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A B S T R A C T  
This research work investigates the influence of a spring-blocked 
membrane on a perturbed gravity-driven viscous fluid flow down a 
slippery inclined plane. The spring-bocked membrane on a falling 
film flow over a slippery plane can affect the flow dynamics and 
stability of the film. The instability of such a flow can be controlled 
either by modifying the behavior of the lower wall, altering the surface 
waves at the free surface using structures, or both, as done here by 
incorporating a spring-backed membrane at the top of the liquid 
layer and a slippery substrate. A linear stability analysis is performed 
utilizing the normal mode approach, with the free surface modified 
by a spring-blocked membrane and the lower boundary modeled as 
a slippery substrate. The associated Orr-Sommerfeld system is 
solved numerically using the spectral collocation method. The 
results reveal that velocity slip at the lower wall has a non-trivial 
impact on flow stability: it destabilizes at the onset of instability, then 
stabilizes at higher Reynolds numbers. Membrane tension is 
modeled as a stress jump at the free surface, and the mass of the 
membrane is also taken into account. The findings demonstrate that 
increasing the dimensionless spring-blocked membrane tension (𝑇) 
reduces the growth rate of the most unstable mode, thereby 
enhancing flow stability. Thus, combination of a spring-blocked 
membrane at the free surface and a slippery base exerts a significant 
passive control on flow stability. The study provides an insight into 
how such configurations can be utilized to either suppress or amplify 
interfacial instabilities in gravity-driven flows. 

 
INTRODUCTION 
Hydrodynamic stability analysis and transition behavior has a 
vast applications in biomedical, industries and agricultural 
engineering (Criminale et al., 2003, Vallentine 2013, Newman 
2018, etc.). Free-surface fluid flow along inclined or vertical 
planes has attracted and continues to attract the attention of 
significant number of researchers (Oron et al., 1997, Chang 
and Demekhin 2002, Thiele et al., 2012 O’Connor and Benedict 

2021, etc.) due to its complex spatiotemporal patterns, which 
are relevant to processes such as film cooling and coating. 
Surface tension plays a key role in governing wave 
characteristics in fluid flows. Instability in a single-layer falling 
film over an inclined wall primarily arises from inertial effects, 
while interfacial instabilities are driven by kinetic mechanisms 
(Kao 1965, Kao 1968, Sani et al., 2020, etc.). A landmark 
contribution to this field is Yih’s work (1963) on the stability of 
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film flow down an inclined plane. Chin and Bertschy (1986) 
demonstrated that variations in surface tension can destabilize 
gravity-driven flow at low to moderate Reynolds numbers by 
inducing an unstable surface mode. To control such 
instabilities, several strategies using surface-active or inactive 
agents have been proposed (Li and Pozrikidis 1997, Blyth and 
Pozrikidis 2004, Anjalaiah et al., 2013). Numerous studies have 
since explored methods for stabilizing or destabilizing surface 
waves in laminar single-layer flows of Newtonian and non-
Newtonian fluids over inclined planes (Yih 1963, Liu and Liu 
2009, Sani et al., 2020, Subham and Samanta 2021, 
Choudhury and Samanta 2022, etc.). Benjamin et al., (1957) 
theoretically investigated the hydrodynamic stability of a 
viscous, laminar liquid film flowing down an inclined plane at low 
Reynolds numbers, bounded by a free surface influenced by 
surface tension. Samanta et al., (2011) analyzed flow down a 
vibrating inclined plane and showed that at higher inclination 
angles, surface-wave stability is not guaranteed, and the flow 
remains unsteady. Dholey and Gorai (2021) studied surface-
wave instability in a similar configuration, establishing the 
stability criterion and identifying the critical wave number that 
suppresses inertial effects. 
Several researchers have explored the physical mechanisms 
behind free-surface flow instabilities and proposed both active 
and passive strategies to control them in single- and multi-layer 
films (Sani et al., 2021, Li et al., 2023 Samanta 2025, etc.). One 
standard control method involves applying an insoluble 
surfactant at the free surface, which acts as a surface-active 
agent to influence flow stability (Samanta 2025). Thiele et al., 
(2012) developed a thermodynamically consistent model for 
free surfaces covered with high concentrations of insoluble 
surfactants and reviewed the classical evolution equations for 
film height and surfactant distribution. Blyth and Pozrikidis 
(2004) examined the stabilizing influence of surfactants on the 
Yih mode, showing that variations in surface tension induced 
by surfactants generate an additional instability mechanism, 
the Marangoni mode. 
Applying external shear at the free surface is another active 
method for controlling surface-wave energy, with practical 
relevance in processes such as airway blockage (Otis et al., 
1993). Samanta (2014) and Sani et al., (2020) examined the 
effect of external shear on gravity-driven falling films over a steep, 
rigid incline and showed that an externally applied force 
enhances long-wave instability by reducing the critical Reynolds 
number. Later, Bhat and Samanta (2018) investigated the 
influence of external shear on a surfactant-covered film and 
demonstrated that insoluble surfactants can reduce the wave 
energy generated by the external force. Another approach to 
controlling instability in gravity-driven film flows is to modify the 
behavior of the lower wall or substrate. This method is 
theoretically important and has significant industrial relevance 
(Wang 1984, Pascal 1999, Pascal 2006, Das et al., 2024, etc.). 
Many natural and engineering processes, such as surface 
water movement, soil transport, and groundwater flow through 
cracks, can be modeled as thin-film flow over a porous inclined 

wall. In such studies, the effect of wall porosity on flow 
dynamics and stability is examined, with Darcy’s law governing 
the flow within the porous medium (Pascal 1999,  and Pascal 
2006). Film that flows over porous substrates have been shown 
to exhibit enhanced stability, as the porous structure 
dissipates energy and suppresses disturbances (Anjalaiah et 
al., 2004, Sani et al., 2021, Samanta 2023, etc.). Notably, 
Pascal (2006) demonstrated that increasing the permeability of 
the porous substrate reduces instability in a Newtonian thin 
film, highlighting the stabilizing influence of porous walls. Liu 
and Liu (2009) investigated shear-driven film flow down an 
inclined porous plane. At the same time, Pascal and 
D’Alessio (2010) developed a theoretical model accounting 
for fluid porous medium interaction and showed that low 
permeability destabilizes the film. Usha et al., (2011) 
modeled flow over a weakly porous bottom for a tension-
thinning film, incorporating filtration effects and porous-layer 
influence at the interface. Kandel and Pascal (2013) analyzed 
interfacial instability of film flow down porous inclines at low 
to moderate Reynolds numbers and reported conditions 
leading to instability. Anjalaiah et al., (2013) studied thin-film 
flow over a porous bed with surfactant and found that 
increasing permeability lowers the critical Reynolds number 
and enlarges the range of unstable wave numbers, for both 
clean and surfactant-covered films.  
Beyond porous substrates, instability in film flow can also be 
controlled by introducing slip at the lower wall. Several 
mathematical and experimental studies have examined the 
transition between slippery and no-slip behaviour in gravity-
driven films on inclined surfaces (Samanta et al., 2011, 
Samaha and Hak 2021, Tripathi et al., 2023). Samanta et al., 
(2011) analysed film flow down a slippery inclined plane and 
demonstrated that slip length significantly affects wave 
evolution in both linear and nonlinear regimes. Their results 
show that applying the Navier slip condition enhances back-
flow in the capillary region of solitary waves and can influence 
heat and mass transfer. Their study extends Benney’s long-
wave expansion theory (Benney 1996) to moderate Reynolds 
numbers by relaxing the restrictions on free-surface velocity 
development. Ding and Wong (2015) examined liquid-film 
flow over a uniformly slippery substrate and showed that 
the combination of wall slip and inertia increases both 
phase speed and wave amplitude. Bhat and Samanta 
(2018) performed a linear stability analysis on film flow 
over a slippery inclined plane. They extended the findings 
of Samanta et al., (2011), demonstrating that wall slip 
stabilizes the surface mode at moderate Reynolds 
numbers, a behavior different from that observed in the 
long-wave regime. Ma et al., (2020) studied the influence of 
wall slippage on the instability of gravity-driven film flow. 
They found that, in thin films with moving contact lines, slip 
in the streamwise and spanwise directions has opposite 
effects. However, slip in either direction can still 
destabilize under dynamic contact-line conditions.  
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To the best of the authors’ knowledge, no previous study 
has examined film flow down a slippery inclined plane in 
the presence of a spring-backed membrane at the free 
surface. This work addresses that gap by performing a 
linear stability analysis of gravity-driven film flow with a 
slippery substrate and a spring-backed membrane. The 
membrane boundary conditions follow Karmakar and 
Sahoo (2008). Using normal-mode analysis, the Orr 
Sommerfeld equations are formulated and solved via a 
spectral collocation method in a two-dimensional 
Cartesian framework. The effects of membrane tension, 
inclination angle, and slip length are examined. The results 
show that membrane tension destabilizes over a wide 
range of parameters and, when combined with wall slip, 
increases the growth rate of perturbation waves. The study 
provides a systematic derivation of the governing 
equations and presents numerical results demonstrating 
the interplay between the membrane and slippery 
substrate in controlling flow stability. 
MATERIALS AND METHODS 
Mathematical Formulation 
A two-dimensional, incompressible Newtonian fluid flowing 
over a slippery inclined plane is considered. The interaction 

between the fluid surface and a spring-backed membrane is 
analyzed in a Cartesian coordinate system, where the (𝑥) −axis 
lies along the inclined slippery plane and the (𝑦) −axis is 
oriented vertically upward from the plane (Fig.1). The membrane 
is assumed to have uniform thickness and rests on the free 
surface of the fluid layer at (𝑦 = 𝑑), where its displacement is 
denoted by (𝑦 = 𝜂(𝑥, 𝑡)). The mean fluid surface is parallel to 
the inclined plane and corresponds to (𝑦 = 0). 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,     (1) 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝑑𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
)  = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) + 𝑔𝜌𝑠𝑖𝑛𝜃,

      (2) 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝑑𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
)  = −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) + 𝑔𝜌𝑐𝑜𝑠𝜃,

      (3) 
where 𝜌 and µ denotes the density and viscosity of the fluid 
respectively. 𝑢 and 𝑣 are the components of velocity in the 𝑥 
and 𝑦 increasing directions respectively and 𝑝 is the dynamic 
pressure exerted by the fluid on the spring-bocked membrane. 
The term 𝑔 represents the acceleration due to gravity and 𝜃 is the 
angle of inclination of the substrate. 

 

 
Figure 1: Schematic diagram for a single-layer thin film flow down an inclined slippery 
wall with a spring-bocked membrane at the free surface 

 
The set of dimensional boundary conditions at the free 
surface (𝑦 = 𝜂(𝑥, 𝑡)) which is associated with the spring-
bocked membrane are the kinematic condition, the balance 
of the normal and tangential stresses respectively given by 
𝑣 =

𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
  at 𝑦 =  𝜂(𝑥, 𝑡),   (4) 

𝜇 [(
𝜕𝑢

𝜕𝑧
+

𝜕𝑣

𝜕𝑥
) (1 − (

𝜕𝜂

𝜕𝑥
)

2

) − 4
𝜕𝑢

𝜕𝑥

𝜕𝜂

𝜕𝑦
] = 0    at 𝑦 =  𝜂(𝑥, 𝑡), 

      (5) 

𝑝 − 𝑝∞ =  
2𝜇

(1+(
𝜕𝜂

𝜕𝑥
)

2
)

[
𝜕𝑢

𝜕𝑥
(

𝜕𝜂

𝜕𝑥
)

2

− (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

𝜕𝜂

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
] −

𝑇
𝜕2𝜂

𝜕𝑥

(1−(
𝜕𝜂

𝜕𝑥
)

2
)

3
2

− 𝑚𝑚
𝜕2𝜂

𝜕𝑡2 + 𝑇𝜂, at 𝑦 =  𝜂(𝑥, 𝑡),      (6) 

where 𝑇 is the membrane tension per length, 𝑝∞ is the 
atmospheric pressure, and 𝑚𝑚  is the uniform mass per unit 

length of the membrane. Note that, when the elastic membrane 
is stretched with a constant tension per unit length (i. e. 𝑇 =
𝑐𝑜𝑛𝑠 ) then 𝑇𝑥  =  0 and therefore, the right-hand side of the 
equation (5) will be zero. The boundary conditions at the 
slippery inclined wall are given as 
𝑢 =  𝛽

𝜕𝑢

𝜕𝑦
              at  𝑦 =  0,   (7) 

𝑣 =  0                    at  𝑦 =  0,   (8) 
where 𝛽 is the slip length parameter, which confirms the 
velocity slip at the wall, which enhances the basic flow rate. The 
set of equations and boundary conditions is made non-
dimensional using the following dimensionless variables: 
𝑥̅ =

𝑥

𝐿
,   𝑦̅ =

𝑦

𝐿
, 𝑢̅ =

𝑢

𝑉
, 𝑣̅ =

𝑣

𝑉
,   𝑡̅  =

𝑡𝑉

𝐿
,   𝑝̅ =

𝑝

𝜌𝑉2 ,   𝜂̅ =
𝜂

𝐿
, 𝑇 ̅ =

2𝑇

𝜌𝑔𝑠𝑖𝑛(𝜃)𝐿2,   

where 𝑑 is the mean film thickness of the fluid layer and 𝑇0 
is the mean reference tension of the spring-bocked 
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membrane. The characteristic velocity scale 𝑉 for the fluid 
layer is chosen as the maximum velocity of a uniform flat 

Nusselt film over a rigid substrate, and given by 𝑔𝐿2𝑠𝑖𝑛𝜃

2𝑣
 and 

𝑣 =
𝜇

𝜌
 is the kinematic viscosity. The present study is motivated 

by the investigations by Blyth and Pozrikidis (2004), Sani et al., 
(2018), and hence, in order to compare the results with 
available results, the formulation is in terms of the Reynolds 
number based on the Nusselt film free surface velocity for a film 
without membrane over a rigid substrate has been used. After 
suppressing the bars, the set of dimensionless governing 
equations for the flow beneath the membrane and the set of 
boundary conditions associated with the membrane are as 
follows respectively, 
𝜕𝑢

𝑑𝑥
+

𝜕𝑣

𝜕𝑦
= 0,     (9) 

𝜕𝑢

𝑑𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+

1

𝑅𝑒
[

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2] + 𝑁, (10) 
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+

1

𝑅𝑒
[

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2] − 𝑁𝑐𝑜𝑡𝜃, (11) 

𝑣 =
𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
            at  𝑦 =  𝜂(𝑥, 𝑡),  (12) 

(1 − (
𝜕𝜂

𝜕𝑥
)

2

) (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) − 4

𝜕𝑢

𝜕𝑥

𝜕𝜂

𝜕𝑥
= 0       at 𝑦 =  𝜂(𝑥, 𝑡), 

      (13) 

𝑝 =
2

𝑅𝑒(1+(
𝜕𝜂

𝜕𝑥
)

2
)

[
𝜕𝑢

𝜕𝑥
(

𝜕𝜂

𝜕𝑥
)

2

− (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

𝜕𝜂

𝜕𝑥
+

𝜕𝑣

𝜕𝑥
] −

𝑔𝐿𝑠𝑖𝑛(𝜃)𝑇
𝜕2𝜂

𝜕𝑥2

2𝑣2(1+(
𝜕𝜂

𝜕𝑥
)

2
)

3
2

 −
𝑚𝑚

𝜌𝑣𝐿

𝜕2𝜂

𝜕𝑡2 +
𝑇(𝜂+1)

𝜌𝑣2                 at    𝑦 =  𝜂(𝑥, 𝑡), 

      (14)  
𝑢 =

𝛽

𝐿

𝜕𝑢

𝜕𝑦
           at   𝑦 =  0,    (15) 

𝑣 =  0              at   𝑦 =  0,    (16) 
in the above equations, 𝑁 =  

𝐿𝑔𝑠𝑖𝑛𝜃

𝑉2  is the modified Galileo 

number, 𝑅𝑒 =
𝑉𝐿

𝑣
  is called the Reynolds number of the 

flow, and remark that 𝑇 and 𝑚𝑚 are the dimensionless 
membrane tension and unit mass. 
 
Base solution and stability equations 
The base flow solution corresponding to the flow below the 
spring-bocked membrane obtained from the corresponding set 
of equations above and boundary conditions is respectively 
given by 
𝑈(𝑦)  =  𝑦(2 − 𝑦) + 2𝛽,    (17) 
𝑃(𝑦)  =  2𝑐𝑜𝑡𝜃(1 − 𝑦).    (18)  
Where 0 ≤  𝛽 ≤  1, utilizing the research of Anjalaiah et 
al., (2013), the base flow calculation is done by setting 
𝑁 𝑅𝑒 =  2 (𝑁 ≃  𝑂(1)). It is important to note that there will 
be no change in the behaviors of the base flow due to the 
presence of the membrane at the free surface. 
Next, the stability of the base state with respect to 
infinitesimal perturbations is considered, and the flow 
variables are now taken as the sum of the basic state and 
the perturbed state solution. Substituting 𝑢(𝑥, 𝑦, 𝑡)  =
 𝑈(𝑦)  +  𝑢̃(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡)  =  𝑣(𝑥, 𝑦, 𝑡), 𝑝(𝑥, 𝑦, 𝑡)  =

 𝑃(𝑦)  +  𝑝(𝑥, 𝑦, 𝑡) and  𝜂(𝑥, 𝑡)  =  1 +  𝜂̃(𝑥, 𝑡) into the 
equations of motion and boundary conditions, and linearizing 
with respect to the small amplitude perturbations, the 
equations for the perturbed quantities are obtained as 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣̃

𝜕𝑦̃
= 0,     (19) 

𝑅𝑒 (
𝜕𝑢

𝜕𝑡
+ 𝑈

𝜕𝑢

𝜕𝑥
+ 𝑣̃

𝜕𝑈

𝜕𝑦̃
) = −𝑅𝑒

𝜕𝑝

𝜕𝑥
+ (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2), (20) 

𝑅𝑒 (
𝜕𝑣

𝜕𝑡
+ 𝑈

𝜕𝑣̃

𝜕𝑥
) = −𝑅𝑒

𝜕𝑝

𝜕𝑦̃
+ (

𝜕2𝑣̃

𝜕𝑥2 +
𝜕2𝑣̃

𝜕𝑦2),  (21) 

𝑣̃ =
𝜕𝜂̃

𝜕𝑡
+ 𝑈

𝜕𝜂̃

𝜕𝑥
                   at     𝑦 = 1,   (22) 

(
𝜕𝑢

𝜕𝑦̃
+

𝜕𝑣̃

𝜕𝑥
+

𝜕𝑈

𝜕𝑦̃
) (1 − (

𝜕𝜂̃

𝜕𝑥
)

2

) = 0       at    𝑦 = 1, (23) 

𝑃(𝑦) + 𝑝 =
2

𝑅𝑒(1+(
𝜕𝜂

𝜕𝑥
)

2
)

(
𝜕𝑣̃

𝜕𝑦̃
−

𝜕𝑈

𝜕𝑦̃

𝜕2𝜂̃

𝜕𝑦̃
) −

𝐿𝑔𝑠𝑖𝑛𝜃

2𝑉2 𝑇
𝜕𝜂̃

𝜕𝑥̃2

(1+(
𝜕𝜂

𝜕𝑥
)

2
)

3
2

−

𝑚𝑚

𝜌𝑣𝑑

𝜕2𝜂̃

𝜕𝑡2 +
𝑇(1+𝜂)

𝜌𝑣2            at  𝑦̃  = 1   (24) 

Using Eq. (19) in Eq. (24), and linearizing Eq. (23), one can 
rewrite these equations after simplifying as, 
𝜕2𝑢

𝜕𝑦̃𝜕𝑥
+

𝜕2𝑣̃

𝜕𝑥2 = 0           at  y = 1,   (25) 

𝑅𝑒−1 (
𝜕3𝑢

𝜕𝑥3 +
𝜕3𝑢

𝜕𝑥𝜕𝑦2) − (
𝜕2𝑢

𝜕𝑡𝜕𝑥
+

𝑈𝜕2𝑢

𝜕𝑥2 +
𝜕𝑣̃

𝜕𝑥

𝜕𝑈

𝜕𝑦̃
) =

2

𝑅𝑒
(

𝜕3𝑣̃

𝜕𝑦̃𝜕𝑥2 −

𝑈
𝜕2𝜂̃

𝜕𝑥3) −
𝐿𝑔𝑠𝑖𝑛𝜃

2𝑣2 𝑇
𝜕4𝜂̃

𝜕𝑥4 −
𝑚𝑚

𝜌𝑣𝑑

𝜕4𝜂̃

𝜕𝑡2𝜕𝑥2 +
𝑇

𝜌𝑣2

𝜕2𝜂̃

𝜕𝑥2    at  𝑦 = 1,

    (26) 
𝜕𝑢

𝜕𝑥
=

𝛽

𝑑

𝜕2𝜂̃

𝜕𝑥2       at   𝑦 = 1,    (27) 
𝑣̃ = 0             at  𝑦 = 0.    (28) 
Let 𝜓̃ be the stream function of the dimensional flow below 
the spring-bocked membrane, in the form of normal mode 
solution, 𝜓̃(𝑥, 𝑦, 𝑡)  =  𝜙(𝑦)𝑒𝑖𝛼(𝑥−𝑐𝑡) 𝑎𝑛𝑑 𝜂̃(𝑥, 𝑦, 𝑡)  =

 Ω(𝑦)𝑒𝑖𝛼(𝑥−𝑐𝑡), where 𝛼 and 𝑐 are the wave number and the 
complex wave speed, respectively, and 𝑖 ≡ √−1. 
Expressing the velocity components in terms of stream 
function and using all in the linearized perturbed equations 
and boundary conditions, the following Orr-Sommerfeld 
system is obtained, 

(𝑐 − 𝑈)𝐷2𝜃 − (𝑐 − 1)𝛼2𝐷0 +
𝜕2𝑈

𝜕𝑧2 𝐷0𝜙 =

−𝑖(𝛼𝑅𝑒)−1(𝛼4𝐷0𝜙 − 2𝛼2𝐷2𝜙 + 𝐷4∅),    (29) 
𝐷0𝜙 + Ω(𝑈 − 𝑐) = 0      𝑎𝑡 𝑦 = 1,    (30) 
𝐷2𝜙 + 𝛼2𝐷0𝜙 = 0      𝑎𝑡 𝑦 = 1,   (31) 

𝑖𝑅𝑒−1(𝐷3𝜙 + 𝛼2𝐷𝜙) − (𝛼𝑐𝐷𝜙 − 𝛼𝑈𝐷𝜙 + 𝛼𝑖
𝜕𝑈

𝜕𝑧
𝐷0𝜙) =

2𝑖𝛼3

𝑅𝑒
[𝐷𝜙 +

𝜕𝑈

𝜕𝑧̃
Ω] −

𝑑𝑔𝑠𝑖𝑚(𝜃)

2𝑣2 𝑇𝛼4Ω −
𝑚𝑚𝛼4

𝜌𝑣𝑑
𝑐2Ω −

𝑇𝛼2Ω

𝜌𝑣2      𝑎𝑡 𝑦 = 1,     (32) 

𝐷𝜙 =
𝛽

𝑑
𝐷2𝜙               at  y = 0,   (33)  

𝐷0𝜙 = 0                     at  𝑦 = 0,   (34) 
where 𝐷 denotes derivative with respect to 𝑦. Equations 
(29)−(34) describe a generalized eigenvalue problem with 𝑐 as an 
eigenvalue, and we are interested in obtaining a non-trivial 
solution of the system. The parameter 𝑐 =  𝑐𝑟  +  𝑖𝑐𝑖  where 𝑐𝑟  
and 𝑐𝑖  are respectively, the wave speed and the growth rate. 
However, when there is no spring-bocked membrane present at 
the free surface and no slippage at the substrate, the above 
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system reduces to the Orr-Sommerfeld equations 
representing a Newtonian flow down a rigid inclined substrate 
given by Yih (1963). On the other hand, when we consider the 
spring-bocked membrane at the free surface, then the Orr-
Sommerfeld equations obtained resemble those which were 
obtained by Blyth and Pozrikidis (2004). 
 
RESULTS AND DISCUSSION 
The Orr–Sommerfeld model is solved using the spectral 
collocation method following Canuto et al., (2012), where 
Chebyshev polynomials and Chebyshev collocation points 
are used to discretize the generalized eigenvalue problem 
given in Eqs. (29)–(32). Solving this eigenvalue system 
yields the complex phase velocity 𝑐 = 𝑐𝑟 + 𝑖𝑐𝑖, from which 
the dimensionless growth rate is obtained as 𝜔𝑖 = 𝛼𝑐𝑖for a 
wide range of wave numbers 𝛼. The accuracy of the 
computed eigenvalues is verified by increasing the number 
of collocation points, and any spurious eigenvalues are 
removed through a filtering procedure. 

The MATLAB code used for the computation is validated by 
comparing the growth-rate results for a film flow over a 
rigid inclined surface without the membrane. The 
numerical results show excellent agreement with 
previously published studies. Subsequently, the influence 
of membrane mass 𝑚𝑚, spring-backed membrane tension 
𝑇, slip parameter 𝛽, and Reynolds number 𝑅𝑒on flow 
stability is examined. The analysis also includes the effects 
of parameters associated with both the membrane and the 
slippery substrate Results reveal that introducing a floating 
membrane on the free surface generally enhances the 
stability of an otherwise unstable flow. Increasing the 
membrane mass 𝑚𝑚 further stabilizes the flow, as 
indicated by the decreasing growth rate (see dashed 
curves in Fig. 2). The thin membrane responds to 
perturbations and generates additional surface waves. 
These membrane-induced  

 

 
Figure 2: The growth rate of the dominant mode as a 
function of Reynolds number for different values of Beta (𝛽) 
when  𝑘 =  0.2 , 𝜃 =  4𝑜, 𝑇 =  0.01, and membrane mass 
 𝑚𝑚  =  0.01 

 
Figure 3: The growth rate of the dominant mode as a 
function of wave number for different values of angle of 
inclination (𝜃) when 𝑅𝑒 =  1500, 𝑇 =  0.01,   𝛽 =
 0.001  and 𝑚𝑚  =  0.01 

 
Figure 2 shows the results for the growth rate as a function of 
wave number for different values of Beta (𝛽). The results 
reveal that for 𝛽 =  0.01 (represented in Figure 5 by the 
solid curves), The growth rate of the most unstable mode is 
higher compared to the other values of 𝛽 Considered (shown 
by the dashed curves). It is also observed that when the wave 
number reaches 0.025, the growth rate begins to decline for all 
values of 𝛽. These observations are similar to that 
observed by Khan et al., (2021) for slippery substrate. 
Therefore, the system's instability increases with the slip 
parameter. This illustrates the influence of 𝛽 on the 

system.  Figure 3 shows the growth rate of the dominant mode 
as a function of wave number for different inclination angles 𝜃. 
For 𝜃 = 45∘(solid curve), the maximum growth rate is the 
smallest compared to the other angles (dashed curves).  In all 
cases, the growth rate increases with wave number, reaches a 
peak, and then decreases. This demonstrates that the 
inclination angle influences flow stability. These observations 
are similar to that made by Sani et al., (2018). As 𝜃increases, 
the maximum growth rate of the most unstable mode also 
increases, indicating reduced stability at higher inclination 
angles. 
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Figure 4: The growth rate of the dominant mode as a function 
of Reynolds number for different values of membrane tension 
when 𝜃 =  4𝑜, 𝛽 =  0.001, 𝑘 =  0.2 and membrane mass 
(𝑚𝑚)  =  0.01.  

 
Figure 5: The growth rate of the dominant mode as a 
function of wave number for different values of Reynolds 
number (Re) when 𝜃 =  4𝑜 , 𝑇 =  0.01,   𝛽 =  0.001, 𝑘 =
 0.2 and membrane mass  𝑚𝑚  =  0.01 

 
Figure 4 presents the growth rate of the dominant mode as 
a function of Reynolds number (𝑅𝑒) for different membrane 
tensions (𝑇). Increasing 𝑇reduces the growth rate of the 
unstable mode, thereby enhancing flow stability. For all 
values of 𝑇, the growth rate increases with 𝑅𝑒, eventually 
crossing zero and becoming unstable. Since membrane 
tension introduces a stress jump at the free surface, higher 
tension suppresses instability. A related study was 
conducted and similar result was obtained by Sani et al., 
(2020). Thus, the flow remains more stable at lower 𝑅𝑒, 
and increasing membrane tension enhances overall flow 
stability. Figure 5 illustrates the effect of the Reynolds 

number (𝑅𝑒) on the growth rate of the dominant mode as a 
function of wave number. When 𝑅𝑒 = 1500 (solid curve), 
the maximum growth rate is highest compared to the lower 
𝑅𝑒 Values (dashed curves). For all cases, the growth rate 
initially increases with wave number, reaches a peak, and 
then declines.  Its observed that a bifurcation occurs around 
𝑘 ≈ 0.2. This indicates that higher 𝑅𝑒 enhances flow 
instability, while lower 𝑅𝑒 values promote greater flow 
stability. A related study was conducted and similar result 
was obtained by Sani et al., (2018) regarding the floating 
membrane at the free surface. 

 

 
Figure 6: The growth rate of the dominant mode as a function of 
wave number for different values of membrane tension 
when 𝑅𝑒 =  1500, θ = 4𝑜  , 𝛽 = 0.001 and membrane mass 
𝑚𝑚  =  0.01. 
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Figure 6 shows the variation of the growth rate with respect 
to wave number for different membrane tension (𝑇). As 
membrane tension (𝑇) As membrane tension increases, it 
introduces a larger stress jump at the free surface, thereby 
influencing flow stability. The growth rate increases with 
wave number, reaches a maximum, and then decreases. A 
related study was conducted and similar result was 
obtained by Sani et al., (2018) regarding the floating 
membrane at the free surface. While the baseline flow 
(without the membrane) exhibits a higher peak growth rate, 
increasing membrane tension reduces the maximum 
growth rate of the most unstable mode. Thus, greater 
membrane tension enhances flow stability. 
 
CONCLUSION  
This study has observed the impact of a spring-blocked 
membrane and a slippery inclined substrate on a perturbed 
gravity-driven viscous fluid flow. Using the spectral 
collocation method, the research has depicts that the spring-
bocked plays a vital role in controlling the instability of the 
system. Increase in the membrane tension causes more 
energy deflection at the free surface. Thus, the study found 
that membrane tension generally contributes in enhancing 
the fluid flow instabilities. Furthermore, the spring-bocked 
membrane Tension (𝑇) plays a crucial role in lowering 
instability, demonstrating that the system’s instability can be 
passively controlled by tuning these physical properties. The 
research revealed that the velocity slip at the wall has a 
disruptive effect at the onset of instability. These findings will 
contribute to a deeper understanding of flow stability in 
systems influenced by elastic surfaces and slippery 
boundaries. 
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