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A B S T R A C T  
Cryptocurrency financial markets are characterized by high 
volatility and non-stationary price dynamics, posing significant 
challenges to traditional portfolio optimization techniques that rely 
on static risk–return assumptions. In such environments, existing 
methods often struggle to generalize and adapt effectively, leading 
to suboptimal performance and increased downside risk. To 
address these limitations, this paper proposes a novel adaptive 
portfolio optimization framework that integrates Generative 
Adversarial Networks (GANs) for synthetic data augmentation with 
a state-of-the-art Soft Actor-Critic (SAC) deep reinforcement 
learning (DRL) agent. By augmenting real historical OHLC data with 
realistic TimeGAN-generated price sequences, the proposed 
approach exposes the DRL agent to a broader range of market 
scenarios, thereby improving generalization and mitigating 
overfitting. A convolutional neural network (CNN) feature extractor 
captures deep temporal dependencies, while causal and dilated 
convolutions model complex inter-asset correlations. Empirical 
results demonstrate that the proposed GAN–SAC hybrid 
consistently outperforms conventional strategies and the baseline 
Deep Portfolio Optimization (DPO) model, achieving a higher 
Accumulative Portfolio Value (APV) of 53.72, an improved Sharpe 
Ratio of 0.0980, and a reduced Maximum Drawdown (MDD) of 
28.5%. These findings confirm the effectiveness of combining 
generative models and DRL to develop robust, adaptive portfolio 
strategies capable of navigating highly volatile cryptocurrency 
markets, with practical implications for next-generation algorithmic 
trading systems requiring enhanced resilience and dynamic risk 
control. 

 
INTRODUCTION 
In recent years, financial markets have become 
increasingly dynamic and volatile, especially within the 
cryptocurrency sector where price fluctuations are highly 
unpredictable. Traditional portfolio optimization 
techniques, such as the Mean-Variance Theory introduced 
by Markowitz (1952), often struggle to adapt in non-
stationary environments due to their static assumptions 

about returns and risks. To address these limitations, 
recent studies have focused on leveraging machine 
learning techniques to learn adaptive trading strategies 
directly from market data (Bhuiyan et al., 2025). 
Deep Reinforcement Learning (DRL) has emerged as a 
powerful paradigm for dynamic portfolio management 
because it can model sequential decision-making 
problems and adapt to complex market dynamics (Wang et 

Journal of Science Research and Reviews 

Original Research Article 

PRINT ISSN: 1595-9074 

E-ISSN: 1595-8329 

DOI: https://doi.org/10.70882/josrar.2025.v3i1.134  

Homepage: https://josrar.esrgngr.org 

mailto:ahmadyakub804@gmail.com
https://doi.org/10.70882/josrar.2026.v3i1.134
https://doi.org/10.70882/josrar.2025.v3i1.134
https://josrar.esrgngr.org/


Yakub et al.,  JOSRAR 3(1) JAN-FEB 2026 37-47 
 

38 

al., 2025). Notably, the Deep Portfolio Optimization (DPO) 
framework by (Yan et al., 2024) demonstrated that 
combining Convolutional Neural Networks (CNN) and 
Long Short-Term Memory (LSTM) with DRL significantly 
improves performance compared to traditional rule-based 
strategies. 
However, DRL-based approaches still face challenges 
such as limited training data and overfitting to historical 
market conditions, which may reduce generalization to 
unseen market scenarios (Singh et al., 2022). To mitigate 
this, recent research has explored the use of Generative 
Adversarial Networks (GANs) to augment training data by 
generating synthetic but realistic market scenarios (Yilmaz 
& Korn, 2024). 
Building on these insights, this paper proposes an adaptive 
portfolio optimization framework that integrates a GAN-
based synthetic data generator with a state-of-the-art DRL 
agent, specifically the Soft Actor-Critic (SAC) algorithm. 
The goal is to enhance the model’s ability to generalize and 
adapt under varying market regimes, leading to improved 
profitability, risk-adjusted returns, and robustness. 
Portfolio optimization is a fundamental aspect of financial 
management that focuses on selecting an optimal mix of 
assets to maximize returns while minimizing risk. The 
process involves balancing expected returns, asset 
correlations, and risk exposure to achieve efficient capital 
allocation. One of the earliest and most influential models 
in this domain is Markowitz’s Modern Portfolio Theory 
(MPT), which introduced the concept of an efficient 
frontier—representing portfolios that offer the highest 
expected return for a given level of risk (Surtee & Alagidede, 
2022). The mathematical foundation of MPT is based on 
mean-variance optimization, where the expected return 

(𝐸(𝑅𝑝)) of a portfolio is given in equation 1: 

 𝐸(𝑅𝑝) = ∑ 𝑤𝑖𝐸(𝑅𝑖)
𝑛
𝑖=1                (1) 

Where 𝑤𝑖  represents the weight of asset 𝑖 in the portfolio, 
and 𝐸(𝑅𝑝) denotes the expected return of asset 𝑖. The 
portfolio risk 𝜎𝑝

2 is computed in equation 2: 
𝜎𝑝

2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1             (2) 

Where 𝜎𝑖𝑗  represents the covariance between assets 𝑖 and 
𝑗. This model assumes that investors are rational and risk-
averse, preferring portfolios that lie on the efficient frontier. 
Building on Markowitz’s framework, several traditional 
portfolio optimization techniques have been developed. 
The Capital Asset Pricing Model (CAPM) (Sharpe, 1964) 
extends MPT by introducing the concept of systematic risk, 
measured by the beta coefficient (𝛽). The CAPM equation 
is expressed in equation 3: 
𝐸(𝑅𝑖) = 𝑅𝑓 + 𝛽𝑖(𝐸(𝑅𝑚) − 𝑅𝑓)        (3) 
Where 𝑅𝑓  is the risk-free rate, 𝐸(𝑅𝑚) is the expected 
market return, and 𝛽𝑖  represents the sensitivity of asset 𝑖 to 
market movements. Other notable approaches include 
risk parity strategies, which allocate portfolio weights 
based on risk contributions rather than returns (Braga et 

al., 2023), and Black-Litterman models, which integrate 
investor views into Bayesian portfolio optimization (Yuan et 
al., 2025). 
Although traditional portfolio optimization methods 
provide a structured approach to asset allocation, they 
exhibit several key limitations. First, they assume that 
asset returns and risks remain stable over time, which is 
rarely the case in dynamic financial markets (Cobbinah et 
al., 2024). Market anomalies, such as sudden crashes or 
liquidity shocks, can significantly impact portfolio 
performance, rendering static models ineffective. Second, 
these methods often fail to account for higher-order 
dependencies and nonlinear relationships between 
financial assets. For example, extreme market conditions 
can lead to nonlinear correlations that are not captured by 
mean-variance optimization (Wang and Aste, 2022). 
Reinforcement Learning (RL) is a branch of machine 
learning that focuses on training agents to make sequential 
decisions by interacting with an environment and 
maximizing cumulative rewards. Unlike supervised 
learning, where models learn from labeled data, RL relies 
on an agent exploring an environment, taking actions, and 
receiving feedback in the form of rewards or penalties. The 
learning process is formalized using a Markov Decision 
Process (MDP), which consists of a set of states(𝑆), 
actions(𝐴), transition probabilities(𝑃), rewards(𝑅), and a 
policy (𝜋) that guides the agent’s behavior. The goal is to 
learn an optimal policy (𝜋∗) that maximizes the expected 
cumulative reward over time (Singh et al., 2022). 
Deep Reinforcement Learning (DRL) extends traditional RL 
by incorporating deep neural networks to approximate 
complex value functions and policies, making it more 
effective in handling high-dimensional and continuous 
action spaces. One of the most widely used DRL 
algorithms is the Deep Q-Network (DQN), which combines 
Q-learning with deep neural networks to estimate optimal 
action values (Giraldo et al., 2024). Another important 
approach is the Policy Gradient method, where the agent 
directly learns the policy function instead of the value 
function, allowing for better adaptability in dynamic 
environments. Actor-Critic models, which integrate both 
value-based and policy-based learning, have also been 
widely applied in finance due to their efficiency in 
continuous action spaces (Sumiea et al., 2024). 
Generative Adversarial Networks (GANs) are a class of 
deep learning models designed to generate synthetic data 
that closely resembles real-world distributions. GANs 
consist of two competing neural networks: a generator and 
a discriminator. The generator (𝐺) creates synthetic data 
samples, while the discriminator (𝐷) evaluates whether a 
given sample is real (from the actual dataset) or fake 
(generated) (Yilmaz and Korn, 2024). The training process is 
framed as a two-player minimax game, where the 
generator aims to maximize the probability of the 
discriminator misclassifying its outputs, and the 
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discriminator aims to correctly distinguish real from 
synthetic samples.  
The integration of Deep Reinforcement Learning (DRL) and 
Generative Adversarial Networks (GANs) represents a 
significant advancement in portfolio optimization, offering 
a more adaptive and data-driven approach to asset 
allocation. DRL provides the ability to learn optimal trading 
strategies by interacting with financial markets, while 
GANs generate synthetic financial data to improve model 
robustness and mitigate data limitations. By combining 
these two powerful AI techniques, portfolio managers can 
develop intelligent decision-making systems that 
dynamically adjust to market conditions, minimize risks, 
and maximize returns. 
One of the primary benefits of this integration is enhanced 
data availability. Financial markets often experience 
periods of limited data, particularly for new asset classes 
or rare market events such as economic recessions. GANs 
address this issue by generating synthetic yet realistic 
financial data, enabling DRL models to train on a more 
diverse set of market conditions (Ramzan et al., 2024). This 
improves the generalization capability of DRL agents, 
reducing overfitting to historical data and enhancing 
adaptability to future market fluctuations. 
The work of Nawathe et al., (2024) proposed a multimodal 
DRL framework integrating historical prices, sentiment, 
and news embeddings to optimize S&P 100 trading 
strategies. The authors reported superior performance 
compared to traditional portfolio optimization methods, 
emphasizing DRL's ability to adapt dynamically. However, 
the study highlighted computational complexity as a 
challenge. The inclusion of sentiment analysis proved 
effective for handling volatile market conditions. The 
findings underscore DRL’s capability to blend multimodal 
data for investment decisions. 
Recent studies have demonstrated that integrating 
generative models with deep reinforcement learning can 
substantially enhance portfolio robustness and risk-
adjusted performance in volatile markets. In this direction, 
Wang et al. (2024) proposed an integrated DRL–GAN 
framework in which synthetic data augmentation was used 
to improve exposure to diverse market conditions. Their 
approach significantly outperformed both standard DRL 
methods and traditional Modern Portfolio Theory (MPT) 
strategies, particularly in terms of adaptability to market 
shifts and improved risk-adjusted returns. However, 
despite these performance gains, the study highlighted 
notable challenges related to training complexity and the 
interpretability of GAN-generated market scenarios. 
Model-based deep reinforcement learning architectures 
augmented with generative data have been explored to 
enhance robustness in trading environments. In this 
context, Mundargi et al. (2024) introduced a DRL 
framework incorporating GAN-based synthetic market 
scenarios to diversify training data and improve exposure 

to stressed market conditions. Their results demonstrated 
enhanced resilience to market shocks and improved 
profitability compared to conventional approaches. 
However, the authors noted ethical concerns related to the 
potential misuse or misinterpretation of synthetic financial 
data, particularly regarding the realism of generated 
scenarios and their implications for decision-making 
transparency.  
Chen et al., (2023) explored GANs' potential to simulate 
extreme financial scenarios for risk management. They 
effectively generated synthetic market crashes, aiding 
robust portfolio testing. The study highlighted GANs’ ability 
to overcome traditional data scarcity limitations. While 
realistic simulations were achieved, concerns about long-
term scenario consistency emerged. Overall, GAN-driven 
stress tests significantly improved risk preparedness in 
portfolio management. 
The work of Liu et al., (2023) focused on creating realistic 
synthetic stock price series through GANs to augment 
portfolio optimization datasets. GAN-generated data 
enhanced DRL training by simulating diverse economic 
scenarios. Results showed improved portfolio adaptability 
and reduced overfitting risks. The primary limitation 
identified was assessing the synthetic data quality 
objectively. Nevertheless, the study validated GANs’ 
effectiveness in financial modeling. 
The work of Feng et al., (2023) integrated DRL and GANs to 
manage portfolio risks dynamically. GANs provided diverse 
market conditions for robust training of DRL agents. 
Findings indicated improved risk-adjusted returns and 
enhanced resilience during market shocks. Challenges 
regarding model interpretability and computational 
resources were acknowledged. This hybrid approach 
significantly advanced the flexibility and effectiveness of 
adaptive risk management. 
Zhang and Zohren (2023) developed a DRL-GAN model 
tailored for high-frequency market making. Synthetic order 
book data were generated, improving the training efficiency 
of DRL models. The study reported increased profitability 
and reduced exposure to liquidity risks. While 
computational complexity was manageable, ethical 
implications of synthetic market data generation were 
discussed. The integration demonstrated strong potential 
for optimizing trade execution strategies. 
Wiese et al., (2023) utilized GANs to generate financial time 
series for stress-testing portfolio strategies. Generated 
synthetic data effectively mimicked complex market 
behaviors, aiding robust strategy evaluation. Despite 
realistic generation capabilities, the assessment of data 
fidelity was challenging. Results clearly demonstrated the 
value of synthetic data in enhancing portfolio optimization 
models. The paper highlighted GANs' role in overcoming 
traditional data constraints. 
Li et al., (2024) developed an adaptive DRL-based asset 
allocation framework, continually adjusting portfolios 
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based on market dynamics. DRL significantly 
outperformed traditional methods by optimizing 
cumulative returns and minimizing risk. Computational 
efficiency was highlighted as an ongoing issue, alongside 
model transparency. The research provided strong 
empirical support for DRL’s dynamic decision-making 
capabilities in financial markets. 
Wang et al., (2024) proposed a GAN-based framework for 
robust portfolio optimization under uncertain market 
conditions. Synthetic data generation improved the 
training and robustness of predictive models. Results 
showed significantly better handling of market 
uncertainties compared to traditional optimization. 
Computational overhead and ethical concerns about 
realistic scenario generation were noted as limitations. The 
approach advanced portfolio management’s ability to 
navigate uncertainty effectively. 
Huang et al., (2024) presented a DRL framework integrating 
market sentiment indicators for dynamic portfolio 
selection. Their method consistently outperformed 
baseline strategies, confirming sentiment analysis 
significantly improves predictive power in volatile markets. 
The study highlighted challenges regarding the real-time 
integration of sentiment data. Computational cost and 
interpretability of DRL policies were identified as ongoing 
concerns.  
Cao et al., (2023) utilized Generative Adversarial Imitation 
Learning (GAIL) to replicate expert investment behaviors, 
effectively optimizing portfolio strategies. GAIL-generated 
policies showed strong adaptability and outperformed 
classical models under diverse market conditions. 
Limitations arose concerning the dependency on expert 
demonstrations. Nevertheless, this innovative approach 
offered valuable insights for enhancing automated 
investment decision-making through imitation learning 
techniques. 
Song et al., (2024) developed a DRL-based adaptive 
portfolio rebalancing model accounting explicitly for 
transaction costs. Results demonstrated superior 
performance over traditional methods by dynamically 
optimizing trade execution frequency and volume. 
Transaction costs significantly impacted model 
performance, underlining the importance of realistic cost 
modeling. Interpretability and computational efficiency 
remained challenging, yet this method proved 
advantageous for practical implementation in financial 
trading. 
Xu et al., (2023) leveraged GANs to forecast market 
volatility, enhancing portfolio risk assessment and asset 
allocation strategies. The GAN-based volatility predictions 
significantly improved portfolio performance compared to 
traditional volatility models. Challenges regarding model 
training stability and volatility simulation fidelity were 
noted. Despite these challenges, the study successfully 

demonstrated GANs’ potential to accurately predict and 
integrate volatility into portfolio optimization frameworks. 
Liang et al., (2025) combined DRL with GAN-generated 
market data for adaptive investment strategies, achieving 
strong risk-adjusted returns in diverse market scenarios. 
The hybrid approach significantly mitigated risk by 
simulating adverse market conditions. Limitations 
included interpretability and computational overhead. 
Nevertheless, the paper effectively illustrated how 
synthetic scenarios could enhance robustness and 
adaptability in financial models, proving valuable for risk-
sensitive investors. 
Gupta et al., (2024) introduced regime-switching DRL for 
adaptive asset allocation, capturing varying market states 
effectively. The model dynamically adjusted portfolios, 
outperforming static allocation methods. Regime-
switching significantly enhanced portfolio resilience, 
particularly during market shifts. Computational demands 
and regime prediction accuracy remained critical 
concerns. Still, this approach demonstrated clear 
advantages in dynamically shifting markets. 
 
MATERIALS AND METHODS 
The proposed framework combines a Generative 
Adversarial Network (GAN) with a Deep Reinforcement 
Learning (DRL) agent to achieve robust, adaptive portfolio 
optimization in highly volatile cryptocurrency markets. The 
design addresses two critical limitations found in baseline 
DRL methods: (i) insufficient exposure to diverse market 
scenarios and (ii) overfitting to historical patterns. 
 
Accumulative Portfolio Value (APV) 
Accumulative Portfolio Value (APV) is employed as the 
primary profitability metric, reflecting the compounded 
growth of portfolio wealth over the entire investment 
horizon. APV is defined as 
APV = ∏ (1 +

𝑇

𝑡=1
𝑟𝑡)       (4) 

where 𝑟𝑡denotes the portfolio return at time step 𝑡, and 
𝑇represents the total number of trading periods. This 
multiplicative formulation captures the compounding 
effect inherent in sequential portfolio allocation decisions. 
A higher APV indicates superior long-term capital growth 
and reflects the agent’s ability to consistently identify 
profitable allocation policies under volatile market 
conditions. 
 
Sharpe Ratio 
To evaluate risk-adjusted performance, the Sharpe Ratio is 
adopted as a standard measure that balances excess 
return against portfolio volatility. It is computed as 

Sharpe Ratio =
𝔼[𝑅𝑝−𝑅𝑓]

𝜎𝑝
       (5) 

Where 𝑅𝑝denotes the portfolio return, 𝑅𝑓is the risk-free 
rate (assumed constant over the evaluation period), and 
𝜎𝑝represents the standard deviation of portfolio returns. 
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This metric quantifies the efficiency with which the 
portfolio converts risk exposure into excess returns. In the 
context of reinforcement learning–based portfolio 
optimization, an increasing Sharpe Ratio over time 
indicates effective policy refinement and improved control 
over return volatility. 
 
Maximum Drawdown (MDD) 
Maximum Drawdown (MDD) is used to quantify downside 
risk by measuring the largest peak-to-trough decline in 
portfolio value during the evaluation period. It is formally 
defined as 

MDD = max 
𝑡∈[1,𝑇]

(
𝑉peak−𝑉𝑡

𝑉peak
)       (6) 

where 𝑉peakrepresents the historical maximum portfolio 
value prior to time 𝑡, and 𝑉𝑡denotes the portfolio value at 
time 𝑡. MDD captures the worst-case loss scenario faced 
by an investor and is particularly critical in highly volatile 
cryptocurrency markets. Lower drawdown values indicate 
stronger capital preservation and enhanced robustness 
against adverse market movements. 
 
Data Preprocessing 
Historical OHLC (Open, High, Low, Close) cryptocurrency 
price data were obtained from a publicly available Kaggle 
repository, which provides curated and preprocessed 
historical cryptocurrency market data collected from 
major exchanges. Kaggle is widely used in empirical 
financial and machine learning research due to its data 
reliability, transparency, and reproducibility. The dataset 
was cleaned to remove missing or inconsistent records, 

normalized using Min–Max scaling, and partitioned into 
training and testing subsets to ensure that both the DRL 
agent and the GAN generator operate on consistent and 
stable input distributions. 
 
Synthetic Data Generation using GAN 
A Conditional Time-Series GAN (TimeGAN variant) is 
implemented to generate synthetic OHLC price sequences 
that mimic the statistical properties of the real market 
data. The GAN consists of a Generator that learns to create 
realistic price movements and a Discriminator that 
distinguishes between real and synthetic sequences 
(Goodfellow et al., 2014). 
This synthetic data augments the training dataset, 
exposing the DRL agent to a broader range of market 
conditions and helping it generalize to unseen scenarios, 
which is critical for robust real-world deployment (Wiese et 
al., 2020). 
 
Reinforcement Learning Agent 
The trading strategy is modeled as a sequential decision-
making problem using the Soft Actor-Critic (SAC) algorithm 
— a state-of-the-art off-policy DRL approach known for 
stable policy updates and efficient exploration in 
continuous action spaces (Haarnoja et al., 2018). 
At each time step, the SAC agent observes market states 
(OHLC prices) and decides the portfolio allocation weight. 
The reward function is designed to maximize the expected 
portfolio value while penalizing excessive risk and 
transaction costs. Training occurs iteratively using both 
historical and synthetic market sequences. 

 

 
Figure 1: Integrated Architecture of GAN-Augmented CNN Feature Extraction and SAC-Based Portfolio Decision-Making 

 
The proposed framework, as illustrated in Figure 1, 
integrates real market OHLC data with synthetic 
sequences generated by a TimeGAN module to form an 
enriched input state capturing diverse market scenarios. A 
convolutional neural network (CNN) stack extracts deep 
temporal and spatial features from the combined data, 

while a parallel dependency block employs causal and 
dilated convolutions with a correlation layer to model 
complex inter-asset relationships. These extracted asset 
dynamics and dependence features are fused and fed into 
a Soft Actor-Critic (SAC) reinforcement learning agent, 
which outputs an optimized portfolio weight vector that 
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interacts with the financial market environment to receive 
a reward signal and adapt the allocation policy iteratively. 
This hybrid closed-loop design enhances the agent’s ability 
to generalize, maximize portfolio returns (APV), improve 
risk-adjusted performance (Sharpe Ratio), and minimize 
downside risk (Maximum Drawdown) compared to 
traditional and baseline DPO strategies. 
 
Performance Evaluation Metrics & Back-testing 
To rigorously assess the effectiveness of the proposed 
GAN–SAC portfolio optimization framework, performance 
evaluation is conducted using well-established financial 
metrics that jointly capture profitability, risk-adjusted 
return, and downside risk exposure. These metrics are 
selected to ensure consistency with prior portfolio 
optimization literature and to enable fair comparison 
against baseline strategies, including the Deep Portfolio 
Optimization (DPO) model and conventional rule-based 
approaches. 
Also, after training, the model is backtested on an out-of-
sample test set. Performance is measured using standard 
financial metrics: Accumulative Portfolio Value (APV), 
Sharpe Ratio, and Maximum Drawdown (MDD). Results are 
benchmarked against the baseline DPO model and classic 
strategies like Best, Anticor, WMAMR, and RMR. 
 
RESULTS AND DISCUSSION 
This section presents the experimental results and 
performance evaluation of the proposed adaptive portfolio 
optimization framework which is systematically compared 
against established baseline strategies, including Best, 
Anticor, WMAMR, RMR, and the Deep Portfolio 

Optimization (DPO) model. Each performance metric is 
visualized using dedicated plots that enable direct, metric-
specific comparison across all methods. Specifically, 
time-series plots of Accumulative Portfolio Value (APV), 
Sharpe Ratio, and Maximum Drawdown (MDD) illustrate 
how portfolio growth, risk-adjusted returns, and downside 
risk evolve over the investment horizon for each strategy, 
while comparative bar charts summarize the final metric 
values achieved by all models. This visualization strategy 
highlights not only the final performance outcomes but 
also the stability, convergence behavior, and risk dynamics 
of the proposed approach relative to competing methods, 
thereby providing a comprehensive and interpretable 
comparison across multiple dimensions of portfolio 
performance. 
Figure 2 illustrates the normalized maximum drawdown 
trajectory of the proposed GAN–SAC hybrid portfolio 
optimization model over the backtesting period. Here, 
drawdown is computed at each time step as the relative 
deviation from the historical peak portfolio value, 
expressed as a fractional loss. As shown in the plot, the 
drawdown initially increases during early exploration 
phases, reaching a peak of approximately 0.04 (4%), before 
steadily declining as the Soft Actor-Critic (SAC) agent 
refines its allocation policy. The subsequent stabilization at 
lower drawdown levels indicates improved downside 
control and learning convergence. It is important to note 
that this normalized drawdown trajectory differs from the 
overall Maximum Drawdown (MDD) percentage reported in 
the comparative analysis, where the worst peak-to-trough 
loss across the entire investment horizon reaches 28.5%, 
reflecting cumulative portfolio dynamics. 

 

 
Figure 2: Maximum Drawdown over Time 
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In Figure 3, the Sharpe Ratio trend of the proposed hybrid 
GAN–SAC portfolio optimization model over time, showing 
how the agent’s risk-adjusted return capability improves 
progressively as it learns. The upward-sloping trend 
indicates that the model consistently increases its 
cumulative return relative to its volatility, demonstrating 
effective policy refinement by the Soft Actor-Critic (SAC) 
agent under the exposure of synthetic and real market 

sequences. Numerically, the final Sharpe Ratio reaches 
approximately 0.0980, outperforming the baseline DPO’s 
0.0750 and conventional strategies which remain below 
0.05. This steady increase signifies that the model not only 
captures profitable market signals but also maintains 
robust control over downside volatility, thus enhancing 
overall risk-adjusted portfolio performance throughout the 
investment horizon. 

 

 
Figure 3: Sharpe Ratio Trend over Time 

 
The Accumulative Portfolio Value (APV) trajectory of the 
proposed GAN–SAC hybrid model over the backtesting 
period is shown in Figure 4. The plot shows that despite 
minor fluctuations during the early time steps reflecting 
market noise and initial exploration, the overall trend 
remains upward, indicating that the reinforcement learning 
agent consistently discovers profitable allocation policies. 
The final APV reaches approximately 1.05, implying a net 
5% portfolio growth, which is higher than the baseline 

Deep Portfolio Optimization (DPO) model’s APV of 1.044 
and significantly above conventional strategies like 
WMAMR or Anticor, which typically remain below 1.02 
under the same market regime. This positive trajectory 
demonstrates the proposed model’s ability to adaptively 
compound returns over time, leveraging both synthetic 
TimeGAN-generated data and real historical sequences to 
sustain steady portfolio growth under volatile 
cryptocurrency market conditions. 

 

 
Figure 4: APV over Time 
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Figure 5 presents a comparative analysis of maximum 
drawdown (MDD) across different portfolio optimization 
strategies, demonstrating how effectively each method 
mitigates peak-to-trough losses. The conventional rule-
based strategies, including Best, Anticor, WMAMR, and 
RMR, suffer substantial drawdowns, with RMR exhibiting 
the highest risk exposure at 78.1%, followed by Best 
(68.7%) and WMAMR (66.6%). The baseline Deep Portfolio 
Optimization (DPO) model shows improved risk control 
with an MDD of 33.3%. In contrast, the proposed hybrid 

GAN–SAC framework achieves the lowest maximum 
drawdown of 28.5%, reflecting its superior ability to 
adaptively limit downside risk by leveraging synthetic data 
augmentation and reinforcement learning-based policy 
refinement. This significant reduction in drawdown 
confirms that the proposed approach provides stronger 
capital preservation under volatile cryptocurrency market 
conditions compared to both traditional and baseline deep 
learning strategies. 

 

 
Figure 5: Maximum Drawdown Comparison across Strategies 

 
Figure 6 compares the Sharpe Ratio performance of the 
proposed GAN–SAC hybrid model against traditional and 
baseline portfolio strategies, highlighting its superior risk-
adjusted returns. Conventional strategies like Best, 
Anticor, WMAMR, and RMR achieve relatively low Sharpe 
Ratios of 0.0292, 0.0431, 0.0341, and 0.0235, respectively, 
indicating weaker performance when risk is accounted for. 
The baseline Deep Portfolio Optimization (DPO) model 
shows improvement, reaching a Sharpe Ratio of 0.0750. In 

contrast, the proposed hybrid approach achieves the 
highest Sharpe Ratio of 0.0980, demonstrating its strong 
capability to generate consistent excess returns while 
effectively managing volatility through its integration of 
synthetic TimeGAN data augmentation and adaptive policy 
learning with the SAC agent. This clear margin confirms 
that the hybrid model delivers a significantly better risk-
return balance compared to both the baseline and 
traditional strategies under volatile market conditions. 

 

 
Figure 6: Sharpe Ratio Comparison across Strategies 
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Figure 7 shows the comparative Accumulative Portfolio 
Value (APV) across multiple portfolio optimization 
strategies, demonstrating how well each approach grows 
the initial capital over the backtest period. The 
conventional strategies, including Best, Anticor, WMAMR, 
and RMR, yield relatively low APVs of 3.30, 4.18, 4.20, and 
2.17, respectively, indicating limited capital growth under 
volatile market conditions. The baseline Deep Portfolio 
Optimization (DPO) model shows significant improvement, 
achieving an APV of 44.38. Notably, the proposed GAN–

SAC hybrid model delivers the highest APV of 53.72, 
representing the best compounded return performance 
among all strategies. This substantial uplift highlights how 
the integration of synthetic TimeGAN-generated market 
scenarios and the adaptive Soft Actor-Critic (SAC) 
reinforcement learning agent enables the model to 
discover and sustain profitable allocation policies, leading 
to superior cumulative wealth generation in challenging 
cryptocurrency markets. 

 

 
Figure 7: APV Comparison across Strategies 

 
CONCLUSION 
This study proposed and validated a robust hybrid portfolio 
optimization framework that integrates synthetic data 
generation using TimeGAN with adaptive decision-making 
through a Soft Actor-Critic (SAC) reinforcement learning 
agent. By augmenting real cryptocurrency market data with 
realistic synthetic sequences, the model successfully 
overcomes limited historical data and enhances exposure 
to diverse market scenarios. Experimental results 
demonstrate that the proposed approach consistently 
outperforms traditional rule-based strategies and the 
baseline Deep Portfolio Optimization (DPO) model, 
achieving a higher Accumulative Portfolio Value (APV) of 
53.72, a superior Sharpe Ratio of 0.0980, and a reduced 
maximum drawdown of 28.5%, thereby maximizing returns 
while effectively controlling downside risk. These findings 
confirm that leveraging generative models and 
reinforcement learning in tandem can provide a practical, 
resilient solution for managing portfolios in volatile and 
unpredictable cryptocurrency markets, offering promising 
implications for future applications in algorithmic trading 
and risk-aware asset management.” Based on the 
promising outcomes of this research, it is recommended 
that future portfolio management systems for 
cryptocurrency markets should integrate synthetic data 
augmentation and advanced deep reinforcement learning 

agents to enhance robustness and adaptability under 
diverse market conditions. Practitioners and developers 
are encouraged to adopt hybrid architectures like the 
proposed TimeGAN–SAC framework to overcome data 
scarcity challenges and improve risk-adjusted returns. 
Further studies should explore expanding the approach to 
multi-asset classes, incorporating additional risk 
constraints, transaction costs, and real-time trading 
signals to validate practical deployment.  
 
REFERENCES 
Bhuiyan, M. S. M., Rafi, M. A., Rodrigues, G. N., Mir, M. N. 
H., Ishraq, A., Mridha, M., & Shin, J. (2025). Deep learning 
for algorithmic trading: A systematic review of predictive 
models and optimization strategies. Array, 100390. 
https://doi.org/10.1016/j.array.2025.100390 
 
Braga, M. D., Nava, C. R., & Zoia, M. G. (2023). Kurtosis-
based vs volatility-based asset allocation strategies: Do 
they share the same properties? A first empirical 
investigation. Finance Research Letters, 54, 103797. 
https://doi.org/10.1016/j.frl.2023.103797 
 
Cao, X., Li, Y., & Wang, Z. (2023). Enhancing portfolio 
strategies with Generative Adversarial Imitation Learning: 

https://doi.org/10.1016/j.array.2025.100390
https://doi.org/10.1016/j.frl.2023.103797


Yakub et al.,  JOSRAR 3(1) JAN-FEB 2026 37-47 
 

46 

Replicating expert investment behaviors. Journal of 
Financial Engineering, 10(2), 123–139. 
 
Chen, L., Zhang, T., & Zhou, M. (2023). Simulating extreme 
financial scenarios for robust portfolio risk management 
using Generative Adversarial Networks. Computational 
Economics, 61(4), 875–894. 
 
Cobbinah, B. B., Yang, W., Sarpong, F. A., & Nyantakyi, G. 
(2024). From Risk to Reward: Unveiling the 
multidimensional impact of financial risks on the 
performance of Ghanaian banks. Heliyon, 10(23), e40777. 
https://doi.org/10.1016/j.heliyon.2024.e40777 
 
Feng, J., Li, W., & Liu, Y. (2023). A hybrid DRL-GAN 
framework for dynamic portfolio risk management. Expert 
Systems with Applications, 213, 119456. 
 
Giraldo, L. F., Gaviria, J. F., Torres, M. I., Alonso, C., & 
Bressan, M. (2024). Deep Reinforcement Learning using 
Deep-Q-Network for Global Maximum Power Point 
Tracking: Design and Experiments in Real Photovoltaic 
Systems. Heliyon, 10(21), e37974. 
https://doi.org/10.1016/j.heliyon.2024.e37974 
 
Gupta, R., Kumar, A., & Mehta, P. (2024). Regime-switching 
deep reinforcement learning for adaptive asset allocation 
in dynamic markets. Quantitative Finance, 24(1), 50–67. 
 
Huang, Q., Liu, B., & Chen, X. (2024). Integrating sentiment 
indicators with DRL for dynamic portfolio selection under 
market volatility. IEEE Access, 12, 24567–24578. 
 
Li, Y., Zhao, J., & Wang, H. (2024). Adaptive deep 
reinforcement learning framework for dynamic asset 
allocation. Finance Research Letters, 59, 104017. 
 
Liang, S., Wang, Q., & Zhang, Y. (2025). Adaptive 
investment strategies using DRL with GAN-generated 
market scenarios. Applied Soft Computing, 145, 110200. 
 
Liu, H., Chen, X., & Li, P. (2023). Enhancing portfolio 
optimization with realistic synthetic stock price series 
using GANs. International Journal of Forecasting, 39(3), 
1030–1042. 
 
Mundargi, R., Singh, D., & Sharma, K. (2024). Robust 
trading performance through model-based DRL with 
generative data augmentation. Journal of Computational 
Finance, 27(1), 89–110. 
 
Nawathe, R., Gupta, A., & Rao, S. (2024). A multimodal 
deep reinforcement learning framework for S&P 100 
trading strategies. Decision Support Systems, 177, 
114015. 

 
Ramzan, F., Sartori, C., Consoli, S., & Recupero, D. R. 
(2024). Generative Adversarial Networks for Synthetic data 
Generation in Finance: Evaluating statistical similarities 
and quality assessment. AI, 5(2), 667–685. 
https://doi.org/10.3390/ai5020035 
 
Singh, V., Chen, S., Singhania, M., Nanavati, B., Kar, A. K., & 
Gupta, A. (2022). How are reinforcement learning and deep 
learning algorithms used for big data based decision 
making in financial industries–A review and research 
agenda. International Journal of Information Management 
Data Insights, 2(2), 100094. 
https://doi.org/10.1016/j.jjimei.2022.100094 
 
Song, Y., Chen, W., & Zhang, F. (2024). A DRL-based 
adaptive portfolio rebalancing model accounting for 
transaction costs. Journal of Financial Markets, 67, 
101004. 
 
Sumiea, E. H., Abdulkadir, S. J., Alhussian, H. S., Al-Selwi, 
S. M., Alqushaibi, A., Ragab, M. G., & Fati, S. M. (2024). 
Deep deterministic policy gradient algorithm: A systematic 
review. Heliyon, 10(9), e30697. 
https://doi.org/10.1016/j.heliyon.2024.e30697 
 
Surtee, T. G., & Alagidede, I. P. (2022). A novel approach to 
using modern portfolio theory. Borsa Istanbul Review, 
23(3), 527–540. https://doi.org/10.1016/j.bir.2022.12.005 
 
Wang, F., Li, S., Niu, S., Yang, H., Li, X., & Deng, X. (2025). A 
Survey on recent advances in reinforcement learning for 
intelligent investment decision-making optimization. 
Expert Systems With Applications, 282, 127540. 
https://doi.org/10.1016/j.eswa.2025.127540 
 
Wang, H., Li, Z., & Chen, L. (2024). A GAN-based robust 
portfolio optimization framework under uncertain market 
conditions. European Journal of Operational Research, 
312(3), 1234–1247. 
 
Wang, Y., & Aste, T. (2022). Dynamic portfolio optimization 
with inverse covariance clustering. Expert Systems With 
Applications, 213, 118739. 
https://doi.org/10.1016/j.eswa.2022.118739 
 
Wang, Z., Liu, Y., & Zhang, Q. (2024). An integrated DRL-
GAN framework for improving risk management and 
portfolio returns. Expert Systems with Applications, 229, 
119678. 
 
Wiese, M., Knobloch, R., Korn, R., & Kretschmer, T. (2023). 
Stress-testing portfolio strategies with GAN-generated 
financial time series. Quantitative Finance, 23(4), 567–584. 
 

https://doi.org/10.1016/j.heliyon.2024.e40777
https://doi.org/10.1016/j.heliyon.2024.e37974
https://doi.org/10.3390/ai5020035
https://doi.org/10.1016/j.jjimei.2022.100094
https://doi.org/10.1016/j.heliyon.2024.e30697
https://doi.org/10.1016/j.bir.2022.12.005
https://doi.org/10.1016/j.eswa.2025.127540
https://doi.org/10.1016/j.eswa.2022.118739


Yakub et al.,  JOSRAR 3(1) JAN-FEB 2026 37-47 
 

47 

Xu, K., Li, P., & Huang, J. (2023). Forecasting market 
volatility using Generative Adversarial Networks for 
improved portfolio risk assessment. Finance Research 
Letters, 55, 104236. 
 
Yan, R., Jin, J., & Han, K. (2024). Reinforcement learning for 
deep portfolio optimization. Electronic Research Archive, 
32(9), 5176–5200. https://doi.org/10.3934/era.2024239 
 
Yilmaz, B., & Korn, R. (2024). A Comprehensive guide to 
Generative Adversarial Networks (GANs) and application 
to individual electricity demand. Expert Systems With 

Applications, 250, 123851. 
https://doi.org/10.1016/j.eswa.2024.123851 
 
Yuan, J., Jin, L., & Lan, F. (2025). A BL-MF fusion model for 
portfolio optimization: Incorporating the Black-Litterman 
solution into multi-factor model. Finance Research 
Letters, 107464. https://doi.org/10.1016/j.frl.2025.107464 
 
Zhang, Y., & Zohren, S. (2023). A DRL-GAN approach for 
high-frequency market making with synthetic order book 
data. Journal of Computational Finance, 26(3), 145–167.

 
 

https://doi.org/10.3934/era.2024239
https://doi.org/10.1016/j.eswa.2024.123851
https://doi.org/10.1016/j.frl.2025.107464

