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ABSTRACT

This research work investigates the influence of a spring-blocked
membrane on a perturbed gravity-driven viscous fluid flow down a
slippery inclined plane. The spring-bocked membrane on a falling
film flow over a slippery plane can affect the flow dynamics and
stability of the film. The instability of such a flow can be controlled
either by modifying the behavior of the lower wall, altering the surface
waves at the free surface using structures, or both, as done here by
incorporating a spring-backed membrane at the top of the liquid
layer and a slippery substrate. A linear stability analysis is performed
utilizing the normal mode approach, with the free surface modified
by a spring-blocked membrane and the lower boundary modeled as
a slippery substrate. The associated Orr-Sommerfeld system is
solved numerically using the spectral collocation method. The
results reveal that velocity slip at the lower wall has a non-trivial
impact on flow stability: it destabilizes at the onset of instability, then
stabilizes at higher Reynolds numbers. Membrane tension is
modeled as a stress jump at the free surface, and the mass of the
membrane is also taken into account. The findings demonstrate that
increasing the dimensionless spring-blocked membrane tension (T)
reduces the growth rate of the most unstable mode, thereby
enhancing flow stability. Thus, combination of a spring-blocked
membrane at the free surface and a slippery base exerts a significant
passive control on flow stability. The study provides an insight into
how such configurations can be utilized to either suppress or amplify
interfacial instabilities in gravity-driven flows.

INTRODUCTION

2021, etc.) due to its complex spatiotemporal patterns, which

Hydrodynamic stability analysis and transition behavior has a
vast applications in biomedical, industries and agricultural
engineering (Criminale et al., 2003, Vallentine 2013, Newman
2018, etc.). Free-surface fluid flow along inclined or vertical
planes has attracted and continues to attract the attention of
significant number of researchers (Oron et al., 1997, Chang
and Demekhin 2002, Thiele et al., 2012 O’Connor and Benedict
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are relevant to processes such as film cooling and coating.
Surface tension plays a key role in governing wave
characteristics in fluid flows. Instability in a single-layer falling
film over an inclined wall primarily arises from inertial effects,
while interfacial instabilities are driven by kinetic mechanisms
(Kao 1965, Kao 1968, Sani et al., 2020, etc.). A landmark
contribution to this field is Yih’s work (1963) on the stability of
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film flow down an inclined plane. Chin and Bertschy (1986)
demonstrated thatvariations in surface tension can destabilize
gravity-driven flow at low to moderate Reynolds numbers by
inducing an unstable surface mode. To control such
instabilities, several strategies using surface-active or inactive
agents have been proposed (Li and Pozrikidis 1997, Blyth and
Pozrikidis 2004, Anjalaiah et al., 2013). Numerous studies have
since explored methods for stabilizing or destabilizing surface
waves in laminar single-layer flows of Newtonian and non-
Newtonian fluids over inclined planes (Yih 1963, Liu and Liu
2009, Sani et al, 2020, Subham and Samanta 2021,
Choudhury and Samanta 2022, etc.). Benjamin et al., (1957)
theoretically investigated the hydrodynamic stability of a
viscous, laminar liquid film flowing down an inclined plane at low
Reynolds numbers, bounded by a free surface influenced by
surface tension. Samanta et al., (2011) analyzed flow down a
vibrating inclined plane and showed that at higher inclination
angles, surface-wave stability is not guaranteed, and the flow
remains unsteady. Dholey and Gorai (2021) studied surface-
wave instability in a similar configuration, establishing the
stability criterion and identifying the critical wave number that
suppresses inertial effects.

Several researchers have explored the physical mechanisms
behind free-surface flow instabilities and proposed both active
and passive strategies to controlthem in single- and multi-layer
films (Sani et al.,, 2021, Li et al., 2023 Samanta 2025, etc.). One
standard control method involves applying an insoluble
surfactant at the free surface, which acts as a surface-active
agent to influence flow stability (Samanta 2025). Thiele et al,,
(2012) developed a thermodynamically consistent model for
free surfaces covered with high concentrations of insoluble
surfactants and reviewed the classical evolution equations for
film height and surfactant distribution. Blyth and Pozrikidis
(2004) examined the stabilizing influence of surfactants on the
Yih mode, showing that variations in surface tension induced
by surfactants generate an additional instability mechanism,
the Marangoni mode.

Applying external shear at the free surface is another active
method for controlling surface-wave energy, with practical
relevance in processes such as airway blockage (Otis et al,
1993). Samanta (2014) and Sani et al,, (2020) examined the
effect of external shear on gravity-driven falling films over a steep,
rigid incline and showed that an externally applied force
enhances long-wave instability by reducing the critical Reynolds
number. Later, Bhat and Samanta (2018) investigated the
influence of external shear on a surfactant-covered film and
demonstrated that insoluble surfactants can reduce the wave
energy generated by the external force. Another approach to
controlling instability in gravity-driven film flows is to modify the
behavior of the lower wall or substrate. This method is
theoretically important and has significantindustrial relevance
(Wang 1984, Pascal 1999, Pascal 2006, Das et al., 2024, etc.).
Many natural and engineering processes, such as surface
water movement, soil transport, and groundwater flow through
cracks, can be modeled as thin-film flow over a porousinclined
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wall. In such studies, the effect of wall porosity on flow
dynamics and stability is examined, with Darcy’s law governing
the flow within the porous medium (Pascal 1999, and Pascal
2006). Film that flows over porous substrates have been shown
to exhibit enhanced stability, as the porous structure
dissipates energy and suppresses disturbances (Anjalaiah et
al., 2004, Sani et al,, 2021, Samanta 2023, etc.). Notably,
Pascal (2006) demonstrated that increasing the permeability of
the porous substrate reduces instability in a Newtonian thin
film, highlighting the stabilizing influence of porous walls. Liu
and Liu (2009) investigated shear-driven film flow down an
inclined porous plane. At the same time, Pascal and
D’Alessio (2010) developed a theoretical model accounting
for fluid porous medium interaction and showed that low
permeability destabilizes the film. Usha et al., (2011)
modeled flow over a weakly porous bottom for a tension-
thinning film, incorporating filtration effects and porous-layer
influence at the interface. Kandel and Pascal (2013) analyzed
interfacial instability of film flow down porous inclines at low
to moderate Reynolds numbers and reported conditions
leading to instability. Anjalaiah et al., (2013) studied thin-film
flow over a porous bed with surfactant and found that
increasing permeability lowers the critical Reynolds number
and enlarges the range of unstable wave numbers, for both
clean and surfactant-covered films.

Beyond porous substrates, instability in film flow can also be
controlled by introducing slip at the lower wall. Several
mathematical and experimental studies have examined the
transition between slippery and no-slip behaviour in gravity-
driven films on inclined surfaces (Samanta et al., 2011,
Samaha and Hak 2021, Tripathi et al., 2023). Samanta et al,,
(2011) analysed film flow down a slippery inclined plane and
demonstrated that slip length significantly affects wave
evolution in both linear and nonlinear regimes. Their results
show that applying the Navier slip condition enhances back-
flow in the capillary region of solitary waves and can influence
heat and mass transfer. Their study extends Benney’s long-
wave expansion theory (Benney 1996) to moderate Reynolds
numbers by relaxing the restrictions on free-surface velocity
development. Ding and Wong (2015) examined liquid-film
flow over a uniformly slippery substrate and showed that
the combination of wall slip and inertia increases both
phase speed and wave amplitude. Bhat and Samanta
(2018) performed a linear stability analysis on film flow
over a slippery inclined plane. They extended the findings
of Samanta et al., (2011), demonstrating that wall slip
stabilizes the surface mode at moderate Reynolds
numbers, a behavior different from that observed in the
long-wave regime. Ma et al., (2020) studied the influence of
wall slippage on the instability of gravity-driven film flow.
They found that, in thin films with moving contact lines, slip
in the streamwise and spanwise directions has opposite
effects. However, slip in either direction can still
destabilize under dynamic contact-line conditions.
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To the best of the authors’ knowledge, no previous study
has examined film flow down a slippery inclined plane in
the presence of a spring-backed membrane at the free
surface. This work addresses that gap by performing a
linear stability analysis of gravity-driven film flow with a
slippery substrate and a spring-backed membrane. The
membrane boundary conditions follow Karmakar and
Sahoo (2008). Using normal-mode analysis, the Orr
Sommerfeld equations are formulated and solved via a
spectral collocation method in a two-dimensional
Cartesian framework. The effects of membrane tension,
inclination angle, and slip length are examined. The results
show that membrane tension destabilizes over a wide
range of parameters and, when combined with wall slip,
increases the growth rate of perturbation waves. The study
provides a systematic derivation of the governing
equations and presents numerical results demonstrating
the interplay between the membrane and slippery
substrate in controlling flow stability.

MATERIALS AND METHODS

Mathematical Formulation

A two-dimensional, incompressible Newtonian fluid flowing
over a slippery inclined plane is considered. The interaction
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between the fluid surface and a spring-backed membrane is
analyzed in a Cartesian coordinate system, where the (x) —axis
lies along the inclined slippery plane and the (y) —axis is
oriented vertically upward from the plane (Fig.1). The membrane
is assumed to have uniform thickness and rests on the free
surface of the fluid layer at (y = d), where its displacement is
denoted by (y = 7(x, t)). The mean fluid surface is parallel to
the inclined plane and correspondsto (y = 0).

ou | ov
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where p and u denotes the density and viscosity of the fluid
respectively. u and v are the components of velocity in the x
and y increasing directions respectively and p is the dynamic
pressure exerted by the fluid on the spring-bocked membrane.
Theterm g represents the acceleration due to gravity and @ isthe
angle of inclination of the substrate.

The set of dimensional boundary conditions at the free
surface (y =n(x, t)) which is associated with the spring-
bocked membrane are the kinematic condition, the balance
of the normal and tangential stresses respectively given by
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where T is the membrane tension per length, p, is the
atmospheric pressure, and m,, is the uniform mass per unit
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Figure 1: Schematic diagram for a single-layer thin film flow down an inclined slippery

wall with a spring-bocked membrane at the free surface

length of the membrane. Note that, when the elastic membrane
is stretched with a constant tension per unitlength (i.e.T =
cons ) then T, = 0 and therefore, the right-hand side of the
equation (5) will be zero. The boundary conditions at the
slippery inclined wall are given as
ou

u=gy (7)
v=20 aty = 0, (8)
where [ is the slip length parameter, which confirms the
velocity slip atthe wall, which enhances the basic flow rate. The
set of equations and boundary conditions is made non-
dimensional using the following dimensionless variables:
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where d is the mean film thickness of the fluid layer and T,
is the mean reference tension of the spring-bocked
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membrane. The characteristic velocity scale V for the fluid

layer is chosen as the maximum velocity of a uniform flat

gL sinf

Nusselt film over a rigid substrate, and given by and

v = p Eisthe kinematic viscosity. The present study is motlvated

by the investigations by Blyth and Pozrikidis (2004), Sani et al.,
(2018), and hence, in order to compare the results with
available results, the formulation is in terms of the Reynolds
number based on the Nusselt film free surface velocity for a film
without membrane over a rigid substrate has been used. After
suppressing the bars, the set of dimensionless governing
equations for the flow beneath the membrane and the set of
boundary conditions associated with the membrane are as
follows respectively,

6u
5 0, 9)
ou _9p 1 [%u , 9%u
[
61; 617 _ _a_p 1 %y 62_1; —_
+ ax 5_ ay ax2 3)’2] Neotd, (1)
v—g+ua— aty = n(x't)' (12)
ou ov ou on —
(-G))G+5)-3m=0 ay =,
(13)
_; du (on 2 _ 6_u 6_’7 6_77 6_1; —
P= Re(1+(3 ) > Lx (6x) (5y + aX) 0x * ax]
gLsin(G)Tm my 0% | T(+1) =
T L2 o 7 2y = ko,
2v2<1+(g—2) >
(14)
/301/. —
=15 at y =0, (15)
v =20 at y = 0; (16)

LgsmG

in the above equations, N = is the modified Galileo

number, Re % is called the Reynolds number of the

flow, and remark that T and m,, are the dimensionless
membrane tension and unit mass.

Base solution and stability equations
The base flow solution corresponding to the flow below the
spring-bocked membrane obtained from the corresponding set
of equations above and boundary conditions is respectively
given by

Ul) = y@2—-y)+2B, (17)
P(y) = 2cotf(1 —y). (18)
Where 0 < f < 1, utilizing the research of Anjalaiah et
al., (2013), the base flow calculation is done by setting
N Re = 2 (N = 0(1)).ltisimportantto note thatthere will
be no change in the behaviors of the base flow due to the
presence of the membrane at the free surface.

Next, the stability of the base state with respect to
infinitesimal perturbations is considered, and the flow
variables are now taken as the sum of the basic state and
the perturbed state solution. Substituting u(x,y,t)

Uy) + t(x,y,t), v(x,y,t) = ¥(x,y,t), p(x,y,t)
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P(y) + p(x,y,t) and n(x,t) = 1 + 7j(x,t) into the
equations of motion and boundary conditions, and linearizing

with respect to the small amplitude perturbations, the
equations for the perturbed quantities are obtained as
| o
P i 0, (19)
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Using Eqg. (19) in Eq. (24), and linearizing Eqg. (23), one can
rewrite these equations after simplifying as,
a%u | 9%v
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Let ) be the stream function of the dimensional flow below
the spring-bocked membrane, in the form of normal mode
solution, Plx,y,t) = ¢p()e“*=D and fj(x,y,t) =
Q(y)el*>= where a and c are the wave number and the
complex wave speed, respectively, and i =+/—1.
Expressing the velocity components in terms of stream
function and using allin the linearized perturbed equations
and boundary conditions, the following Orr-Sommerfeld
system is obtained,

(c —U)D?0 — (c — 1)a?D° + Y pog =
—i(aRe) Y (a*D°¢p — 2a%D%*¢ + D*Q), (29)
D¢ +QU —-¢c)=0 aty=1, (30)
D2¢ +a?D’¢p=0 aty=1, (31)
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zia? ) g e 2
v |09 +5:9] - @t et
Tazﬂ _
7 aty= 1, (32)
pp =Lp2¢ at y =0, (33)
D°p =0 at y =0, (34)

where D denotes derivative with respect to y. Equations
(29)-(34) describe a generalized eigenvalue problemwith c as an
eigenvalue, and we are interested in obtaining a non-trivial
solution of the system. The parameterc = ¢, + ic; wherec,
and ¢; are respectively, the wave speed and the growth rate.
However, when there is no spring-bocked membrane present at
the free surface and no slippage at the substrate, the above
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system reduces to the Orr-Sommerfeld equations
representing a Newtonian flow down arigid inclined substrate
given by Yih (1963). On the other hand, when we consider the
spring-bocked membrane at the free surface, then the Orr-
Sommerfeld equations obtained resemble those which were
obtained by Blyth and Pozrikidis (2004).

RESULTS AND DISCUSSION

The Orr-Sommerfeld model is solved using the spectral
collocation method following Canuto et al., (2012), where
Chebyshev polynomials and Chebyshev collocation points
are used to discretize the generalized eigenvalue problem
given in Egs. (29)-(32). Solving this eigenvalue system
yields the complex phase velocity ¢ = ¢, + ic;, from which
the dimensionless growth rate is obtained as w; = ac;fora
wide range of wave numbers a. The accuracy of the
computed eigenvalues is verified by increasing the number
of collocation points, and any spurious eigenvalues are
removed through a filtering procedure.
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Figure 2: The growth rate of the dominant mode as a
function of Reynolds number for different values of Beta ()
when k = 0.2,0 = 4°,T = 0.01, and membrane mass
m,, = 0.01

Figure 2 shows the results for the growth rate as a function of
wave number for different values of Beta (). The results
reveal that for f§ = 0.01 (represented in Figure 5 by the
solid curves), The growth rate of the most unstable mode is
higher compared to the other values of f Considered (shown
by the dashed curves). It is also observed that when the wave
number reaches 0.025, the growth rate begins to decline for all
values of (. These observations are similar to that
observed by Khan et al., (2021) for slippery substrate.
Therefore, the system's instability increases with the slip
parameter. This illustrates the influence of § on the
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The MATLAB code used for the computation is validated by
comparing the growth-rate results for a film flow over a
rigid inclined surface without the membrane. The
numerical results show excellent agreement with
previously published studies. Subsequently, the influence
of membrane mass m,,, spring-backed membrane tension
T, slip parameter 8, and Reynolds number Reon flow
stability is examined. The analysis also includes the effects
of parameters associated with both the membrane and the
slippery substrate Results reveal thatintroducing a floating
membrane on the free surface generally enhances the
stability of an otherwise unstable flow. Increasing the
membrane mass m,, further stabilizes the flow, as
indicated by the decreasing growth rate (see dashed
curves in Fig. 2). The thin membrane responds to
perturbations and generates additional surface waves.
These membrane-induced

X107
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=20 |
— =30
8=45 | |

Growth Rate (col)

25

15
Wave number (k)
Figure 3: The growth rate of the dominant mode as a
function of wave number for different values of angle of
inclination (8) when Re = 1500, = 0.01, f =
0.001 and m,, = 0.01

0 0.5 1

system. Figure 3 shows the growth rate of the dominant mode
as a function of wave number for different inclination angles 6.
For 8 = 45°(solid curve), the maximum growth rate is the
smallest compared to the other angles (dashed curves). In all
cases, the growth rate increases with wave number, reaches a
peak, and then decreases. This demonstrates that the
inclination angle influences flow stability. These observations
are similar to that made by Sani et al., (2018). As fincreases,
the maximum growth rate of the most unstable mode also
increases, indicating reduced stability at higher inclination
angles.
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Figure 4: The growth rate of the dominant mode as a function
of Reynolds number for different values of membrane tension
when 8 = 4°,8 = 0.001, k = 0.2 and membrane mass

Figure 5: The growth rate of the dominant mode as a
function of wave number for different values of Reynolds
number (Re) when 6 = 4°,T = 0.01, § = 0.001,k =

(my) = 0.01.

Figure 4 presents the growth rate of the dominant mode as
afunction of Reynolds number (Re) for different membrane
tensions (T). Increasing Treduces the growth rate of the
unstable mode, thereby enhancing flow stability. For all
values of T, the growth rate increases with Re, eventually
crossing zero and becoming unstable. Since membrane
tension introduces a stress jump at the free surface, higher
tension suppresses instability. A related study was
conducted and similar result was obtained by Sani et al.,
(2020). Thus, the flow remains more stable at lower Re,
and increasing membrane tension enhances overall flow
stability. Figure 5 illustrates the effect of the Reynolds

0.2 and membrane mass m,, = 0.01

number (Re) on the growth rate of the dominant mode as a
function of wave number. When Re = 1500 (solid curve),
the maximum growth rate is highest compared to the lower
Re Values (dashed curves). For all cases, the growth rate
initially increases with wave number, reaches a peak, and
then declines. Its observed that a bifurcation occurs around
k = 0.2. This indicates that higher Re enhances flow
instability, while lower Re values promote greater flow
stability. A related study was conducted and similar result
was obtained by Sani et al., (2018) regarding the floating
membrane at the free surface.

> 1073

Growth rate - w;

Wave number - &
Figure 6: The growth rate of the dominant mode as a function of
wave number for different values of membrane tension

when Re = 1500, 8 = 4°,
m,, = 0.01.

B =0.001 and membrane mass
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Figure 6 shows the variation of the growth rate with respect
to wave number for different membrane tension (T). As
membrane tension (T) As membrane tension increases, it
introduces a larger stress jump at the free surface, thereby
influencing flow stability. The growth rate increases with
wave number, reaches a maximum, and then decreases. A
related study was conducted and similar result was
obtained by Sani et al., (2018) regarding the floating
membrane at the free surface. While the baseline flow
(without the membrane) exhibits a higher peak growth rate,
increasing membrane tension reduces the maximum
growth rate of the most unstable mode. Thus, greater
membrane tension enhances flow stability.

CONCLUSION

This study has observed the impact of a spring-blocked
membrane and a slippery inclined substrate on a perturbed
gravity-driven viscous fluid flow. Using the spectral
collocation method, the research has depicts that the spring-
bocked plays a vital role in controlling the instability of the
system. Increase in the membrane tension causes more
energy deflection at the free surface. Thus, the study found
that membrane tension generally contributes in enhancing
the fluid flow instabilities. Furthermore, the spring-bocked
membrane Tension (T) plays a crucial role in lowering
instability, demonstrating that the system’s instability can be
passively controlled by tuning these physical properties. The
research revealed that the velocity slip at the wall has a
disruptive effect at the onset of instability. These findings will
contribute to a deeper understanding of flow stability in
systems influenced by elastic surfaces and slippery
boundaries.
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