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ABSTRACT

Cryptocurrency financial markets are characterized by high
volatility and non-stationary price dynamics, posing significant
challenges to traditional portfolio optimization techniques that rely
on static risk-return assumptions. In such environments, existing
methods often struggle to generalize and adapt effectively, leading
to suboptimal performance and increased downside risk. To
address these limitations, this paper proposes a novel adaptive
portfolio optimization framework that integrates Generative
Adversarial Networks (GANs) for synthetic data augmentation with
a state-of-the-art Soft Actor-Critic (SAC) deep reinforcement
learning (DRL) agent. By augmenting real historical OHLC data with
realistic TimeGAN-generated price sequences, the proposed
approach exposes the DRL agent to a broader range of market
scenarios, thereby improving generalization and mitigating
overfitting. A convolutional neural network (CNN) feature extractor
captures deep temporal dependencies, while causal and dilated
convolutions model complex inter-asset correlations. Empirical
results demonstrate that the proposed GAN-SAC hybrid
consistently outperforms conventional strategies and the baseline
Deep Portfolio Optimization (DPO) model, achieving a higher
Accumulative Portfolio Value (APV) of 53.72, an improved Sharpe
Ratio of 0.0980, and a reduced Maximum Drawdown (MDD) of
28.5%. These findings confirm the effectiveness of combining
generative models and DRL to develop robust, adaptive portfolio
strategies capable of navigating highly volatile cryptocurrency
markets, with practical implications for next-generation algorithmic
trading systems requiring enhanced resilience and dynamic risk
control.

INTRODUCTION
In recent years, financial markets

have become

about returns and risks. To address these limitations,
recent studies have focused on leveraging machine

increasingly dynamic and volatile, especially within the
cryptocurrency sector where price fluctuations are highly
unpredictable. Traditional portfolio optimization
techniques, such as the Mean-Variance Theory introduced
by Markowitz (1952), often struggle to adapt in non-
stationary environments due to their static assumptions
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learning techniques to learn adaptive trading strategies
directly from market data (Bhuiyan et al., 2025).

Deep Reinforcement Learning (DRL) has emerged as a
powerful paradigm for dynamic portfolio management
because it can model sequential decision-making
problems and adaptto complex market dynamics (Wang et
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al., 2025). Notably, the Deep Portfolio Optimization (DPO)
framework by (Yan et al., 2024) demonstrated that
combining Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) with DRL significantly
improves performance compared to traditional rule-based
strategies.

However, DRL-based approaches still face challenges
such as limited training data and overfitting to historical
market conditions, which may reduce generalization to
unseen market scenarios (Singh et al., 2022). To mitigate
this, recent research has explored the use of Generative
Adversarial Networks (GANs) to augment training data by
generating synthetic but realistic market scenarios (Yilmaz
& Korn, 2024).

Building on these insights, this paper proposes an adaptive
portfolio optimization framework that integrates a GAN-
based synthetic data generator with a state-of-the-art DRL
agent, specifically the Soft Actor-Critic (SAC) algorithm.
The goalis to enhance the model’s ability to generalize and
adapt under varying market regimes, leading to improved
profitability, risk-adjusted returns, and robustness.
Portfolio optimization is a fundamental aspect of financial
management that focuses on selecting an optimal mix of
assets to maximize returns while minimizing risk. The
process involves balancing expected returns, asset
correlations, and risk exposure to achieve efficient capital
allocation. One of the earliest and most influential models
in this domain is Markowitz’s Modern Portfolio Theory
(MPT), which introduced the concept of an efficient
frontier—representing portfolios that offer the highest
expected return for a given level of risk (Surtee & Alagidede,
2022). The mathematical foundation of MPT is based on
mean-variance optimization, where the expected return
(E(Rp)) of a portfolio is given in equation 1:

E(R,) = Xit, wiE(R) (1)
Where w; represents the weight of asset i in the portfolio,
and E(Rp) denotes the expected return of asset i. The
portfolio risk apz is computed in equation 2:

0p = Nieq Xy w0y (2)
Where g;; represents the covariance between assets i and
J. This model assumes that investors are rational and risk-
averse, preferring portfolios that lie on the efficient frontier.
Building on Markowitz’s framework, several traditional
portfolio optimization techniques have been developed.
The Capital Asset Pricing Model (CAPM) (Sharpe, 1964)
extends MPT by introducing the concept of systematic risk,
measured by the beta coefficient (8). The CAPM equation
is expressed in equation 3:

E(R) = R + Bi(E(Ry) — Ry) (3)
Where Ry is the risk-free rate, E(R,,) is the expected
market return, and f3; represents the sensitivity of asset i to
market movements. Other notable approaches include
risk parity strategies, which allocate portfolio weights
based on risk contributions rather than returns (Braga et
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al., 2023), and Black-Litterman models, which integrate
investor views into Bayesian portfolio optimization (Yuan et
al., 2025).

Although traditional portfolio optimization methods
provide a structured approach to asset allocation, they
exhibit several key limitations. First, they assume that
asset returns and risks remain stable over time, which is
rarely the case in dynamic financial markets (Cobbinah et
al., 2024). Market anomalies, such as sudden crashes or
liquidity shocks, can significantly impact portfolio
performance, rendering static models ineffective. Second,
these methods often fail to account for higher-order
dependencies and nonlinear relationships between
financial assets. For example, extreme market conditions
can lead to nonlinear correlations that are not captured by
mean-variance optimization (Wang and Aste, 2022).
Reinforcement Learning (RL) is a branch of machine
learning that focuses on training agents to make sequential
decisions by interacting with an environment and
maximizing cumulative rewards. Unlike supervised
learning, where models learn from labeled data, RL relies
on an agent exploring an environment, taking actions, and
receiving feedback in the form of rewards or penalties. The
learning process is formalized using a Markov Decision
Process (MDP), which consists of a set of states(S),
actions(4), transition probabilities(P), rewards(R), and a
policy (1) that guides the agent’s behavior. The goal is to
learn an optimal policy (7*) that maximizes the expected
cumulative reward over time (Singh et al., 2022).

Deep Reinforcement Learning (DRL) extends traditional RL
by incorporating deep neural networks to approximate
complex value functions and policies, making it more
effective in handling high-dimensional and continuous
action spaces. One of the most widely used DRL
algorithms is the Deep Q-Network (DQN), which combines
Q-learning with deep neural networks to estimate optimal
action values (Giraldo et al., 2024). Another important
approach is the Policy Gradient method, where the agent
directly learns the policy function instead of the value
function, allowing for better adaptability in dynamic
environments. Actor-Critic models, which integrate both
value-based and policy-based learning, have also been
widely applied in finance due to their efficiency in
continuous action spaces (Sumiea et al., 2024).
Generative Adversarial Networks (GANs) are a class of
deep learning models designed to generate synthetic data
that closely resembles real-world distributions. GANs
consist of two competing neural networks: a generator and
a discriminator. The generator (G) creates synthetic data
samples, while the discriminator (D) evaluates whether a
given sample is real (from the actual dataset) or fake
(generated) (Yilmaz and Korn, 2024). The training process is
framed as a two-player minimax game, where the
generator aims to maximize the probability of the
discriminator misclassifying its outputs, and the



Yakub et al.,

discriminator aims to correctly distinguish real from
synthetic samples.

The integration of Deep Reinforcement Learning (DRL) and
Generative Adversarial Networks (GANs) represents a
significant advancement in portfolio optimization, offering
a more adaptive and data-driven approach to asset
allocation. DRL provides the ability to learn optimal trading
strategies by interacting with financial markets, while
GANSs generate synthetic financial data to improve model
robustness and mitigate data limitations. By combining
these two powerful Al techniques, portfolio managers can
develop intelligent decision-making systems that
dynamically adjust to market conditions, minimize risks,
and maximize returns.

One of the primary benefits of this integration is enhanced
data availability. Financial markets often experience
periods of limited data, particularly for new asset classes
or rare market events such as economic recessions. GANs
address this issue by generating synthetic yet realistic
financial data, enabling DRL models to train on a more
diverse set of market conditions (Ramzan et al., 2024). This
improves the generalization capability of DRL agents,
reducing overfitting to historical data and enhancing
adaptability to future market fluctuations.

The work of Nawathe et al., (2024) proposed a multimodal
DRL framework integrating historical prices, sentiment,
and news embeddings to optimize S&P 100 trading
strategies. The authors reported superior performance
compared to traditional portfolio optimization methods,
emphasizing DRL's ability to adapt dynamically. However,
the study highlighted computational complexity as a
challenge. The inclusion of sentiment analysis proved
effective for handling volatile market conditions. The
findings underscore DRL’s capability to blend multimodal
data for investment decisions.

Recent studies have demonstrated that integrating
generative models with deep reinforcement learning can
substantially enhance portfolio robustness and risk-
adjusted performance in volatile markets. In this direction,
Wang et al. (2024) proposed an integrated DRL-GAN
framework in which synthetic data augmentation was used
to improve exposure to diverse market conditions. Their
approach significantly outperformed both standard DRL
methods and traditional Modern Portfolio Theory (MPT)
strategies, particularly in terms of adaptability to market
shifts and improved risk-adjusted returns. However,
despite these performance gains, the study highlighted
notable challenges related to training complexity and the
interpretability of GAN-generated market scenarios.
Model-based deep reinforcement learning architectures
augmented with generative data have been explored to
enhance robustness in trading environments. In this
context, Mundargi et al. (2024) introduced a DRL
framework incorporating GAN-based synthetic market
scenarios to diversify training data and improve exposure
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to stressed market conditions. Their results demonstrated
enhanced resilience to market shocks and improved
profitability compared to conventional approaches.
However, the authors noted ethical concerns related to the
potential misuse or misinterpretation of synthetic financial
data, particularly regarding the realism of generated
scenarios and their implications for decision-making
transparency.

Chen et al., (2023) explored GANs' potential to simulate
extreme financial scenarios for risk management. They
effectively generated synthetic market crashes, aiding
robust portfolio testing. The study highlighted GANs’ ability
to overcome traditional data scarcity limitations. While
realistic simulations were achieved, concerns about long-
term scenario consistency emerged. Overall, GAN-driven
stress tests significantly improved risk preparedness in
portfolio management.

The work of Liu et al., (2023) focused on creating realistic
synthetic stock price series through GANs to augment
portfolio optimization datasets. GAN-generated data
enhanced DRL training by simulating diverse economic
scenarios. Results showed improved portfolio adaptability
and reduced overfitting risks. The primary limitation
identified was assessing the synthetic data quality
objectively. Nevertheless, the study validated GANSs’
effectiveness in financial modeling.

The work of Feng et al., (2023) integrated DRL and GANs to
manage portfolio risks dynamically. GANs provided diverse
market conditions for robust training of DRL agents.
Findings indicated improved risk-adjusted returns and
enhanced resilience during market shocks. Challenges
regarding model interpretability and computational
resources were acknowledged. This hybrid approach
significantly advanced the flexibility and effectiveness of
adaptive risk management.

Zhang and Zohren (2023) developed a DRL-GAN model
tailored for high-frequency market making. Synthetic order
book data were generated, improving the training efficiency
of DRL models. The study reported increased profitability
and reduced exposure to liquidity risks. While
computational complexity was manageable, ethical
implications of synthetic market data generation were
discussed. The integration demonstrated strong potential
for optimizing trade execution strategies.

Wiese et al., (2023) utilized GANs to generate financialtime
series for stress-testing portfolio strategies. Generated
synthetic data effectively mimicked complex market
behaviors, aiding robust strategy evaluation. Despite
realistic generation capabilities, the assessment of data
fidelity was challenging. Results clearly demonstrated the
value of synthetic data in enhancing portfolio optimization
models. The paper highlighted GANs' role in overcoming
traditional data constraints.

Li et al., (2024) developed an adaptive DRL-based asset
allocation framework, continually adjusting portfolios
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based on market dynamics. DRL significantly
outperformed traditional methods by optimizing
cumulative returns and minimizing risk. Computational
efficiency was highlighted as an ongoing issue, alongside
model transparency. The research provided strong
empirical support for DRL’s dynamic decision-making
capabilities in financial markets.

Wang et al., (2024) proposed a GAN-based framework for
robust portfolio optimization under uncertain market
conditions. Synthetic data generation improved the
training and robustness of predictive models. Results
showed significantly better handling of market
uncertainties compared to traditional optimization.
Computational overhead and ethical concerns about
realistic scenario generation were noted as limitations. The
approach advanced portfolio management’s ability to
navigate uncertainty effectively.

Huang et al., (2024) presented a DRL framework integrating
market sentiment indicators for dynamic portfolio
selection. Their method consistently outperformed
baseline strategies, confirming sentiment analysis
significantly improves predictive power in volatile markets.
The study highlighted challenges regarding the real-time
integration of sentiment data. Computational cost and
interpretability of DRL policies were identified as ongoing
concerns.

Cao et al., (2023) utilized Generative Adversarial Imitation
Learning (GAIL) to replicate expert investment behaviors,
effectively optimizing portfolio strategies. GAIL-generated
policies showed strong adaptability and outperformed
classical models under diverse market conditions.
Limitations arose concerning the dependency on expert
demonstrations. Nevertheless, this innovative approach
offered valuable insights for enhancing automated
investment decision-making through imitation learning
techniques.

Song et al.,, (2024) developed a DRL-based adaptive
portfolio rebalancing model accounting explicitly for
transaction costs. Results demonstrated superior
performance over traditional methods by dynamically
optimizing trade execution frequency and volume.
Transaction costs significantly impacted model
performance, underlining the importance of realistic cost
modeling. Interpretability and computational efficiency
remained challenging, yet this method proved
advantageous for practical implementation in financial
trading.

Xu et al., (2023) leveraged GANs to forecast market
volatility, enhancing portfolio risk assessment and asset
allocation strategies. The GAN-based volatility predictions
significantly improved portfolio performance compared to
traditional volatility models. Challenges regarding model
training stability and volatility simulation fidelity were
noted. Despite these challenges, the study successfully
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demonstrated GANs’ potential to accurately predict and
integrate volatility into portfolio optimization frameworks.

Liang et al., (2025) combined DRL with GAN-generated
market data for adaptive investment strategies, achieving
strong risk-adjusted returns in diverse market scenarios.
The hybrid approach significantly mitigated risk by
simulating adverse market conditions. Limitations
included interpretability and computational overhead.
Nevertheless, the paper effectively illustrated how
synthetic scenarios could enhance robustness and
adaptability in financial models, proving valuable for risk-
sensitive investors.

Gupta et al., (2024) introduced regime-switching DRL for
adaptive asset allocation, capturing varying market states
effectively. The model dynamically adjusted portfolios,
outperforming static allocation methods. Regime-
switching significantly enhanced portfolio resilience,
particularly during market shifts. Computational demands
and regime prediction accuracy remained critical
concerns. Still, this approach demonstrated clear
advantages in dynamically shifting markets.

MATERIALS AND METHODS

The proposed framework combines a Generative
Adversarial Network (GAN) with a Deep Reinforcement
Learning (DRL) agent to achieve robust, adaptive portfolio
optimization in highly volatile cryptocurrency markets. The
design addresses two critical limitations found in baseline
DRL methods: (i) insufficient exposure to diverse market
scenarios and (ii) overfitting to historical patterns.

Accumulative Portfolio Value (APV)

Accumulative Portfolio Value (APV) is employed as the
primary profitability metric, reflecting the compounded
growth of portfolio wealth over the entire investment
horizon. APV is defined as

APV =TT, (1 +1) (4)
where r,denotes the portfolio return at time step t, and
Trepresents the total number of trading periods. This
multiplicative formulation captures the compounding
effectinherentin sequential portfolio allocation decisions.
A higher APV indicates superior long-term capital growth
and reflects the agent’s ability to consistently identify
profitable allocation policies under volatile market
conditions.

Sharpe Ratio

To evaluate risk-adjusted performance, the Sharpe Ratio is
adopted as a standard measure that balances excess
return against portfolio volatility. It is computed as

[Rp_Rf]

Sharpe Ratio = - (5)
9p

Where R,denotes the portfolio return, Rris the risk-free

rate (assumed constant over the evaluation period), and
gprepresents the standard deviation of portfolio returns.



Yakub et al.,

This metric quantifies the efficiency with which the
portfolio converts risk exposure into excess returns. In the
context of reinforcement learning-based portfolio
optimization, an increasing Sharpe Ratio over time
indicates effective policy refinement and improved control
over return volatility.

Maximum Drawdown (MDD)

Maximum Drawdown (MDD) is used to quantify downside
risk by measuring the largest peak-to-trough decline in
portfolio value during the evaluation period. It is formally

defined as
Vpeak_Vt)
Vpeak

MDD = max (
te[1,T]

where V. represents the historical maximum portfolio
value prior to time t, and V,denotes the portfolio value at
time t. MDD captures the worst-case loss scenario faced
by an investor and is particularly critical in highly volatile
cryptocurrency markets. Lower drawdown values indicate
stronger capital preservation and enhanced robustness
against adverse market movements.

(6)

Data Preprocessing

Historical OHLC (Open, High, Low, Close) cryptocurrency
price data were obtained from a publicly available Kaggle
repository, which provides curated and preprocessed
historical cryptocurrency market data collected from
major exchanges. Kaggle is widely used in empirical
financial and machine learning research due to its data
reliability, transparency, and reproducibility. The dataset
was cleaned to remove missing or inconsistent records,
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normalized using Min-Max scaling, and partitioned into
training and testing subsets to ensure that both the DRL
agent and the GAN generator operate on consistent and
stable input distributions.

Synthetic Data Generation using GAN

A Conditional Time-Series GAN (TimeGAN variant) is
implemented to generate synthetic OHLC price sequences
that mimic the statistical properties of the real market
data. The GAN consists of a Generator that learns to create
realistic price movements and a Discriminator that
distinguishes between real and synthetic sequences
(Goodfellow et al., 2014).

This synthetic data augments the training dataset,
exposing the DRL agent to a broader range of market
conditions and helping it generalize to unseen scenarios,
which is critical for robust real-world deployment (Wiese et
al., 2020).

Reinforcement Learning Agent

The trading strategy is modeled as a sequential decision-
making problem using the Soft Actor-Critic (SAC) algorithm
— a state-of-the-art off-policy DRL approach known for
stable policy updates and efficient exploration in
continuous action spaces (Haarnoja et al., 2018).

At each time step, the SAC agent observes market states
(OHLC prices) and decides the portfolio allocation weight.
The reward function is designed to maximize the expected
portfolio value while penalizing excessive risk and
transaction costs. Training occurs iteratively using both
historical and synthetic market sequences.
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Figure 1: Integrated Architecture of GAN-Augmented CNN Feature Extraction and SAC-Based Portfolio Decision-Making

The proposed framework, as illustrated in Figure 1,
integrates real market OHLC data with synthetic
sequences generated by a TimeGAN module to form an
enriched input state capturing diverse market scenarios. A
convolutional neural network (CNN) stack extracts deep
temporal and spatial features from the combined data,
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while a parallel dependency block employs causal and
dilated convolutions with a correlation layer to model
complex inter-asset relationships. These extracted asset
dynamics and dependence features are fused and fed into
a Soft Actor-Critic (SAC) reinforcement learning agent,
which outputs an optimized portfolio weight vector that
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interacts with the financial market environment to receive
a reward signal and adapt the allocation policy iteratively.
This hybrid closed-loop design enhances the agent’s ability
to generalize, maximize portfolio returns (APV), improve
risk-adjusted performance (Sharpe Ratio), and minimize
downside risk (Maximum Drawdown) compared to
traditional and baseline DPO strategies.

Performance Evaluation Metrics & Back-testing

To rigorously assess the effectiveness of the proposed
GAN-SAC portfolio optimization framework, performance
evaluation is conducted using well-established financial
metrics that jointly capture profitability, risk-adjusted
return, and downside risk exposure. These metrics are
selected to ensure consistency with prior portfolio
optimization literature and to enable fair comparison
against baseline strategies, including the Deep Portfolio
Optimization (DPO) model and conventional rule-based
approaches.

Also, after training, the model is backtested on an out-of-
sample test set. Performance is measured using standard
financial metrics: Accumulative Portfolio Value (APV),
Sharpe Ratio, and Maximum Drawdown (MDD). Results are
benchmarked against the baseline DPO model and classic
strategies like Best, Anticor, WMAMR, and RMR.

RESULTS AND DISCUSSION

This section presents the experimental results and
performance evaluation of the proposed adaptive portfolio
optimization framework which is systematically compared
against established baseline strategies, including Best,
Anticor, WMAMR, RMR, and the Deep Portfolio

JOSRAR 3(1) JAN-FEB 2026 37-47

Optimization (DPO) model. Each performance metric is
visualized using dedicated plots that enable direct, metric-
specific comparison across all methods. Specifically,
time-series plots of Accumulative Portfolio Value (APV),
Sharpe Ratio, and Maximum Drawdown (MDD) illustrate
how portfolio growth, risk-adjusted returns, and downside
risk evolve over the investment horizon for each strategy,
while comparative bar charts summarize the final metric
values achieved by all models. This visualization strategy
highlights not only the final performance outcomes but
also the stability, convergence behavior, and risk dynamics
of the proposed approach relative to competing methods,
thereby providing a comprehensive and interpretable
comparison across multiple dimensions of portfolio
performance.

Figure 2 illustrates the normalized maximum drawdown
trajectory of the proposed GAN-SAC hybrid portfolio
optimization model over the backtesting period. Here,
drawdown is computed at each time step as the relative
deviation from the historical peak portfolio value,
expressed as a fractional loss. As shown in the plot, the
drawdown initially increases during early exploration
phases, reaching a peak of approximately 0.04 (4%), before
steadily declining as the Soft Actor-Critic (SAC) agent
refines its allocation policy. The subsequent stabilization at
lower drawdown levels indicates improved downside
control and learning convergence. It is important to note
that this normalized drawdown trajectory differs from the
overall Maximum Drawdown (MDD) percentage reported in
the comparative analysis, where the worst peak-to-trough
loss across the entire investment horizon reaches 28.5%,
reflecting cumulative portfolio dynamics.
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In Figure 3, the Sharpe Ratio trend of the proposed hybrid
GAN-SAC portfolio optimization model over time, showing
how the agent’s risk-adjusted return capability improves
progressively as it learns. The upward-sloping trend
indicates that the model consistently increases its
cumulative return relative to its volatility, demonstrating
effective policy refinement by the Soft Actor-Critic (SAC)
agent under the exposure of synthetic and real market

JOSRAR 3(1) JAN-FEB 2026 37-47

sequences. Numerically, the final Sharpe Ratio reaches
approximately 0.0980, outperforming the baseline DPO’s
0.0750 and conventional strategies which remain below
0.05. This steady increase signifies that the model not only
captures profitable market signals but also maintains
robust control over downside volatility, thus enhancing
overall risk-adjusted portfolio performance throughout the
investment horizon.
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The Accumulative Portfolio Value (APV) trajectory of the
proposed GAN-SAC hybrid model over the backtesting
period is shown in Figure 4. The plot shows that despite
minor fluctuations during the early time steps reflecting
market noise and initial exploration, the overall trend
remains upward, indicating that the reinforcement learning
agent consistently discovers profitable allocation policies.
The final APV reaches approximately 1.05, implying a net
5% portfolio growth, which is higher than the baseline
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Deep Portfolio Optimization (DPO) model’s APV of 1.044
and significantly above conventional strategies like
WMAMR or Anticor, which typically remain below 1.02
under the same market regime. This positive trajectory
demonstrates the proposed model’s ability to adaptively
compound returns over time, leveraging both synthetic
TimeGAN-generated data and real historical sequences to
sustain steady portfolio growth under volatile
cryptocurrency market conditions.
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Figure 5 presents a comparative analysis of maximum
drawdown (MDD) across different portfolio optimization
strategies, demonstrating how effectively each method
mitigates peak-to-trough losses. The conventional rule-
based strategies, including Best, Anticor, WMAMR, and
RMR, suffer substantial drawdowns, with RMR exhibiting
the highest risk exposure at 78.1%, followed by Best
(68.7%) and WMAMR (66.6%). The baseline Deep Portfolio
Optimization (DPO) model shows improved risk control
with an MDD of 33.3%. In contrast, the proposed hybrid

JOSRAR 3(1) JAN-FEB 2026 37-47

GAN-SAC framework achieves the lowest maximum
drawdown of 28.5%, reflecting its superior ability to
adaptively limit downside risk by leveraging synthetic data
augmentation and reinforcement learning-based policy
refinement. This significant reduction in drawdown
confirms that the proposed approach provides stronger
capital preservation under volatile cryptocurrency market
conditions compared to both traditional and baseline deep
learning strategies.
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Figure 5: Maximum Drawdown Comparison across Strategies

Figure 6 compares the Sharpe Ratio performance of the
proposed GAN-SAC hybrid model against traditional and
baseline portfolio strategies, highlighting its superior risk-
adjusted returns. Conventional strategies like Best,
Anticor, WMAMR, and RMR achieve relatively low Sharpe
Ratios of 0.0292, 0.0431, 0.0341, and 0.0235, respectively,
indicating weaker performance when risk is accounted for.
The baseline Deep Portfolio Optimization (DPO) model
shows improvement, reaching a Sharpe Ratio of 0.0750. In

contrast, the proposed hybrid approach achieves the
highest Sharpe Ratio of 0.0980, demonstrating its strong
capability to generate consistent excess returns while
effectively managing volatility through its integration of
synthetic TimeGAN data augmentation and adaptive policy
learning with the SAC agent. This clear margin confirms
that the hybrid model delivers a significantly better risk-
return balance compared to both the baseline and
traditional strategies under volatile market conditions.
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Figure 7 shows the comparative Accumulative Portfolio
Value (APV) across multiple portfolio optimization
strategies, demonstrating how well each approach grows
the initial capital over the backtest period. The
conventional strategies, including Best, Anticor, WMAMR,
and RMR, yield relatively low APVs of 3.30, 4.18, 4.20, and
2.17, respectively, indicating limited capital growth under
volatile market conditions. The baseline Deep Portfolio
Optimization (DPO) model shows significantimprovement,
achieving an APV of 44.38. Notably, the proposed GAN-
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SAC hybrid model delivers the highest APV of 53.72,
representing the best compounded return performance
among all strategies. This substantial uplift highlights how
the integration of synthetic TimeGAN-generated market
scenarios and the adaptive Soft Actor-Critic (SAC)
reinforcement learning agent enables the model to
discover and sustain profitable allocation policies, leading
to superior cumulative wealth generation in challenging
cryptocurrency markets.

APV Comparison Across Strategies
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Figure 7: APV Comparison across Strategies

CONCLUSION

This study proposed and validated a robust hybrid portfolio
optimization framework that integrates synthetic data
generation using TimeGAN with adaptive decision-making
through a Soft Actor-Critic (SAC) reinforcement learning
agent. By augmenting real cryptocurrency market data with
realistic synthetic sequences, the model successfully
overcomes limited historical data and enhances exposure
to diverse market scenarios. Experimental results
demonstrate that the proposed approach consistently
outperforms traditional rule-based strategies and the
baseline Deep Portfolio Optimization (DPO) model,
achieving a higher Accumulative Portfolio Value (APV) of
53.72, a superior Sharpe Ratio of 0.0980, and a reduced
maximum drawdown of 28.5%, thereby maximizing returns
while effectively controlling downside risk. These findings
confirm that leveraging generative models and
reinforcement learning in tandem can provide a practical,
resilient solution for managing portfolios in volatile and
unpredictable cryptocurrency markets, offering promising
implications for future applications in algorithmic trading
and risk-aware asset management.” Based on the
promising outcomes of this research, it is recommended
that future portfolio management systems for
cryptocurrency markets should integrate synthetic data
augmentation and advanced deep reinforcement learning
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agents to enhance robustness and adaptability under
diverse market conditions. Practitioners and developers
are encouraged to adopt hybrid architectures like the
proposed TimeGAN-SAC framework to overcome data
scarcity challenges and improve risk-adjusted returns.
Further studies should explore expanding the approach to
multi-asset classes, incorporating additional risk
constraints, transaction costs, and real-time trading
signals to validate practical deployment.
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