehicle count (Wei et al., 2022; FHWA, 2023).

Queue Length (QL)
Queue Length quantifies the number of vehicles waiting at
signalized intersections:

QL = Nqueue (11)
where N4 denotes the total queued vehicles (TRB,
2022).

Delay Time (DT)

Delay Time measures additional time experienced due to
congestion:

DT = TTactual - TTfree-flow (1 2)
where TT.cwal is observed travel time and TTeeefiow iS travel
time under ideal conditions (TRB, 2022; FHWA, 2023).

Throughput (TP)
Throughput represents the number of vehicles passing a
fixed point per time unit:

_ Nyehicles
TP = el (13)

where N ghicles iS the number of passing vehicles and (T) is
the observation window (Wei et al., 2022; Zhang et al.,
2025).

Intersection Delay (ID)
Intersection Delay captures time lost by vehicles while
traversing intersections:

N .
i=1 (T Tintersection, L =T Tiree-flow.
|D — Zl—l( tersect free-fl ) (14)
N

where TTinersection, I 1S actual intersection travel time and
TTee-fiow IS ideal crossing time (TRB, 2022).

Clearance Time (CT)
Clearance Time is the duration required for all queued
vehicles to clear the intersection:

QL
T=
C Stlow (1 5)

where QL is the queue length andS;,, is the saturation flow
rate (Wei et al., 2022).

Exact Normalization and Percentage Improvement
Equation

For each performance Metric m, Normalization is defining
as:

For minimization metrics (¥):
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_ X_,l;laseline_xrrrrlwdel

N, =

For Maximization metrics (1)
X&odel_xrl;laseline

Ni = = ot (17)
For Overall Percentage Improvement (OPI) for a model is
computed as

OPI% = —~ %M _; Ny x 100 (18)
Where M is the total number of evaluated metrics and the
baseline modelis fuzzy logic (Wei et al., 2022).

(16)

Xrlhaseline

Dataset and Adaptation

The proposed model utilized the U.S. Traffic Signal Dataset
(Data.gov, 2023, URL:
https://catalog.data.gov/dataset/traffic-signal-
ad6dd/resource/f724f512-df30-45f6-af28-9fdf620847e1 )
as a reference framework. To ensure relevance to Nigerian
urban traffic conditions, key parameters including vehicle
flow, traffic density, and signal timing were adapted using
proportional scaling based on observed traffic data from

major  cities: Kaduna (2,651 veh/h/lane), Kano
(3,675 veh/h/lane), and Lagos (3,896 veh/h/lane).

Data preprocessing involved normalization, outlier
filtering, and temporal aggregation to generate realistic
traffic  flow patterns. Baseline traffic density
( Xbaseline. Ty hase) and travel time

(Xmodel, TT base) were derived from the Fuzzy Logic
model, while TD_model and TT_model corresponded to
the optimized models, following the methodology of Wei et
al. (2022). The baseline metrics were TT_0=0.57 h, TD_0 =
12 veh/km?, and AVS_0 = 70.34 km/h.

This adaptation framework enabled the static U.S. dataset
to accurately reflect Nigerian traffic behavior while
supporting real-time simulation and performance
evaluation of the proposed ANFIS-GA-RL traffic signal
optimization model.

The Architecture of Intelligent Traffic Optimization
Framework

The proposed framework integrates ANFIS, Genetic
Algorithms, and Reinforcement Learning to achieve
adaptive traffic signal control. ANFIS captures nonlinear
traffic dynamics, GA optimizes its parameters, and RL
selects optimal signal actions using performance-based
rewards. The closed-loop system adapts in real time,
improving congestion reduction, delay minimization, and
overall traffic efficiency.


https://catalog.data.gov/dataset/traffic-signal-a46dd/resource/f724f512-df30-45f6-af28-9fdf620847e1
https://catalog.data.gov/dataset/traffic-signal-a46dd/resource/f724f512-df30-45f6-af28-9fdf620847e1
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Figure 6: Architecture of Intelligent Traffic Optimization System Flow Diagram (Author, 2024)

Figure 6 illustrates a closed-loop hybrid framework that
integrates ANFIS, Genetic Algorithm (GA), and Actor-Critic
Deep Reinforcement Learning (AC-DRL) for adaptive traffic
signal control. Real-time traffic inputs are processed by
ANFIS to generate initial decisions, while GA optimizes its
parameters to improve state accuracy. The optimized
states are used by an AC-DRL agent, trained under a
centralized training and decentralized execution scheme,
to learn optimal signal timing and phase-switching actions
aimed at reducing congestion and delay while improving
throughput. Continuous feedback ensures adaptability to
dynamic traffic conditions. Implemented in MATLAB
R2023b and calibrated with data from U.S. Traffic Signal
Dataset (Data.gov, 2023), adjusting parameters like
vehicle flow, density, and signal timing to reflect Nigerian
traffic conditions using proportional scaling, across key
traffic efficiency metrics.

Algorithm 1: ANFIS Traffic Control Evaluation
1. Input: Traffic state x=[p,q,A]
Output: Crisp control signal y

Apply fuzzy rules: y_j=f j(x)
Compute firing strength w_j
Defuzzify: y=(2w_jy_j) /(2 w_j)
Returny

o0k wN

Step 3: Genetic Algorithm Optimization
Encode ANFIS membership function parameters and rule
weights into chromosomes. Evaluate fitness using Mean
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The Algorithm of Hybrid ANFIS-GA-RL Intelligent Traffic
Optimization System (ITOS)

Step 1: Traffic State Initialization

Acquire real-time traffic data from sensors or camera
systems at the intersection. Normalize and structure the
inputs to form the current traffic state vector.

Input:

Real-time traffic data: traffic density (veh/km), queue
length (veh), vehicle arrival rate (veh/s)

Output:

Optimized traffic signal timings (green duration, phase
sequence)

Step 2: ANFIS-Based Fuzzy Processing

Convert the crisp traffic inputs into fuzzy linguistic
variables using predefined membership functions. Apply
fuzzy inference rules to model traffic conditions and
generate intermediate control outputs. Aggregate and
defuzzify the rule outputs to obtain an initial traffic signal
control action.

Fuzzify x using membership functions defined by (a,b,c)

Square Error (MSE). Apply selection, crossover, and
mutation iteratively until convergence. Update ANFIS
parameters with the globally optimized solution.
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Algorithm 2: GA Optimization of ANFIS Parameters
1. Input: Training data x=[p,q,A]
Output: Optimized (a,b,c) and rule weights
Initialize population P with chromosomes encoding (a,b,c)
Evaluate fitness using MSE = (1/N) 2 (y_actual —y_ANFIS)"2
Generation <€ 0
while termination criterion not satisfied do
Generation < Generation + 1
Select chromosomes with minimum MSE
Apply crossover with probability pc
Apply mutation with probability pm
10 Re-evaluate population fitness (MSE)
11. end while
12. Return best chromosome - optimized (a,b,c)

©EONDOA LN

Step 4: Reinforcement Learning Decision Making Execute the action and compute the reward based on
Define the optimized ANFIS output as the system state. traffic improvement (e.g., reduced queue length). Update
Select a traffic signal action using a Q-learning policy. the Q-table accordingly.

Algorithm 3: Reinforcement Learning (Q-Learning) Signal Control
1. State: S={x,y}
Action: A (signal phase / green time)

2. Initialize Q(S,A) arbitrarily

3. Setlearning rate a, discount factor y, exploration

4. forepisode =1toMdo

5. Observe current states €S

6. fort=1toTdo

7. With probability € select random action a

8. Else selecta=argmax_a Q(s,a)

9. Execute a, observe reward r and next state s’

10. Update Q(s,a) € Q(s,a) + a[r + ymax_a'Q(s',a') — Q(s,a)]

11. s¢s'

12. end for

13. end for
Step 5: Traffic Signal Execution Step 6: Feedback and Adaptation
Implement the selected signal timing parameters in the Observe the updated traffic environment and feed new
traffic signal controller in real time. measurements back into the system. Repeat Steps 2-5

continuously to ensure adaptive optimization.

Algorithm 4: Integrated Execution and Feedback Loop
1. while system is active do
2. Acquire real-time traffic data x=[p,q,A]
3. y €« ANFIS(x | optimized (a,b,c))
4. s<{xy}
5. Selectaction a using Q(s,a)
6. Execute traffic signal action a
7. Observe updated traffic state x'
8. Compute reward r (queue reduction / flow improvement)
9. Update Q-table
10. end while

Simulation and Experiment Set-up Reinforcement Learning (ANFIS-GA-RL) framework, were
The proposed traffic controlmodels, including Fuzzy Logic, implemented in MATLAB R2023b using Simulink and Fuzzy
ANN, ANFIS, GA, ANFIS-GA, and the novel ANFIS-GA- Logic Toolbox. Simulations were conducted on a4x4 urban

30
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intersection grid with four approaches perintersection and and a hybrid learning algorithm. The GA used a population
two lanes per approach, enabling realistic bidirectional size of 50, crossover probability of 0.8, mutation rate of
traffic flow. Traffic signal phases followed standard green- 0.05, and ran for 100 generations. The Reinforcement
yellow-red cycles, and pedestrian crossings were Learning component utilized Q-learning with a learning
incorporated. Traffic demand scenarios spanned low to rate a = 0.1, discount factor y = 0.9, and an g-greedy policy
high congestion, with vehicle arrival rates of 300-1200 with € = 0.1. Performance was evaluated using Total Travel
vehicles/hour per approach, modeled using a Poisson Time (TT), Average Vehicle Speed (AVS), Throughput (TP),
process to capture stochastic variability. Model Traffic Density (TD), Queue Length (QL), Delay Time (DT),
hyperparameters were selected via preliminary tuning. The Intersection Delay (ID), and Computational Time (CT), with
ANN used two hidden layers with 15 neurons each, a 30 independent simulation runs per scenario to ensure
learning rate of 0.01, and 500 training epochs. The ANFIS statistical robustness.

employed three Gaussian membership functions per input

Traffic Junction Simulation

Figure 7: Simulation and Experiment Set-up
RESULTS AND DISCUSSION using eight standard Key Performance Indicators (KPls).
The performance of the proposed hybrid traffic control The comparative simulation results obtained in MATLAB

framework was evaluated against benchmark models are summarized in Table 1.

Table 1: Comparative Performance of Traffic Control Models Across Key Performance Indicators (KPIs)

Model TT(hy AVS P D QL DT (h)y ID(h)y CT (h)v Overall
(km/h)*  (veh/h)r (veh/km?® 4 (vehv Improvement (%)
Fuzzy Logic 0.57 70.34 129 12 15 0.67 0.02 0.013 —
GA 0.54 67.95 143 12 23 0.59 0.03 0.0142 9.1
(Standalone)
ANN 0.42 71.39 139 11 18 0.52 0.01 0.0121 26.3
ANFIS 0.49 72.10 145 10 17 0.54 0.04 0.0134 18.4
ANFIS-GA 0.24 73.64 148 10 20 0.52 0.021 0.0122 57.9
Proposed 0.20 72.36 150 10 20 0.50 0.01 0.0111 64.9
ANFIS-GA-RL

Note: v and ™ indicate minimization and maximization objectives, respectively. Overall improvement is computed relative to
the fuzzy logic baseline Eqn.(16, 17 &18 ) Baseline values: (X22seline_0 =0.57) h, (Xo4e!_0 =12) veh/km? (AVS_0 = 70.34) km/h.

Comparative Analysis of Eight KPIs for Congestion models: Fuzzy Logic, GA, ANN, ANFIS, ANFIS-GA, and the
Mitigation and Flow Efficiency proposed ANFIS-GA-RL framework. Each line graph
Figure 8-15 illustrates the line-graph comparison of eight highlights the performance trajectory and relative
Key Performance Indicators (KPIs) across six traffic control dominance of the models for a specific KPI.
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Figure 8 the travel time line graph shows a nonlinear but
consistently decreasing trend as model intelligence
increases. Conventional Fuzzy Logic and GA exhibit the
highest travel times, while ANN provides a noticeable
reduction. A sharp decline is observed with ANFIS-GA, and

the proposed ANFIS-GA-RL achieves the minimum travel
time (0.20 h). This confirms the strong capability of
reinforcement learning to continuously adapt signal timing
decisions and minimize total journey duration under
varying traffic conditions.
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Figure 9: Average Vehicle Speed (AVS 1)

Figure 9the AVS line graph demonstrates a general upward
trend, indicating improved traffic fluidity with
hybridization. While GA shows a temporary dip due to its
non-adaptive nature, ANN and ANFIS stabilize speed
performance. ANFIS-GA reaches the peak AVS, whereas
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the proposed ANFIS-GA-RL maintains high and stable
average speeds, reflecting smoother flow with reduced
speed oscillations—an important indicator of driving
comfort and safety.
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Figure 10: Traffic Throughput (TP 1)
Figure 10 the throughput graph exhibits a monotonically inference, evolutionary optimization, and reinforcement
increasing trajectory, culminating in the proposed ANFIS- learning enables superior utilization of intersection
GA-RL model with 150 veh/h, the highest among all capacity and maximized vehicle discharge rates.

models. This trend confirms that means of combining fuzzy
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Figure 11: Traffic Density (TD V)

Figure 11 the traffic density line graph shows a clear minimum density of 10 veh/km?. The flat tail of the curve
stepwise reduction from conventional to hybrid models. for ANFIS-GA and ANFIS-GA-RL indicates congestion
While Fuzzy Logic and GA remain at higher density levels, suppression consistency under adaptive control.

ANFIS and subsequent hybrid models stabilize at the
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Figure 12: Queue Length (QL ¥)

Figure 12 the queue length trend reveals fluctuations
across models, with GA producing the highest queue
accumulation, highlighting its sensitivity to demand
variation. In contrast, ANFIS-based models demonstrate

improved queue regulation. The proposed ANFIS-GA-RL
maintains moderate and stable queue lengths, signifying
efficient queue dissipation rather than aggressive
clearance that could destabilize upstream intersections.
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Figure 13: Delay Time (DT V)

Figure 13 the delay time graph displays a strong downward
trend, particularly after the introduction of learning-based
control. The proposed ANFIS-GA-RL achieves the lowest
delay (0.50 h), indicating reduced stop durations and fewer

“dn‘ﬂnﬂmﬂ

I

e
p -

red-light waiting cycles. This confirms the model’s
effectiveness in minimizing temporal inefficiencies at
signalized intersections.
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Figure 14 the Intersection Delay shows a highly sensitive
response to model structure. ANFIS alone records a spike
due to fuzzy rule complexity without adaptive feedback. In
contrast, ANN and the proposed ANFIS-GA-RL achieve the

minimum idle delay (0.01 h). The proposed model sustains
this low idle time while simultaneously optimizing other
KPls, demonstrating robust multi-objective learning.
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Figure 15: Com;:;utati(_)_nal Time (CT V)

Figure 15 the computational time graph highlights the
efficiency of algorithmic integration. Despite its
architectural complexity, the proposed ANFIS-GA-RL
records the lowest computational time (0.0111 h). The
declining trend confirms that reinforcement learning
improves convergence efficiency and does not impose
excessive computational overhead, making the model
suitable for real-time deployment.

Across all eight key performance indicators, our results
show progressive improvements rather than isolated
gains, indicating systematic enhancement across multiple
traffic efficiency dimensions. These outcomes are
consistent with the broader literature on hybrid and
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reinforcement learning-based traffic signal control, which
consistently demonstrates superior performance
compared with traditional and standalone models.

For example, Dhulkefl et al. (2025) showed that a hybrid K
Nearest Neighbor + Deep Reinforcement Learning system
implemented in SUMO reduced average waiting time by
48%, decreased the number of stops by 58%, and
improved throughput by 57% relative to fixed timing and
single algorithm methods, indicating a marked
performance increase over baseline controllers.

Similarly, reinforcement learning based traffic signal
optimization has been shown to significantly reduce
congestion metrics. Haider et al. (2025) reported that RL
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approaches reduced delays by up to 45%, reduced queue
lengths by over 40 meters, increased throughput by 28%,
and lowered CO, emissions by 19% compared with
baseline control methods in SUMO simulations,
highlighting the effectiveness of RL in dynamic traffic
environments.

Hybrid frameworks that integrate fuzzy logic with
reinforcement learning also report notable performance
gains. In Intelligent Traffic Control Decision Making Based
on Type 2 Fuzzy and Reinforcement Learning, Bi et al.
(2024) demonstrated that incorporating fuzzy reasoning
into deep Q network strategies significantly improved
online learning and control responsiveness, yielding better
traffic efficiency than classical DQN approaches.

In the present study, the proposed ANFIS-GA-RL
framework consistently outperformed standalone models
across delay related, flow related, density related, and
efficiency related metrics, corroborating these prior
findings. The observed = 64.9% overall improvement and
Pareto optimal behavior show that synergistic
hybridization combining neuro fuzzy inference for
structural interpretation, genetic algorithms for global
optimization, and reinforcement learning for adaptive
control effectively addresses the nonlinear and stochastic
nature of urban traffic dynamics. Consequently, the
proposed approach not only aligns with but also advances
state of the art methodologies in intelligent urban traffic
signal control.

CONCLUSION

This study validates the effectiveness of a hybrid ANFIS-
GA-RL framework for intelligent traffic signal optimization.
Unlike conventional and standalone intelligent models,
the proposed approach addresses the multi-objective and
dynamic nature of urban traffic control. Results show that
the ANFIS-GA-RL model achieved the lowest travel time
(0.20 h), delay (0.50 h), Intersection delay (0.01 h), and
computational time (0.0111 h), while maximizing traffic
throughput (150 veh/h) and maintaining reduced traffic
density and stable queue lengths. Line-graph trend
analysis confirmed that performance gains were
progressive, stable, and sustained, rather than metric-
specific. Overall, the framework delivered a 64.9%
performance improvement, demonstrating robustness,
scalability, and suitability for real-time smart urban traffic
management.

Future Research Directions

Future work should prioritize real-world deployment and
large-scale validation of hybrid learning-based traffic
control systems to assess performance under practical
uncertainties. Integrating the framework with loT-enabled
smart city infrastructure, connected vehicles, and edge
computing can further enhance real-time adaptability.
Extending the model to multi-intersection and network-
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level coordination is essential for mitigating spillback
effects and improving corridor-wide traffic efficiency.
Additional research should incorporate environmental
sustainability metrics, including emissions and fuel
consumption, to quantify ecological benefits and exploring
advanced communication and computational paradigms
such as 6G-enabled ITS and quantum-assisted
optimization present promising directions for scalable and
future-proof intelligent traffic management systems.

REFERENCES

Abrol, A., Mohan, P. M., & Truong-Huu, T. (2024). A deep
reinforcement learning approach for adaptive traffic
routing in next-generation networks. In Proceedings of the
IEEE International Conference on Communications (ICC
2024) (pp. 465-471).
https://doi.org/10.1109/ICC51166.2024.10622726

Aderibigbe, T., Adewale, M., & Bello, R. (2024). Road
transport in Nigeria: Challenges and prospects. African
Transport Journal, 19(2), 55-72.

Agbaogun, B., Olu-Owolabi, B., Buddenbaum, H., &
Fischer, K. (2023). Adaptive neuro-fuzzy inference system
(ANFIS) and multiple linear regression (MLR) modelling of
Cu, Cd, and Pb adsorption onto tropical soils.
Environmental Science and Pollution Research, 30, Article
24296. https://doi.org/10.1007/s11356-022-24296-8

Alamoudi, L., Alghamdi, H., & Farooq, M. (2024). Intelligent
transportation systems for sustainable urban mobility.
Sustainable Cities and Society, 97, 104761.

Alawad, A., & Kaewunruen, S. (2020). Development of an
ANFIS-based dynamic risk model for station overcrowding
assessment in rail systems. Safety Science, 128, 104733.
https://doi.org/10.1088/1757-899X/603/5/052030

Alsahfi, T., Elmasri, R., Alhajlah, M., Alammari, A,
Alshemaimri, B., & Aboulola, O. (2024). Data Fusion of
Heterogeneous Data Sources for Intelligent Transportation
Systems. 1-17.

Amador, J., Mendes, D., & Oliveira, L. (2024). Machine
learning-enabled strategies for urban traffic control.
Procedia Computer Science, 225, 143-150.

Amer, E. S., Darwish, S., Fahim, N. N., Mohmed EL-
Qabbary, M. M., Ghaly, K. B., & Ramdan, A. S. (2024).
Vehicle Live Tracking System Based on GPS and GSM. 237-
244, https://doi.org/10.1109/itc-
egypt61547.2024.10620479

Babiyola, A., Saillaja, V., Shally, S. P., & Omkumar, S.
(2023). Development of an Internet of Things-based


https://doi.org/10.1109/ICC51166.2024.10622726
https://doi.org/10.1007/s11356-022-24296-8
https://doi.org/10.1088/1757-899X/603/5/052030
https://doi.org/10.1109/itc-egypt61547.2024.10620479
https://doi.org/10.1109/itc-egypt61547.2024.10620479

Dodo et al.,

Integrated System for Fleet Management in RealTime.
1265-1269.

Bangalee, M., & Ahmed, S. (2024). Fuzzy-preprocessed
deep reinforcement learning for adaptive traffic systems.
Transportation Research Part C: Emerging Technologies,
162, 104339. https://dx.doi.org/10.2139/ssrn.4879403

Bi, Y., Ding, Q., Du, Y., Liu, D., & Ren, S. (2024). Intelligent
traffic control decision-making based on Type-2 fuzzy and
reinforcement learning. Electronics, 13(79), 3894.
https://doi.org/10.3390/electronics 13193894

Bintoro, K. B. Y. (2024). Vehicular Ad-Hoc Networks for
Intelligent Transportation System: A Brief Review of
Protocols, Challenges, and Future Research. JISA (Jurnal
Informatika Dan Sains), 7(2), 206-216.
https://doi.org/10.31326/jisa.v7i2.2125

Carrese, S., Cipriani, E., Crisalli, U., Gemma, A., & Mannini,
L. (2021). Bluetooth Traffic Data for Urban Travel Time
Forecast. Transportation Research Procedia, 52, 236-243.
https://doi.org/10.1016/J.TRPR0O.2021.01.027

Celar, N., Stankovic, S., & Kajalic, J. (2024). The role of
intelligent transportation systems in mitigating adverse
weather effects on traffic safety and efficiency. Road and
Rail Infrastructure, 8, 967-973.

Chen, Z., & Zhai, L. (2022). Wavelet-de-noised ANFIS for
short-term highway traffic prediction. Neural Computing
and Applications, 34(18), 15233-15247.
https://doi.org/10.1080/15472450.2021.1920437

Das, S., Barua, S., & Hossain, A. (2024). Unraveling the
complex relationship between weather conditions and
traffic safety. Journal of Transportation Safety & Security,
1-40. https://doi.org/10.1080/19439962.2024.2435307

Dhulkefl, E. J., Abdulsattar, A. W., Khudhur, Z. M., &
Mahmood, T. A. (2025). Design of a hybrid intelligent traffic
signal control system using nearest neighbor algorithm
and deep reinforcement learning with SUMO simulator.
Journal of Research in Engineering and Computer
Sciences, 3(03), 983.
https://doi.org/10.63002/jrecs.303.983

Dimri, R., Kothari, A., & Bhardwaj, R. (2024). Global traffic
congestion and mitigation: A comparative study.
Transportation Research Part A, 168, 1035-1049.

Dong, L. (2018). Adaptive fuzzy neural network-based
traffic optimization using VISSIM simulation. International
Journal of Intelligent Transportation Systems Research,
16(4), 211-223. 10.1109/ICTIS.2019.8883791

37

JOSRAR 2(6) NOV-DEC 2025 21-39

Faheem, M., Mahmud, S., & Qadir, J. (2024). Limitations of
conventional traffic control in developing countries.
International Journal of Transportation Science and
Technology, 13(1), 22-34.

Faqir, M., Khalid, H., & Zhou, J. (2024). Scalable multi-
agent deep reinforcement learning for adaptive citywide
traffic control. [EEE Transactions on Intelligent
Transportation Systems, 25(4), 3556-3571.
http://doi.org/10.11591/ijai.v14.i1.pp500-515

Federal Highway Administration. (2017). Traffic analysis
toolbox: Definitions, interpretation, and calculation of
traffic analysis tools measures of effectiveness. U.S.
Department of Transportation.
https://ops.fhwa.dot.gov/publications/fhwahop08024/ch

apterd.htm

Federal Highway Administration. (2021). Traffic analysis
toolbox: Definitions, interpretation, and calculation of
traffic analysis tools measures of effectiveness. U.S.
Department of Transportation.
https://ops.fhwa.dot.gov/publications/fhwahop08054/se
ct6.htm

Fu, Z. (2022). Urban traffic signal optimization using
genetic algorithm with migration learning and fuzzy rule
enhancement. Journal of Intelligent Transportation
Systems, 26(6), 589-603
https://doi.org/10.1109/ICIBA55627.2022.00082 .

Hai, N., Manh, D., & Nhat, T. (2022). Emission-aware multi-
objective genetic algorithm for signal timing optimization.
Sustainable Cities and  Society, 80, 103777.
https://doi.org/10.3390/en15197011

Haider, K. Z., Igbal, M., Channa, I. A, Shoaib, H., Hashmi,
N. Z., & Rizwan, K. (2025). Reinforcement learning-based
traffic signal optimization for smart cities. Spectrum of
Engineering Sciences, 3(9), 446-458.
https://doi.org/10.5281/zenodo.17365127

Highway capacity manual (2022). National Academies of
Sciences, Engineering, and Medicine. (7th ed.): A guide for
multimodal mobility analysis. The National Academies
Press. https://doi.org/10.17226/26432

INRIX. (2023).
https://inrix.com

Global Traffic Scorecard 2022.

Jaleel, A., Kumar, M., & Reddy, K. (2020). Adaptive traffic
signal control using fuzzy logic. International Journal of
Advanced Computer Science and Applications, 11(7),
222-228.


https://dx.doi.org/10.2139/ssrn.4879403
https://doi.org/10.3390/electronics13193894
https://doi.org/10.31326/jisa.v7i2.2125
https://doi.org/10.1016/J.TRPRO.2021.01.027
https://doi.org/10.1080/15472450.2021.1920437
https://doi.org/10.1080/19439962.2024.2435307
https://doi.org/10.63002/jrecs.303.983
https://doi.org/10.1109/ICTIS.2019.8883791
http://doi.org/10.11591/ijai.v14.i1.pp500-515
https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter4.htm?utm_source=chatgpt.com
https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter4.htm?utm_source=chatgpt.com
https://ops.fhwa.dot.gov/publications/fhwahop08054/sect6.htm
https://ops.fhwa.dot.gov/publications/fhwahop08054/sect6.htm
https://doi.org/10.1109/ICIBA55627.2022.00082
https://doi.org/10.3390/en15197011
https://doi.org/10.5281/zenodo.17365127
https://doi.org/10.17226/26432
https://inrix.com/

Dodo et al.,

Javed, S., Khan, A., & Tariq, H. (2024). Urban mobility
challenges in the 21st century. Environment and Urbanization
Asia, 15(1), 34-48.

Jeevan, S., Karthik, K. S., Sharma, J., Moharir, M., & Kumar, A.
A. R. (2024). GPS Based Efficient Real Time Vehicle Tracking
and Monitoring System Using Two Factor Authentication and
Internet of Things (loT). 473-478.

Jutury, K., Konda, R., & Patel, J. (2023). Comparative analysis
of Al models in traffic signal optimization. Journal of
Transportation Technologies, 13(4), 143-157.

Khatri, M., Sharma, P., & Bhatt, V. (2020). Dynamic vehicle
rerouting using Al-based decision models. Transportation
Research Procedia, 46, 181-188.

Kim, P., Yun, H., Kim, J., & Kim, D.-K. (2025). Scalable Link
Cost Learning for Real-Time Route Guidance Systems.
https://doi.org/10.2139/ssrn.5078713

Krishna, V. N. A., Jose, T., Antony, A., Raju, N., & S, V. G.
(2024). Smart Signal Speed Control System.
https://doi.org/10.1109/icemps60684.2024.10559336

Kumar, R., Singh, A., & Bansal, A. (2021). ANFIS-PSO hybrid
model for energy demand forecasting in cyber-physical
transportation systems. Energy Reports, 7, 5115-5129.
https://doi.org/10.1016/j.egyr.2020.12.004

levari, M., Yousefi, H., & Sadeghi, R. (2021). ANFIS-FCM-
based passenger clustering and optimal bus routing using
Dijkstra algorithm. Journal of Advanced Transportation, 2021,
Article 6623314. https://doi.org/10.33168/JSMS.2021.0110

Liu, Xiao-Yang & Zhu, Ming & Borst, Sem & Walid, Anwar.
(2023). Deep Reinforcement Learning for Traffic Light Control
in Intelligent Transportation Systems.
10.48550/arXiv.2302.03669.

Lv, J., & Shang, H. (2023). The role of ITS in smart city mobility
transformation. Smart Cities Journal, 4(1), 99-113.

Ma, L., Wu, J., & Zhu, D. (2019). Intelligent traffic systems with
real-time feedback. [EEE Transactions on Intelligent
Transportation Systems, 20(5), 1778-1786.

Ma, Z., Cui, T., Deng, W., Jiang, F., & Zhang, L. (2021). Deep
reinforcement learning with PPO for adaptive traffic signal
timing. Journal of Advanced Transportation, 2021, Article
6616702. https://doi.org/10.1155/2021/6616702

Mai, V., & Ngo, T. (2021). Interval type-2 fuzzy logic optimized
with particle swarm optimization for intelligent traffic
prediction. Expert Systems with Applications, 177, 114912.
https://doi.org/10.1016/j.as0c.2021.107357

38

JOSRAR 2(6) NOV-DEC 2025 21-39

Mai-Tan, T., Rahman, M., & Adeyemi, T. (2020). Addressing
urban traffic congestion in developing countries. Journal of
Infrastructure Systems, 26(2), 04020014.

Manh, D., Hai, N., & Nhat, T. (2020). Multi-objective genetic
algorithm for adaptive traffic signal timing at complex
intersections. Transportation Research Procedia, 48, 1878-
1887. https://doi.org/10.2174/1874149502014010126

Mao, Y., Cai, X., & Wang, H. (2022). Boosted genetic
algorithms for urban traffic control. /[EEE Transactions on
Intelligent Transportation Systems, 23(5), 4231-4245.
https://doi.org/10.1109/TITS.2021.3066958

Merbah, A., Djamel, M., & Harzli, R. (2023). Challenges in real-
time Al-based traffic optimization. Applied Soft Computing,
136, 110082.

Michailidis, P., Michailidis, |[., Lazaridis, C. R., &
Kosmatopoulos, E. (2025). Traffic Signal Control via
Reinforcement Learning: A Review on Applications and
Innovations. Infrastructures, 10(5), 114.

https://doi.org/10.3390/infrastructures10050114

Mirbakhsh, N., & Azizi, M. (2024). Multi-objective hybrid DRL
for sustainable traffic control. Expert Systems with
Applications, 242, 121905.
https://doi.org/10.58806/ijirme.2024.v3i7n10

Moreno-Malo, J., Ruiz-Lépez, F., & Ramirez, R. (2024). Multi-
agent DQN for large-scale adaptive traffic management.
Transportation ~ Research  Part C, 168, 104511.
https://doi.org/10.1016/j.eswa.2024.124178

Muhammad, M., Hameed, S., & Asad, M. (2020). loT-based
intelligent traffic control system. International Journal of
Advanced Computer Science and Applications, 11(5), 116-
128.

Niu, Z., Zhang, M., & Li, T. (2023). Urban traffic management
and environmental sustainability. Environmental Modelling &
Software, 161, 105669.

Nookala, K., Patel, V., & Krishnan, A. (2023). Reinforcement
learning for traffic signal control: A survey. ACM Computing
Surveys, 56(1), 1-35.

Olayode, I. O., Tartibu, L. K., & Alex, F. J. (2023). Comparative
study analysis of ANFIS and ANFIS-GA models on flow of
vehicles at road intersections. Applied Sciences, 13(2), 744.
https://doi.org/10.3390/app13020744

Oyewo, S., & Oyewale, A. (2023). Urban congestion in
megacities: The Lagos example. African Urbanization Journal,
8(2), 44-59.


https://doi.org/10.2139/ssrn.5078713
https://doi.org/10.1109/icemps60684.2024.10559336
https://doi.org/10.1016/j.egyr.2020.12.004
https://doi.org/10.33168/JSMS.2021.0110
https://doi.org/10.1155/2021/6616702
https://doi.org/10.1016/j.asoc.2021.107357
https://doi.org/10.2174/1874149502014010126
https://doi.org/10.1109/TITS.2021.3066958
https://doi.org/10.3390/infrastructures10050114
https://doi.org/10.58806/ijirme.2024.v3i7n10
https://doi.org/10.1016/j.eswa.2024.124178
https://doi.org/10.3390/app13020744

Dodo et al.,

Pan, T. (2024). Traffic light control with reinforcement
learning. Applied and Computational Engineering, 43, 26-43
https://doi.org/10.54254/2755-2721/43/20230804

Pasupuleti, M. K. (2024). Smart Mobility: Transforming Roads
with Advanced V2X Communication and Connected Vehicle
Networks. 56-72. https://doi.org/10.62311/nesx/46004

Rabinovich, A. (2023). The Application of Mobile Phones to
Enable Traffic Flow Optimisation. In Lecture notes on data
engineering and communications technologies (pp. 191-
205).

Ren, J., Lin, M., & Yu, T. (2011). Traffic signal timing
optimization using swarm intelligence. Expert Systems with
Applications, 38(12), 14539-14547.

Saadi, A., Abghour, N., Chiba, Z., et al. (2025). A survey of
reinforcement and deep reinforcement learning for
coordination in intelligent traffic light control. Journal of Big
Data, 12, 84. https://doi.org/10.1186/s40537-025-01104-x

Salunke, G., Salunke, Y., & Admane, T. (2024). Integrating
RFID and Sensor Technology for Enhanced Urban Vehicle
Monitoring: A Path to Smarter, Safer Cities. 1-6.
https://doi.org/10.1109/12CT61223.2024.10544150

Shahkar, A., Oruc, S., & Yelghi, A. (2023). Traffic signal
prediction based on ANFIS and metaheuristic algorithms
applied to a Vissim-based simulated intersection. Research
Square. Preprint. https://doi.org/10.21203/rs.3.rs-

JOSRAR 2(6) NOV-DEC 2025 21-39

Upadhyay, R. K., Sharma, S. C., & Kumar, V. (2024).
Introduction to Intelligent Transportation System and
Advanced Technology (pp. 3-6). Springer Nature.

Usha, K., Bala, S., & Kumar, P. (2025). ANFIS-based DDoS
detection model for intelligent transportation systems.
Computers & Security, 139, 103523.
https://doi.org/10.1109/ACCESS.2025.3456789

Vieira, D., Gomes, M., & Rocha, F. (2024). Limitations of
current  traffic management systems: A  review.
Transportation Reviews, 44(1), 12-34.

Wang, B., He, Z., Sheng, J., & Chen, Y. (2022). Deep
reinforcement learning for traffic light timing optimization.
Processes, 10(11), 2458. https://doi.org/10.3390/pr10112458

Wei, Z., Peng, T., & Wei, S. (2022). A robust adaptive traffic
signal control algorithm using Q-learning under mixed traffic
flow. Sustainability, 14(10), 5751.
https://doi.org/10.3390/su14105751

WHO. (2018). Global status report on road safety 2018. World
Health Organization.
https://www.who.int/publications/i/item/9789241565684

World Health Organization. (2023). Global status report on
road safety 2023. WHO. https://www.who.int/teams/social-
determinants-of-health/safety-and-mobility/global-status-
report-on-road-safety-2023

3057609/v1

Tiberio, L., Ferreira, M., & Costa, E. (2022). Density-based
genetic algorithm for coordinated traffic management with
smart lights. Sensors, 22(11), 4104.
https://doi.org/10.1109/TENCON55691.2022.9977766

Transportation Research Board. (2022). Highway Capacity
Manual: A guide for multimodal mobility analysis (7th ed.).
National Academies Press. https://doi.org/10.17226/29143

Tripathi, V., & Sharma, S. (2024). ANFIS model for urban traffic
volume  prediction using multi-category datasets.
International Journal of Transportation Systems, 12(3), 245
259.
https://www.propulsiontechjournal.com/index.php/journal/
article/view/4998

Udofia, S. (2019). ANFIS-based intelligent traffic light control
for dual intersections using MATLAB/Simulink. Nigerian
Journal of Technology, 38(4), 1102-1112.
https://doi.org/10.5121/ijaia.2019.10403

Uma, V., & Eswari, R. (2021). Enhancing safety with Al-
integrated transportation systems. IEEE Access, 9, 89324-
89334.

39

Yang, G., Li, M., & Qin, J. (2025). Hierarchical multi-agent
reinforcement learning for large- scale traffic networks.
Transportation Research Part C, 170, 104742.
https://doi.org/10.1177/03611981241297979

Yektamoghadam, M., Aslani, H., & Fadaei, M. (2024). Genetic
algorithm-based optimization of traffic signals: A case study.
Transportation Research Part B, 167, 102712.

Zhang, X. (2025). Artificial intelligence in intelligent traffic
signal control. Applied and Computational Engineering, 778,
113-120. https://doi.org/10.54254/2755-2721/2025.20846

Zhang, Y., llic, M., & Bogenberger, K. (2023). A Novel Concept
of Traffic Data Collection and Utilization: Autonomous
Vehicles as a Sensor. 3887-3892.

Zhang, Z., Wu, Y., & Zhang, X. (2024). (2024). Event traffic
forecasting with sparse multimodal data. Proceedings of the
32nd ACM International Conference on Multimedia (pp. 8855
8864). Association for Computing Machinery.
https://doi.org/10.1145/3664647.3680706



https://doi.org/10.54254/2755-2721/43/20230804
https://doi.org/10.62311/nesx/46004
https://doi.org/10.1186/s40537-025-01104-x
https://doi.org/10.1109/I2CT61223.2024.10544150
https://doi.org/10.21203/rs.3.rs-3057609/v1
https://doi.org/10.21203/rs.3.rs-3057609/v1
https://doi.org/10.1109/TENCON55691.2022.9977766
https://doi.org/10.17226/29143
https://www.propulsiontechjournal.com/index.php/journal/article/view/4998
https://www.propulsiontechjournal.com/index.php/journal/article/view/4998
https://doi.org/10.5121/ijaia.2019.10403
https://doi.org/10.1109/ACCESS.2025.3456789
https://doi.org/10.3390/pr10112458
https://doi.org/10.3390/su14105751
https://www.who.int/publications/i/item/9789241565684
https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/global-status-report-on-road-safety-2023
https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/global-status-report-on-road-safety-2023
https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/global-status-report-on-road-safety-2023
https://doi.org/10.1177/03611981241297979
https://doi.org/10.54254/2755-2721/2025.20846
https://doi.org/10.1145/3664647.3680706

