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ABSTRACT

In this paper we examine the epidemiological properties of Hepatitis
B virus (HBV) infection based on the equation of a fractional-order
mathematical model based on the Caputo derivative. The model
uses interventions such as treatment and vaccination as control
measures to examine the effect that they have on disease dynamics.
We define the presence and uniqueness of solutions in the
framework of the fractional order and test the stability of the endemic
equilibrium point based on the theory of Lyapunov functions. The
model is numerically solved with the help of the fractional Adams-
Bashforth-Moulton method to indicate changes in the model
parameters and their respective fractional orders into how each one
of the above parameters affects the progress of the disease. The use
of simulation shows that higher treatment and vaccination rates
decreases the prevalence of Hepatitis B and shows the high level of
flexibility and realism of the fractional-order models in contrast to
the classical integer order equations. In the paper, the importance of
fractional modeling in the representation of the effects of memory
and nonlocal interaction among the biological systems is
highlighted, which enhances the understanding and control of
infectious diseases. The model however assumes that the
population is homogeneous mixed, and hypothetical values of the
parameters thus restrains empirical validation. To make the model
more predictive and relevant in practical use in formulating effective
control measures on Hepatitis B, future studies need to include
spatial heterogeneity, stochastic effects.

INTRODUCTION

Hepatitis B virus (HBV) is known to cause liver cancer and

morbidity and a significant health problem of the
population that requires immediate consideration.

isidentified as a leading cause of the disease asitis known
to cause about 80 percent of the reported cases. HBV
infection is contracted via contaminated body fluids of
blood, semen and vaginal fluid Mahon (2005), Lavanchy
(2004). The virus is one of the major causes of liver

This work is licensed under the Creative Commons
Attribution 4.0 International License

Consequently, there is need to set effective preventive
measures to counter the effects of this disease on the
healthcare system and lessen the resulting health effects.
Determining and applying effective measures in order to
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forecast, manage, and eventually wipe out HBV infectionis
a serious issue to the societal health.

The mathematical models are necessary to study health-
related issues in the society as they assist in determining
and comprehending the main ecological and biological
determinants that govern disease transmission. The
transmission patterns of HBV have been studied through
hundreds of studies conducted by researchers interested
in the aspect of mathematical epidemiology.
Conventionally, the majority of the literature on HBV
dynamics has been based on integer-order systems of
differential equations to further scientific knowledge of
HBV spread (Khan et al. (2019), Mann. and Roberts (2011),
Chang (2007), Thornley et al. (2008), Liu et al. (2011), Liu et
al. (1987), Ren et al. (2012), Boukanjime and Fatini (2019).
Fractional differential equations are an extension of
traditional integer-order models to a more general model,
and allow a better description of complex dynamical
systems. In this paper we construct a mathematical model
of the behavior of the transmission of the Hepatitis B virus
at fractional-order level including the parameters of
treatment and vaccination campaigns. Due to the memory
effect caused by the nature of the fractional calculus, this
model offers a better representation of the process by
which Hepatitis B spreads, by simulating the various
situations of the interventions, we can find out the best
ways to minimize the prevalence of Hepatitis B.

With their capacity to capture the memory and hereditary
properties of biology, which implies that they consider
multiple addictive agents of medical conditions, such as
Hepatitis B, fractional derivatives possess a considerable
level of effectiveness in the modeling of several infectious
diseases. They allow a more detailed study of the evolution
of infection throughout the process, considering the
impact of historical experience of infection and treatment
regimens on the present process of transmission. This
improved vision helps to generate more realistic and
effective control strategies to solve the challenges of drug
resistance, re-infection as well as insufficient healthcare
resources.

Another interesting area has been the history of fractional
calculus and its notable advances, to which Atokolo et al.
(2022) introduce new information, as they enable the
modeling of the dynamic nature of complex systems. In
contrast to classical integer-order models that only local
characteristics of systems are considered, the fractional-
order models include memory-effects and therefore are
more likely to describe the global dynamics of systems.
Such models are more realistic as well as more
appropriate to depict real-life phenomena. They can
therefore offer a strong guideline towards a better
understanding the transmission process of infectious
diseases like Hepatitis B and strategies can be developed
to control their transmission.
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The derivatives of the Caputo and Riemann-Liouville with
singular kernels have been extensively applied in multiple
biological applications. Non-singular kernel derivatives,
including the Mittag-Leffler and the AtanganaBaleanu
operators, have also become very popular in recent years.
Atokolo et al. (2022) proposed one of the fractional-order
Sterile Insect Technique (SIT) models to contain the
propagation of the Zika virus infection. They used Laplace
Adomian Decomposition Method (LADM) to get an infinite
series solution to the model. Equally, Atokolo et al (2023)
used a mathematical model involving the use of a power-
law fractional derivative to develop a fractional order
model that would help in the control of the spread of Lassa
fever when vaccination and treatment are used. Yunus et
al. (2023) have created a model based on the Caputo
derivative and LADM to perform a study of preventing the
spread of COVID-19 in Nigeria (fractional-order model).
They found that, the recovery rate with the addition of
fractional-order derivatives was better than that of the
integer-order case especially with the addition of
vaccination and treatment. In their study on the
manifestations of helminth infection by soil, Omede et al.
(2024) made use of the Caputo derivative to construct a
fractional-order compartmental model. With the LADM,
they were able to get infinite series solutions to converge
to the exact values, and hence was more flexible than
classical integer-order models. The mathematical model
of prediction of Hepatitis C infection was put forward by
Amos et al. (2024) based on the Adams-Bashford-Moulton
method and the fractional-order mathematical model.
They found that effective treatment was highly effective in
reducing transmission of the disease and that the
fractional-order model displayed a high level of
adaptability as opposed to the classical models. James et
al. (2024) have used an Adams-Bash-forth-Moulton
method and implemented a fractional-order model to
analyses the transmission dynamics of HIV/AIDS. They
found that despite the fact that parameters like contact
rates were lowered to indicate better approaches to
treating the disease, the disease could be managed
effectively, and this indicated the versatility and strength of
the fractional-order models over conventional methods. In
the works of Abah et al. (2024), the Adams-Bashforth-
Moulton method was also used. They found that the
fractional-order model was effective in capturing the
reduction in disease transmission that was realized by the
lowering rates of contact as well as the effectiveness of the
treatment regime. This shows how fractional-order
methods can be able to capture the complex dynamics of
diseases as compared to the traditional integer-order
models. The model predictive control of the co-epidemic
dynamics of the HIV and COVID-19 is an ABC-fractional
order derivative model Ahmed et al. (2021). The study by
Smith et al. (2023) is a comprehensive review of the
interaction of Hepatitis C and COVID-19 co-infections. The
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authors were able to synthesize the recent research in
mathematical modeling and outline the most frequently
used methods and the fundamental findings as well as
gaps that should be explored in further research.

The fractional-order models have different strengths
because of their adaptability and the ability to track the
non-local effects. In comparison to classical derivatives,
fractional derivatives give a more accurate estimation of
real-life results and improved flexibility. They include non-
local interaction a feature that was not taken into
consideration by the traditional models and they can cover
memory effects, an ability that was not provided by integer-
order derivatives. The reasons behind this have motivated
the use of fractional differential equations by researchers
as a way to address challenging issues. As an illustration,
Das et al. (2020) was quoted discussing degenerate kernel
fuzzy Volterra integral equations using a combination of
Laplace transform and Adomian Decomposition Method
by Ullah et al. (2024). This is a new tactic that has received
focus on contributing to the hypothetical hypothesis of
fuzzy analytical dynamic equations.

The study by Ali et al. (2017) examined whether a certain
three-point boundary value problem has stable solutions.
They used well-known non-linear fractional methods to
analyze different kinds of stability, making a valuable
contribution to the topic. This paper is aimed at achieving
the following objectives: establish requirements so that
the proposed fractional-order model has existence and
uniqueness of solutions; use Lyapunov function to carry
out a stability analysis of the endemic equilibrium point;
calculate numerical solutions by making use of the
fractional Adams-Bashforth-Moulton method; and
perform numerical simulation in order to study the
behavior of the model.

Areview of literature concerning the mathematical models
in Hepatitis B and the transmission dynamics showed that
there are no studies that have explored the usage as well
as the source of the Adams-Bashford-Moulton technique
applied to the simulation and analysis of the transmission
and control of Hepatitis B together with the fractional
calculus.

Preliminary

In this section, we introduce the fundamental concepts
and initial findings of fractional calculus. Our analysis
incorporates both the right and left Caputo fractional
derivatives, building on the models established by Milici et
al. (2018) and Bonyah et al. (2020). We also explore the
practical applications of this mathematics, demonstrating
its use in solving real-world problems across diverse fields
like physics, engineering, and bio-mathematics.

Definition 1: Let f € A”(R) then the left and right Caputo
fractional derivative of the function f is given by

corf = (007 (&) )
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n _ 1
CD/f(t) = .
The same way
-(n-n) (=d\"
ol = (0" (3) ) f®
_1n n-n-1
DIf® =7 [fa=0"" fr(Wda
Definition 2: The generalized Mittag-Leffler function
E, g(x) for x € R is given by
E‘y,ﬁ(x) = Z?‘L:O m, y!lzb > 0
which can also be represented as

1
Eyp(0) = xEy ysy + 15

Eyy(x) = L[tY1E, e
Proposition 1.1

Letf EA(R)NC(R)andy ER,n—1<y <n,
therefore, the conditions given below holds:

1. EDIIF(E) = £(0)
2. EDIIF®) = F() - TiTEE f4 (L)

L ((E = ™71 () da (1)

n)

sY-v¥

TSVt

()

Model Formulation

The process of recruiting people into the susceptible group
is represented as A, hence B4, f,andf5 are the effective
rates at which the susceptible people are contacting the
acute infected people, chronic infected population and
population on the hepatitis B treatment respectively. The
progression rate between exposed human population and
acute infected humans with hepatitis B a,, the progression
rate between acute infected class with hepatitis B and
chronic infected class are indicated by a4 respectively, the
acute and chronic infected human population are treated
at the rate of 8, and 6. v, is the natural recovery rate of
chronic infected human population; y, is the recovery rate
of humans as a result of treatment of hepatitis B. The
natural death rate of human beings has been represented
asuy, . The rate of death induced by the disease on acute
infected humans with hepatitis B, chronic infected
humans with hepatitis B and humans under treatment of
hepatitis B are represented by §,,6,andd, . The rate of
susceptible humankind against hepatitis B vaccination is
referred to as w, and the rate of vaccine failure as w, and
the rate at which recovered humans become susceptible
again o;.

Model Assumptions

i. We assume that there is an imperfect vaccine in the

human population.

ii. It is our assumption that recovered human beings
from hepatitis B may be attacked by the disease after
recovering.

We assumed that the human population recover
naturally.
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Model Flow Chart
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Figure 1: Hepatitis B Model Flow Chart

Model Equations
g = Ah - ABS + O-ZRB + (l)zV - ((Ul + ,uh)S,

dstB = A5S — (az + un)Eg,

%4 = a,Ep — (ag + 0, + 8, + up)ly,

% = agly — (06 + 4 + 67 + pp)le, )
T8 — Gyl + Oglc — (> + 84 + up)Ty,

% = ;S — (w2 + upV,

L = ¥aTg + Vale — (02 + )R

Where 15 = W_

Table 1: Model Variables and Parameters Descriptions
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H I?RH

Variables Descriptions

S Humans who are susceptible to hepatitis B

Eg Humans population who are Exposed to hepatitis B

1y Acute infected human infected with hepatitis B

I Chronic infected human infected with hepatitis B

Tg Human population on hepatitis B treatment

vV Vaccinated human population against hepatitis B

Rp Recovered human population from hepatitis B

Parameters Descriptions

Ny Recruitment rate of Susceptible human population to hepatitis B

By The rate of contact between the susceptible humans and the human acutely infected humans

B Contact rate between the susceptible people and the chronically infected people

Bs Contact rate between the susceptible human beings and those who are on hepatitis B treated

a, The levels of progression of exposed humans to hepatitis B and the hepatitis B class to acute
infected class

g The rate of progression of the acute infected hepatitis B class to chronic infected hepatitis B class

6, Acute infected humans, rate of treatment

O¢ The rate of chronic infected human being treatment

ay The natural recovery rate of the population that is chronically infected with the human race

V2 The recoverability of human beings on account of the treatment of hepatitis B
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Va Natural recovery rate hepatitis B.

Un Death rate of human being which is natural

&, Mortality rate of acute Infected humans with hepatitis B

oy Death rate due to infection by hepatitis B of humans who had chronic infection

Oy The death rate of human beings on hepatitis B medication as a result of disease in humans
wq Vaccinated human population.

Wy Waning rate of vaccine

0, Rate at which recovered humans become susceptible again.

Fractional Hepatitis B Mathematical Model

In this section, the integer- order model of the hepatitis B
in Eg. (5) through incorporation of Caputo fractional
derivative operator. The flexibility of this adaptation is an
improvement over any possible sample of the
conventional model in Eq. (5), given that the fractional-
order formulation has a greater output capacity to a wide
array of dynamic outputs. The obtained fractional-order
hepatitis B model is proposed the following way:

CD'S = N, — 23S + 0,Rp + W,V — (w0, + 1),
CDZIEB = S — (ay + up)Ep,

CD;’IA = azEB - (a6 + 92 + 62 + ‘Llh)IA,

CD]Ic = agly — (Bs + va + 67 + up)lec,

CD;ITB = 0,1y + Olc — (y2 + 84 + up)T5,
CD'V = wS — (wy + up)V,

CDZIRB =v¥2Ts + Valc — (02 + pr)Rp.

Subject to the positive initial conditions

S(0) = Sp, E(0) = EB()’IA(O) = In0,1c(0) = I, T(0) =
Tpo, V(0) = Vo, Rp(0) = Rp. (7)

Positivity of Model Solution
We considered the non-negativity of the initial values

. An
lim SupN,(t) < —,
Hn

Secondly, iflimSupN,(t) < :\L—:,then our model feasible
domain is given by:
Q={(5.Ep,11,1c, Ty, V,Rg) € R:S + Ep + Ly +1; +
Ty +V + Ry < 22} 50 that

UB
Q=0 cR],
hence, Qis positively invariant.
In case of non-negative (Sy, Ego, Lao) Ico» Tso Vo, Reo) » the
solution of model (6) will be non-negative for t > 0. Using
(6), the first equation, we can get that:
CDS = A, — S + ;R + W,V — (w1 + wp)S,
CD!S + (Mg + w1 + up)S = Ay + 0,Rs + w,V,
But A, + 0,R5 + w,V = Othen,
CD!S + (Mg + wy + pp)S =0
By Laplace transform we get;
L[CD]S] + L[(A5 + wy + pp)S] = 0

n—1
ST+ (Ag + w1 + pp) SO
The inverse of the Laplace transforms gave;
S(E) = Eya (=g + @1 + p)t")S,,

S(s) =

37

Now that the word on the right of the Eq. We find that, in the
case where (9) is positive, we can say that (§ > 0,Ez =
0,1, 20,1 =0,T3 =0,V = 0,Rz = 0).

we are saying that are positives, and therefore, the solution
will stay in R7 for all t > 0 with positive initial situation.

Boundedness of Fractional Model Solution
The total population of individuals from our model is given
by;
Ny(&) =SO) +Eg(®) + L&) +I.(t) + Tg(t) +V(t) +
Ry ().
So from our fractional model (6), we now obtain;
CD/N(t) < Ay — upNy(t) (10)
Taking the Laplace transformation of (10) we now have;
L[CDIN(®)] < LA, — unNu(D)],,

sn-1 An
N, (s) SmNh(O) +m, (11)
Taking the inverse Laplace transform of Eq. (11) we have:
Ny (t) < Ep 1 (—ppt)NR(0) + ApEp o1 (—pnt™),  (12)
Att — oo,, the limit of Eq. (12) becomes

limSupN,, (t) A

imSup =—

toeo " Hp

This means that, if Ny, < % then N, < % which implies
h h

that, N, (t) is enclosed or bounded.
We now conclude that, this region Q = Qp, is well posed
and similarly feasible epidemiologically.

Existence and Uniqueness of our Model Solution

Let the real non-negative be H, we Q = [0, H[]]

The set of all continuous function that is defined on M is
represented by N2, (Q) with norm as;

X1l = Sup{IX (), t € Q}. (13)
Model (6) with initial conditions given in (8) may be taken
into consideration and can be referred to as an initial value
problem (IVP) as seenin (13).

D] (t) =Z(t,X(£)),0 <t <H < ,

X(0) = X,.

Where

Y () = (S, Eg(6), L4 (8) , 1 (t), Te (£) , V (£), R (1))
represents the groups and Z be a continuous function
defined as follows;



Ojonimi et al.,

(/\n — ClatBeletBsTo) § 1 g, Ry + wV — (w3 + Mn)S\
h

(B1la+PB2lc+PB3Ts)
A ;,hc ES — (ap + pp)Ep

= | azEp — (a6 + 02 + 62 + pp)ly (14)
agls — (06 +va + 87 + ppdlc
0214 + 86lc — (y2 + 64 + 1p)Tp
WS — (wp + up)V
Y2Tg + Valc — (0, + p)Rp
Using proposition (2.1), we have that,

S(t) =Sy + 17 [/\h — BalatbalctBsTE) ¢ 4 5 ot o,V —

Np
(@, + S,

(B1la+Balc+BsTR)
Eg(t) = Ego + 1] [WS —(a; + ,uh)EB]' (15)

Li(8) = Lo + I/ [ayEp — (a6 + 6, + 6, + up)1,],
Ic(®) = Ico + I [asly — (B + Va4 + 87 + up)lc],
T(t) = Tgo + 1] [0214 + O6lc — (2 + 84 + ) T),
V(t) = Vo + I [0S = (0, + pp)V],

R(t) = Ry + I]'[y>Ts + valc — (03 + )R]

We have the Picard iteration of (15) as follows;

S(®) = So + 75 o (¢ = D" Z (2,5, (D)dA, (16)

Proof:
1Z, (£, S) — Z, (¢, S
Ay — (B1la+PB21c+B3TB)

N S+02RB +(A)2V_ ((Ul +,Lth)5
h

N, — BuarBlctBsTB) 6 o R4,V — (0p + 1)Sy ||

Np
(Bils + B2Ic + PB5Tp)
h

< —((Bi + B>+ B3)) IS = SOI + llza(S = S

S+ 02Rp + W,V — (w1 + pp)S(S — S1) + u(S — S1)

JOSRAR 2(5) SEP-OCT 2025 33-48

1t B
Ea(®) = Eao + s | (€= DP123 (2 Bogro (@) a2,

14(©) = Lo + 7o [y (6 = 07725 (A Iy @) ) dA,

1 t —
6(®) = Io + 7 [y (¢ = D712, (2 ey @) d2,

1 t
To(®) = Tao + 7 | (€= 272 (4 Ty (@) d,
V() = Vo + s [y (6 = D724 (2,Veuy (D)) d,

Ry(t) = Ry + 7 [ (¢ = D727 (4, Riuony () ) dA.

We now transformed the initial value problem of Eq. (13) to

obtain;

X®) =X+ 5[ -D" 2 x@W)dr (17)

Lemma 1, The Lipchitz condition described from Eq. (14) is

satisfied by vector

Z(t, X(A))on aset [0, H[]%] with the Lipchitz constant given

as:

W=

max ((ﬁ: + P+ B+ w + ﬂh)' (az + pp), (ag + 6, + 6, + Ilh),>
(86 +va + 87 + un), (V2 + 84 + ), (w2 + pn), (02 + )

)

112468) = 22 SON < (81 + B3 + B3) + w2 + ) )16 = SO + lln(S = S

Similarly we obtained the following;

|Z5(t, Eg) — Z,(t, Eg )l < (a7 + pp)ll(Ep — Egy)l,

1Z5(t, 1) — Z3(t, L)l < (a6 + 62 + 85 + wp | (Ly — L),
1Z4(t, 1c) = Z4(@t e < (B + va + 87 + up)llUe — I
1Zs(t, Tg) — Zs(t, Tp)Il < (v2 + 64 + up)[(Ts — Te)l,
1Zs(t, V) = Zs(t, V1 DIl < (wz + upd IV = VD),

1Z7(t, Rg) — Z7(t, Rg)l < (02 + pup)ll(Rp — Rp1)ll-
Where we obtained

||Z1(t'X1(t)) - Z(t’Xz(t))” < plIX; — Xl

a)=max<

(Bi+ B2+ Bs + w1+ iap), (@ + p), (a6 + 6, + 8, + uh),)_ (19)
(06 +va+ 67+ ptn), (V2 + 84 + pn), (w3 + pn), (02 + i)

Lemma 2. The first value problem (6), (7) in Eq. It exists and is unique.

X(t) € A3(f).

Using Picard-Lindelof and fixed point theory, we estimate the solution of

X(@) =S(X®),
where S is defined as the Picard operator articulated as ;

S:AS(f,R7) > AS(f,R7)
Therefore

S(x@®) =X(0) +
which becomes:

IS(:@®) = s(X )]

1

) Jy (& = D722, (4, X (D)) dA,

(20)
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1 [t o _
o) fo E-D"Z(AL X)) - Zz(4, Xz(/l))d/l],
1 [t o _
< o) | fo E=D"Z(AL X, D) - Z(4, X, (A))d/l],
< 2 ft(t—/l)"_lllX —x ||dz]
~ ) [Jo R |

w

Is(x,(® — sx,@®)|| < DS

When,ﬁS < 1.thenthe Picard operator gives a negation, so Eq. (6), (7) solution is unique.

The Basic Reproduction Number (R,) and Model Equilibrium Points:
The disease-free equilibrium points of the model (5) is expressed as:

(5%, E3, 13,18, TS, V, RY) = (22t 0,0,0,0,—12n ) (22)

pn(wz+w1+pp) pr(wz+w+up)’
Basic Reproduction number:
In infectious disease modeling, the most critical number is the Basic Reproduction Number denoted by R{)’, In simple
terms, it measures the disease's potential to spread by calculating how many people one infected person will likely pass
theillness to in a fully vulnerable population.
In computing the basic reproduction humber, we apply the next generation method.

RB = (wa+pp)az (434411438362 +A406P2+a6P366)
5o . (29)
A142A3A4 (w2 +w1+pp)
A =(a,+ =
Where ™ (e 'uh)’Az = (ag+0,+6, + .Uh):A3 (G +ra+, +'uh)’A4 = (y2 + 64 + pp).

Endemic Equilibrium Point

We also studied what happens if Hepatitis B becomes a permanent, ongoing presence in the community. In this scenario,
the infection never completely disappears, but instead settles into a stable, long-term pattern where the disease
continues to circulate at a constant level.

(S"#0,Ep #0,I; #0,Ic # 0,T # 0,V # 0,R; # 0).

To understand what happens when Hepatitis B becomes a long-term presence, we reworked the model's equations to
focus on how the infection spreads. Starting with our discrete Hepatitis B model (Equation 6), we found that the steady
state where the disease persists at a constant level is defined by the following values:

- NnAgAzA3A4A5A;
((A2A3A7(AB + A)As — V20,0,Apa,) Ay — 03 Apay06(Asy, + Vzge))Ae - A2A3A4A5A7‘U1w2’
E* — NnAgA3ALAsA7 B
5 (((A2A3A7A5—a2y20292)A4—azazaG(A5y4+y296))13+A1A2A3A4A5A7)A6—A2A3A4A5A7w1wz'
*_ Ay A A A4 Agary
A H
(((A2A3A7A5 —,7,0,0, )A4 — 0,0 (A574 +7,0; )) Ay + A4, A A, A4, )Ae — A4, A, A A, 0,0,
I* _ ApAgAsA7;Apasag
¢ (((A2A3A4A7—012a6}’402)145—azyzlfz(A492 +06596))}LB+A1A2A3A4A5A7)A6—A2A3A4A5A7(U1(U2’
_ A, AgA, Az, (4,6, + a6;)
B — ’
(((A2A3A7A5 —0,7,0,0, )A4 — 0,0 (14574 +7,0 ))ﬂ’B + A4, 4,4, 44, ) Ay — A, 4,4, A; 4, 0,0,
A NpAzA3A4AsA70,
(A7A2((/13 + A;)Ag — wle)A3A5 - ]/20292/131460!2)144 — 0,ApAg a6 (Asy, + Vzee),
R = AnAB(Asy202+a6(Asya+y206))azAe (24)
5=

(((A2A3A5A7—“2)/20292)A4—02“2a6(A5Y4+Y296))/13+A1A2A3A4A5A7)A6—A2A3A4A5A7w1wzl
Substituting into the force of infection

_ (Byly + Polc + B3T5)

= N, :

Ap

We obtained;
Q15 + @, = 0. (25)
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Where
Q1 ="M <+A4A6a2]/292 + AsAsAr 06 + A5A6a2“6)/4>,
+AgA; 0,060 + Agy0Y, 0,
Q2 = M(AsAzA3A4AsA; + (AA3ALAs Az 0,) (1 = RE)).
This implies that the model has a stable endemic equilibrium point.

Global Stability of Hepatitis B Disease
Theorem 1: Prove that the system (5) is globally asymptotically stable at Disease free equilibrium, moreover, at R, < 1.

Proof:
We construct the Lyapunov function to prove the results,
L =u (S —Sp) +uy(Eg — Ego) + us(ly — Ino) + usllc — Igo) + us(Tp — Tgo) + us(V — Vo) + u7(Rg — Rpo)- (26)
Where uq, u,, U3, Uy, Us, Ug, U;  are positive constants.
Taking the derivative of a Lyapunov function, we obtained;
L =Apuy + 0SEg(up —ug) + (1 — w)(ug —uy) + ax(uz — up) + w1 (ug — uy)
+0;(uy — uz) + w1 (Us — uy) + az(ue — us) + a3 (uy — Us) — PpUsS — PrULEp
—UnUzly — ppuglc — ppusV — ppueTe — ppusRp.
Choosing the positive constants u; = u, = Uz = Uy, =Us =Ug =u; =1
AndN, > %then, we obtained;
h
L =Ap = ppNp
L = —[paNp = Ap] < 0. (27)
Hence the system (5) is globally asymptotically stable at the Disease-free equilibrium and at Rg <1

Fractional Order Model Numerical Results

The fractional-order Hepatitis B model was numerically solved using the generalized fractional Adams—-Bashforth—
Moulton method as described by Bonyah et al.(2020). Table 1 presents the parameter values used in the model, while
Table 2 displays the different fractional-order values applied and simulated in the analysis.

Implementation of Fractional Adams-Bashforth-Moulton Method

The technique described by Baskonus. and Bulut (2015), and Ren et al.(2012) was employed in the present study. The
approximate solution for the fractional-order Hepatitis B modelin Equation (6) was developed using the fractional Adams-—
Bashforth—-Moulton method. The fractional form of Equation (6) is presented as follows:

‘DJH() = Q(t,q(1),0< t < w, (28)
H™(0) = Hén),n =1,0,...,q,qg =[a].

The H = (S, E5, I3, 16, Ts, V',Ry ) € R7and V(t, q(t))is a continuous function of a real value. Equation (27) can hence be
expressed in terms of the idea of fractional integral as follows:

t"
H(t) = Tyt Hy = + 75 L -y "Rk, m (k))dk (29)
Using the method descrlbed in [43], we let the step size g = %,N € N with a grid that is uniform on [0, w]. Where t, =

cr,c =0,1,1,... N.Thus, and fractional order model of Hepatitis B model could be well approximated as (6) creates:

7 S”
Sk+1(t)=S0+ £ {Ah_<ﬂ113+ﬂzlg+ﬂ3Tz;)Nn+O—2R2+w2Vn_(a)1+ﬂh)Sn}+
h

F(r]+2)
S
g )Zdy,kH{ i —(,BIIAy + Bl +ﬂ3T3‘,)N—y+o-2RBy +aV, (o +,uh)S)},

(77+2

Epe+1)(t) = Epo +

7
hy
I'(n+2) {(ﬂlIA + B¢ + ﬁsTg) —(a, + llh)Eg} —— 3 ody,k+1 {(BlIAy + Bolcy + ﬂ3TBy)
(ap + .uh)EBy}r (30)
Ligern(@® =1 + Zy —ody, k + Ha,Epy — (a6 + 05 + 8, + wp)lay ),
Iegean@) =1 + YK _ody k + Yaely — (06 + v4 + 87 + un)lcy ),

I'(‘r]+2)

——a,Ef — (ag + 6, + 6, + up) Iy +

r(n +2) r(n+2)

———{agly — (0 +vs + 8, + up)I} +

r(n +2) r(n +2)
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Tpk+1)(t) = Tpo + r( +2) —=—{0,1} + 0617 — (y2 + 54 +u TR} + I'(n+2) Zy =0dy k + 1{921Ay + 06lcy — (2 + 0, + Hh)TBy},

Vier1 (0) = Vo + F(n+2) — 18" = (wp + pup)V"} + F(n+2) Zy Ody,k + Hw;Sy = (w2 + 1)V},
Rp+1)(t) = o + o +2) ———{y,T§ + 417 — (03 + pp)RE} + —— I'(n+2) Zy 0dy k + 1{V2TBy + Valcy — (0 + Iih)RBy}-
Where
1
Si+1(t) = Sp + ﬁﬁ:ofy k+1 {/\h (ﬁ1IAy + Balcy + ﬁgTBy) + 02Rpy + Wy, — (wy + ,uh)Sy}:
Epesny(t) = Epo + I'(n) Zy ofyk+1 {(ﬁlIAy + Balcy + ﬁSTBy)_ — (ay + .uh)EBy} (31)

Ligesny(®) = Iy + T,I)Zy:ofy,kﬂ {azEBy —(ag+ 6, +6, + .uh)IAy}'
Iegrn@) =1 + %7])2;5:0 fy kst {aGIAy — (O tys+6,+ :uh)ICy}l
Tl;l(k+1)(t) = TBO %Z;‘; ofyk+1 {921Ay +06lcy — (2 + 04 + /'lh)TBy}l
Vi (0) = r(n) Zy o fyrir{wiSy — (@y + 1)V},

B(k+1)(t) = Rpo + /'(71) Zy ofy k+1 {VZTBy + Valcy — (o, + .uh)RBy}-
From (29) and (30) obtained;

dyk1=K"™' —(k—=m)k+n)",y =
k—y+2)" 1+ (k—m"—2(k—y+D"L1<y<k

n
and fy 41 = g;[(k —y+ 1"k —y)",0 <y <k

Importance of using the Fractional Adam-Bashforth-Moulton Method in Obtaining the Numerical Solutions of the

Model

i. The fractional Adams-Bashforth-Moulton scheme strictly just needs one extra function evaluation per step and has

high-order of accuracy.

ii. This approach has the advantage of automatic error control, and can often be applied to ODE solvers to accomplish

integration.

iii. This means that it has wide applicability in other fields such as engineering, chemistry and medicine and as such, it

is a useful method in numerically solving partial and fractional-order differential equations.

Table 2: Parameter Values used for Numerical Simulation

Parameters Values Sources
Ny 16540000 CDC (2023)
B1 1x107° Boukanjime and Fatini (2019)
B 0.8328 Assumed
Bs 0.8214 Assumed
a, 0.058426 Fitted
ay 0.143597 Fitted
Y2 0.278267 Fitted
Va 0.5 Fitted
0, 0.032 Boukanjime and Fatini (2019)
o, 0.05 Fitted
Un 0.07 CDC (2023)
8, 0.3 Assumed
6y 0.0200 Assumed
04 0.02 Assumed
wq 0.5521 Assumed
[ 0.1 Granas and Dugundji (2003)
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Table 3: Number of Cases of Potential Hepatitis B Virus Infections K and the Proportion of K in the
Compartment of Diseased Individuals from China

YEAR CASES

2004 368,566
2005 432,541
2006 454,624
2007 462,366
2008 465,379
2009 466,907
2010 468,028
2011 469,102
2012 470,246
2013 471,495
2014 472,866
2015 474,361
2016 475,983
2017 477,732
2018 479,609
2019 481,614
2020 483,749
2021 486,013

Numerical Simulation
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(3a) shows simulation of the impact of vaccination rate
(w;)among people with Hepatitis B infection on the
susceptible human population. It can be observed that
higher vaccination rate (w;)leads to the reduction of
susceptible human to the two diseases. (3b) shows
simulation of the impact of vaccination rate (w;)among
people with Hepatitis B infection on the exposed human
population. It can be observed that higher vaccination rate
(w;)leads to the reduction of exposed human to the two
diseases. (3c) reveals the simulation of influence of
vaccination rate (w,) of humans that are vulnerable to
Hepatitis B on acute population people that are affected by
Hepatitis B. This demonstrates that the increasing of
vaccination rate (w,) contributed towards the reduction of
the number of acute infected human of Hepatitis B. (3d)
reveals the simulation of influence of vaccination rate (w,)
of humans that are vulnerable to Hepatitis B on chronic
infected population with Hepatitis B. This demonstrates
that the increasing of vaccination rate (w;) contributed
towards the reduction of the number of chronic infected
human of Hepatitis B. (3e) shows the simulation of the
impact of the vaccination rate (w;)of infected individuals
with the Hepatitis B on the human population in regard to
the Hepatitis B treatment. It has been observed that the
more the vaccination rate (w,)is enhanced, the lower the
number of human beings of Hepatitis B disease who are on
treatment as depicted by (3f). the effect of the vaccination
rate (w,)of individuals susceptible to Hepatitis B on
vaccinated human population against Hepatitis B is
simulated. This demonstrates that the more the
vaccination rate(w;), the more the humans that are
vaccinated against the Hepatitis B disease. (3g) illustrates
the model of the impact of vaccination rate (w;)that is
placed on individuals susceptible to Hepatitis B on
Recovered human population that is infected by hepatitis
B. This indicates that the higher the level of vaccination
activities (w;)the lesser the human population is found to
be recovered from Hepatitis B disease. (3h). displays the
simulation of the influence of the rate at which humans are
vaccinated against Hepatitis B (w,) on the total new cases
of Hepatitis B. This indicates that the high level of
vaccination (w,) contributes to the rise of the new cases
of the Hepatitis B disease. In (3i)., the influence of the rate
of treatment (0,) of Hepatitis B infected people on the total
new cases of Hepatitis B is simulated. This indicates that it
is important to raise the rate of treatment (6,) which will
promote the decline of the incident cases of Hepatitis B
disease. (3j). demonstrates how the rate of the spread of
Hepatitis B (6,) affects the treatability of acute infected
humans with Hepatitis B. This indicates that higher rate of
treatment (6,)would contribute to the reduction in the
acute population infected with Hepatitis B by human
beings.

(3k) describes the simulation of effect of the treatment rate
(6,) of those infected with Hepatitis B on chronically
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infected human with Hepatitis B. This indicates that the
rise in treatment rate (6,) will result in the reduction in the
number of people who have been chronically infected with
Hepatitis B. (3l) The effect of the treatment rate (6,)of
people infected with Hepatitis B on the people on the
Hepatitis B treatment can be seen in the figure. This
indicates that rise in treatment (6,) gives increases the
human population on Hepatitis B treatment. (4a) shows
the contour plot of §sandw;onRY . In the graph under
discussion, the numerical data curve starts at the value of
0.6 which is the maximum value of the data to be and that
the correlation between the variations of 8gandw,in the
measurement of the transmission rate would be less than
one (1). Higher values of 8 andw,indicate that the
outbreak of Hepatitis B among the population is
decreasing. (4b) indicated that when the values of RY reach
a minimum of less than one (1), there is an indication of
reduction of the basic reproduction number.
fcandw,should be reduced to ensure that the effects of
Hepatitis B on the population are reduced. The lack of
appropriate measures undertaken including will enhance
the current prevalence of Hepatitis B.

CONCLUSION

Inthisresearch, we set out to better understand the spread
of Hepatitis B using a more nuanced type of mathematics
known as fractional calculus. Think of it as an upgrade
from a simple on/off switch to a dimmer switch it allows for
more gradual and realistic transitions, which is crucial for
modeling complex processes like disease transmission.
By building a fractional-order model, we were able to
simulate how Hepatitis B progresses through a community
and how key interventions, like vaccination and treatment,
can change its course. Our simulations revealed a clear
and hopeful finding: when we increase vaccination efforts
among healthy individuals and improve treatment access
for those who are infected, the overall burden of the
disease drops significantly. The real power of this
approachisits ability to capture the "memory" of biological
systems meaning past conditions can influence future
outcomes in a way traditional models often miss. This
makes our model not just a theoretical exercise, but a
more flexible and realistic tool that could one day help
guide public health strategies. Of course, our study is a
starting point, not a final answer. To keep things
manageable, we made some simplifying assumptions for
instance, we modeled the population as a single, uniform
group, without accounting for geographical differences or
the random chance events that affect real-world
outbreaks. We also used real case data. To build on this
work, the next steps are exciting. Future researchers
could: Add a sense of place by incorporating geography to
see how the disease moves across different regions, By
tackling these challenges, we can transform this promising
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theoretical framework into a powerful, practical tool for
the ongoing battle against Hepatitis B.
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