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A B S T R A C T  
In this paper we examine the epidemiological properties of Hepatitis 
B virus (HBV) infection based on the equation of a fractional-order 
mathematical model based on the Caputo derivative. The model 
uses interventions such as treatment and vaccination as control 
measures to examine the effect that they have on disease dynamics. 
We define the presence and uniqueness of solutions in the 
framework of the fractional order and test the stability of the endemic 
equilibrium point based on the theory of Lyapunov functions. The 
model is numerically solved with the help of the fractional Adams-
Bashforth-Moulton method to indicate changes in the model 
parameters and their respective fractional orders into how each one 
of the above parameters affects the progress of the disease. The use 
of simulation shows that higher treatment and vaccination rates 
decreases the prevalence of Hepatitis B and shows the high level of 
flexibility and realism of the fractional-order models in contrast to 
the classical integer order equations. In the paper, the importance of 
fractional modeling in the representation of the effects of memory 
and nonlocal interaction among the biological systems is 
highlighted, which enhances the understanding and control of 
infectious diseases. The model however assumes that the 
population is homogeneous mixed, and hypothetical values of the 
parameters thus restrains empirical validation. To make the model 
more predictive and relevant in practical use in formulating effective 
control measures on Hepatitis B, future studies need to include 
spatial heterogeneity, stochastic effects. 

 
INTRODUCTION 
Hepatitis B virus (HBV) is known to cause liver cancer and 
is identified as a leading cause of the disease as it is known 
to cause about 80 percent of the reported cases. HBV 
infection is contracted via contaminated body fluids of 
blood, semen and vaginal fluid Mahon (2005), Lavanchy 
(2004). The virus is one of the major causes of liver 

morbidity and a significant health problem of the 
population that requires immediate consideration. 
Consequently, there is need to set effective preventive 
measures to counter the effects of this disease on the 
healthcare system and lessen the resulting health effects. 
Determining and applying effective measures in order to 
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forecast, manage, and eventually wipe out HBV infection is 
a serious issue to the societal health. 
The mathematical models are necessary to study health-
related issues in the society as they assist in determining 
and comprehending the main ecological and biological 
determinants that govern disease transmission. The 
transmission patterns of HBV have been studied through 
hundreds of studies conducted by researchers interested 
in the aspect of mathematical epidemiology. 
Conventionally, the majority of the literature on HBV 
dynamics has been based on integer-order systems of 
differential equations to further scientific knowledge of 
HBV spread (Khan et al. (2019), Mann. and Roberts (2011), 
Chang (2007), Thornley et al. (2008), Liu et al. (2011), Liu et 
al. (1987), Ren et al. (2012), Boukanjime and Fatini (2019). 
Fractional differential equations are an extension of 
traditional integer-order models to a more general model, 
and allow a better description of complex dynamical 
systems. In this paper we construct a mathematical model 
of the behavior of the transmission of the Hepatitis B virus 
at fractional-order level including the parameters of 
treatment and vaccination campaigns. Due to the memory 
effect caused by the nature of the fractional calculus, this 
model offers a better representation of the process by 
which Hepatitis B spreads, by simulating the various 
situations of the interventions, we can find out the best 
ways to minimize the prevalence of Hepatitis B. 
With their capacity to capture the memory and hereditary 
properties of biology, which implies that they consider 
multiple addictive agents of medical conditions, such as 
Hepatitis B, fractional derivatives possess a considerable 
level of effectiveness in the modeling of several infectious 
diseases. They allow a more detailed study of the evolution 
of infection throughout the process, considering the 
impact of historical experience of infection and treatment 
regimens on the present process of transmission. This 
improved vision helps to generate more realistic and 
effective control strategies to solve the challenges of drug 
resistance, re-infection as well as insufficient healthcare 
resources. 
Another interesting area has been the history of fractional 
calculus and its notable advances, to which Atokolo et al. 
(2022) introduce new information, as they enable the 
modeling of the dynamic nature of complex systems. In 
contrast to classical integer-order models that only local 
characteristics of systems are considered, the fractional-
order models include memory-effects and therefore are 
more likely to describe the global dynamics of systems. 
Such models are more realistic as well as more 
appropriate to depict real-life phenomena. They can 
therefore offer a strong guideline towards a better 
understanding the transmission process of infectious 
diseases like Hepatitis B and strategies can be developed 
to control their transmission. 

The derivatives of the Caputo and Riemann-Liouville with 
singular kernels have been extensively applied in multiple 
biological applications. Non-singular kernel derivatives, 
including the Mittag-Leffler and the AtanganaBaleanu 
operators, have also become very popular in recent years. 
Atokolo et al. (2022) proposed one of the fractional-order 
Sterile Insect Technique (SIT) models to contain the 
propagation of the Zika virus infection. They used Laplace 
Adomian Decomposition Method (LADM) to get an infinite 
series solution to the model. Equally, Atokolo et al (2023) 
used a mathematical model involving the use of a power-
law fractional derivative to develop a fractional order 
model that would help in the control of the spread of Lassa 
fever when vaccination and treatment are used. Yunus et 
al. (2023) have created a model based on the Caputo 
derivative and LADM to perform a study of preventing the 
spread of COVID-19 in Nigeria (fractional-order model). 
They found that, the recovery rate with the addition of 
fractional-order derivatives was better than that of the 
integer-order case especially with the addition of 
vaccination and treatment. In their study on the 
manifestations of helminth infection by soil, Omede et al. 
(2024) made use of the Caputo derivative to construct a 
fractional-order compartmental model. With the LADM, 
they were able to get infinite series solutions to converge 
to the exact values, and hence was more flexible than 
classical integer-order models. The mathematical model 
of prediction of Hepatitis C infection was put forward by 
Amos et al. (2024) based on the Adams-Bashford-Moulton 
method and the fractional-order mathematical model. 
They found that effective treatment was highly effective in 
reducing transmission of the disease and that the 
fractional-order model displayed a high level of 
adaptability as opposed to the classical models. James et 
al. (2024) have used an Adams-Bash-forth-Moulton 
method and implemented a fractional-order model to 
analyses the transmission dynamics of HIV/AIDS. They 
found that despite the fact that parameters like contact 
rates were lowered to indicate better approaches to 
treating the disease, the disease could be managed 
effectively, and this indicated the versatility and strength of 
the fractional-order models over conventional methods. In 
the works of Abah et al. (2024), the Adams-Bashforth-
Moulton method was also used. They found that the 
fractional-order model was effective in capturing the 
reduction in disease transmission that was realized by the 
lowering rates of contact as well as the effectiveness of the 
treatment regime. This shows how fractional-order 
methods can be able to capture the complex dynamics of 
diseases as compared to the traditional integer-order 
models. The model predictive control of the co-epidemic 
dynamics of the HIV and COVID-19 is an ABC-fractional 
order derivative model Ahmed et al. (2021). The study by 
Smith et al. (2023) is a comprehensive review of the 
interaction of Hepatitis C and COVID-19 co-infections. The 
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authors were able to synthesize the recent research in 
mathematical modeling and outline the most frequently 
used methods and the fundamental findings as well as 
gaps that should be explored in further research. 
The fractional-order models have different strengths 
because of their adaptability and the ability to track the 
non-local effects. In comparison to classical derivatives, 
fractional derivatives give a more accurate estimation of 
real-life results and improved flexibility. They include non-
local interaction a feature that was not taken into 
consideration by the traditional models and they can cover 
memory effects, an ability that was not provided by integer-
order derivatives. The reasons behind this have motivated 
the use of fractional differential equations by researchers 
as a way to address challenging issues. As an illustration, 
Das et al. (2020) was quoted discussing degenerate kernel 
fuzzy Volterra integral equations using a combination of 
Laplace transform and Adomian Decomposition Method 
by Ullah et al. (2024). This is a new tactic that has received 
focus on contributing to the hypothetical hypothesis of 
fuzzy analytical dynamic equations. 
The study by Ali et al. (2017) examined whether a certain 
three-point boundary value problem has stable solutions. 
They used well-known non-linear fractional methods to 
analyze different kinds of stability, making a valuable 
contribution to the topic. This paper is aimed at achieving 
the following objectives: establish requirements so that 
the proposed fractional-order model has existence and 
uniqueness of solutions; use Lyapunov function to carry 
out a stability analysis of the endemic equilibrium point; 
calculate numerical solutions by making use of the 
fractional Adams-Bashforth-Moulton method; and 
perform numerical simulation in order to study the 
behavior of the model. 
A review of literature concerning the mathematical models 
in Hepatitis B and the transmission dynamics showed that 
there are no studies that have explored the usage as well 
as the source of the Adams-Bashford-Moulton technique 
applied to the simulation and analysis of the transmission 
and control of Hepatitis B together with the fractional 
calculus. 
 
Preliminary 
In this section, we introduce the fundamental concepts 
and initial findings of fractional calculus. Our analysis 
incorporates both the right and left Caputo fractional 
derivatives, building on the models established by Milici et 
al. (2018) and Bonyah et al. (2020). We also explore the 
practical applications of this mathematics, demonstrating 
its use in solving real-world problems across diverse fields 
like physics, engineering, and bio-mathematics. 
Definition 1: Let 𝑓 ∈ Λ∞(𝑅) then the left and right Caputo 
fractional derivative of the function ƒ is given by  

𝐶𝐷𝑡
𝜂
𝑓(𝑡) = (𝑡0𝐷𝑡

−(𝑛−𝜂)
(
𝑑

𝑑𝑡
)
𝑛

𝑓(𝑡))  

𝐶𝐷𝑡
𝜂
𝑓(𝑡) =

1

Γ(𝑛−𝜂)
∫ ((𝑡 − 𝜆)𝑛−𝜂−1𝑓𝑛(𝜆))
𝑡

0
𝑑𝜆  (1) 

The same way  

𝐶𝐷𝑡
𝜂
𝑓(𝑡) = (𝐷𝑇

−(𝑛−𝜂)
(
−𝑑

𝑑𝑡
)
𝑛

) 𝑓(𝑡)  

𝐷𝐶 𝑇
𝜂
𝑓(𝑡) =

(−1)𝑛

Γ(𝑛−𝜂)
∫ (𝜆 − 𝑡)
𝑇

𝑡

𝑛−𝜂−1
𝑓𝑛(𝜆)𝑑𝜆  

Definition 2: The generalized Mittag-Leffler function 
𝐸𝛾,𝛽(𝑥) for 𝑥 ∈ 𝑅 is given by  

𝐸𝛾,𝛽(𝑥) = ∑
𝑥𝑛

Γ(𝛾𝑛+𝜓)
∞
𝑛=0 , 𝛾, 𝜓 > 0    (2) 

which can also be represented as  
𝐸𝛾,𝜓(𝑥) = 𝑥𝐸𝛾,𝛾+𝜓(𝑥) +

1

Γ(𝜓)
    (3) 

𝐸𝛾,𝜓(𝑥) = 𝐿[𝑡
𝜓−1𝐸𝛾,𝜓(±𝜔𝑡𝜂)] =

𝑆𝛾−𝜓

𝑆𝛾±𝜔
 .   (4) 

Proposition 1.1 
Let 𝑓 ∈ Λ∞(𝑅) ∩ 𝐶(𝑅)and 𝛾 ∈ 𝑅, 𝑛 − 1 < 𝛾 < 𝑛, 
therefore, the conditions given below holds: 
1. 𝑡0

𝐶 𝐷𝑡
𝜂
𝐼𝜂𝑓(𝑡) = 𝑓(𝑡) 

2. 𝑡0
𝐶 𝐷𝑡

𝜂
𝐼𝜂𝑓(𝑡) = 𝑓(𝑡) − ∑

𝑡𝑘

𝐾!

𝑛−𝑘
𝑘−0 𝑓𝑘(𝑡0)   (5) 

 
Model Formulation 
The process of recruiting people into the susceptible group 
is represented as Λℎ, hence 𝛽1, 𝛽2𝑎𝑛𝑑𝛽3 are the effective 
rates at which the susceptible people are contacting the 
acute infected people, chronic infected population and 
population on the hepatitis B treatment respectively. The 
progression rate between exposed human population and 
acute infected humans with hepatitis B 𝛼2, the progression 
rate between acute infected class with hepatitis B and 
chronic infected class are indicated by 𝛼6 respectively, the 
acute and chronic infected human population are treated 
at the rate of 𝜃2 and 𝜃6. 𝛾4 is the natural recovery rate of 
chronic infected human population; 𝛾2 is the recovery rate 
of humans as a result of treatment of hepatitis B. The 
natural death rate of human beings has been represented 
as𝜇ℎ . The rate of death induced by the disease on acute 
infected humans with hepatitis B, chronic infected 
humans with hepatitis B and humans under treatment of 
hepatitis B are represented by 𝛿2, 𝛿7𝑎𝑛𝑑𝛿4 . The rate of 
susceptible humankind against hepatitis B vaccination is 
referred to as 𝜔1 and the rate of vaccine failure as 𝜔2 and 
the rate at which recovered humans become susceptible 
again 𝜎2. 
 
Model Assumptions 

i. We assume that there is an imperfect vaccine in the 
human population. 

ii. It is our assumption that recovered human beings 
from hepatitis B may be attacked by the disease after 
recovering. 

iii. We assumed that the human population recover 
naturally. 
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Model Flow Chart 

 
Figure 1: Hepatitis B Model Flow Chart 
 

Model Equations 
𝑑𝑆

𝑑𝑡
= Λℎ − 𝜆𝐵𝑆 + 𝜎2𝑅𝐵 + 𝜔2𝑉 − (𝜔1 + 𝜇ℎ)𝑆,  

𝑑𝐸𝐵

𝑑𝑡
= 𝜆𝐵𝑆 − (𝛼2 + 𝜇ℎ)𝐸𝐵 ,  

𝑑𝐼𝐴

𝑑𝑡
= 𝛼2𝐸𝐵 − (𝛼6 + 𝜃2 + 𝛿2 + 𝜇ℎ)𝐼𝐴 ,  

𝑑𝐼𝐶

𝑑𝑡
= 𝛼6𝐼𝐴 − (𝜃6 + 𝛾4 + 𝛿7 + 𝜇ℎ)𝐼𝐶 ,   (6) 

𝑑𝑇𝐵

𝑑𝑡
= 𝜃2𝐼𝐴 + 𝜃6𝐼𝐶 − (𝛾2 + 𝛿4 + 𝜇ℎ)𝑇𝐵 ,  

𝑑𝑉

𝑑𝑡
= 𝜔1𝑆 − (𝜔2 + 𝜇ℎ)𝑉,  

𝑑𝑅𝐵

𝑑𝑡
= 𝛾2𝑇𝐵 + 𝛾4𝐼𝐶 − (𝜎2 + 𝜇ℎ)𝑅𝐵.  

Where 𝜆𝐵 =
(𝛽1𝐼𝐴+𝛽2𝐼𝐶+𝛽3𝑇𝐵)

𝑁ℎ
. 

 
Table 1: Model Variables and Parameters Descriptions 

Variables Descriptions 
𝑆 Humans who are susceptible to hepatitis B 
𝐸𝐵  Humans population who are Exposed to hepatitis B 
𝐼𝐴 Acute infected human infected with hepatitis B 
𝐼𝐶  Chronic infected human infected with hepatitis B 
𝑇𝐵  Human population on hepatitis B treatment 
𝑉 Vaccinated human population against hepatitis B 
𝑅𝐵 Recovered human population from hepatitis B 
  

Parameters Descriptions 
Λℎ  Recruitment rate of Susceptible human population to hepatitis B 
𝛽1 The rate of contact between the susceptible humans and the human acutely infected humans 
𝛽2 Contact rate between the susceptible people and the chronically infected people 
𝛽3 Contact rate between the susceptible human beings and those who are on hepatitis B treated 
𝛼2 The levels of progression of exposed humans to hepatitis B and the hepatitis B class to acute 

infected class 
𝛼6 The rate of progression of the acute infected hepatitis B class to chronic infected hepatitis B class 
𝜃2 Acute infected humans, rate of treatment 
𝜃6 The rate of chronic infected human being treatment 
𝛼4 The natural recovery rate of the population that is chronically infected with the human race 
𝛾2 The recoverability of human beings on account of the treatment of hepatitis B 
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𝛾4 Natural recovery rate hepatitis B. 
𝜇ℎ  Death rate of human being which is natural 
𝛿2 Mortality rate of acute Infected humans with hepatitis B 
𝛿7 Death rate due to infection by hepatitis B of humans who had chronic infection 
𝛿4 The death rate of human beings on hepatitis B medication as a result of disease in humans 
𝜔1 Vaccinated human population. 
𝜔2 Waning rate of vaccine 
𝜎2 Rate at which recovered humans become susceptible again. 

 
Fractional Hepatitis B Mathematical Model 
In this section, the integer- order model of the hepatitis B 
in Eq. (5) through incorporation of Caputo fractional 
derivative operator. The flexibility of this adaptation is an 
improvement over any possible sample of the 
conventional model in Eq. (5), given that the fractional-
order formulation has a greater output capacity to a wide 
array of dynamic outputs. The obtained fractional-order 
hepatitis B model is proposed the following way:  
 
𝐶𝐷𝑡

𝜂
𝑆 = Λℎ − 𝜆𝐵𝑆 + 𝜎2𝑅𝐵 + 𝜔2𝑉 − (𝜔1 + 𝜇ℎ)𝑆, 

𝐶𝐷𝑡
𝜂
𝐸𝐵 = 𝜆𝐵𝑆 − (𝛼2 + 𝜇ℎ)𝐸𝐵 , 

𝐶𝐷𝑡
𝜂
𝐼𝐴 = 𝛼2𝐸𝐵 − (𝛼6 + 𝜃2 + 𝛿2 + 𝜇ℎ)𝐼𝐴 , 

𝐶𝐷𝑡
𝜂
𝐼𝐶 = 𝛼6𝐼𝐴 − (𝜃6 + 𝛾4 + 𝛿7 + 𝜇ℎ)𝐼𝐶 ,   (6) 

𝐶𝐷𝑡
𝜂
𝑇𝐵 = 𝜃2𝐼𝐴 + 𝜃6𝐼𝐶 − (𝛾2 + 𝛿4 + 𝜇ℎ)𝑇𝐵 , 

𝐶𝐷𝑡
𝜂
𝑉 = 𝜔1𝑆 − (𝜔2 + 𝜇ℎ)𝑉, 

𝐶𝐷𝑡
𝜂
𝑅𝐵 = 𝛾2𝑇𝐵 + 𝛾4𝐼𝐶 − (𝜎2 + 𝜇ℎ)𝑅𝐵 . 

Subject to the positive initial conditions 
𝑆(0) = 𝑆0, 𝐸𝐵(0) = 𝐸𝐵0, 𝐼𝐴(0) = 𝐼𝐴0, 𝐼𝐶(0) = 𝐼𝐶0 , 𝑇𝐵(0) =

𝑇𝐵0, 𝑉(0) = 𝑉0, 𝑅𝐵(0) = 𝑅𝐵0.   (7) 
 
Positivity of Model Solution 
We considered the non-negativity of the initial values 

𝑙𝑖𝑚 𝑆 𝑢𝑝𝑁ℎ(𝑡) ≤
Λℎ
𝜇ℎ
, 

Secondly, if𝑙𝑖𝑚 𝑆 𝑢𝑝𝑁0(𝑡) ≤
Λℎ
𝜇ℎ
,then our model feasible 

domain is given by:  

Ω = {(𝑆, 𝐸𝐵 , 𝐼𝐴 , 𝐼𝐶 , 𝑇𝐵 , 𝑉, 𝑅𝐵) ⊂ 𝑅+7 : 𝑆 + 𝐸𝐵 + 𝐼𝐴 +𝐼𝐶 +

𝑇𝐵 +𝑉 + 𝑅𝐵 ≤
Λ𝐵
𝜇𝐵
},so that 

Ω = Ω𝐵 ⊂ 𝑅+7 , 
hence, Ω is positively invariant. 
In case of non-negative (𝑆0, 𝐸𝐵0 , 𝐼𝐴0, 𝐼𝐶0, 𝑇𝐵0 𝑉0 , 𝑅𝐵0) , the 
solution of model (6) will be non-negative for 𝑡 > 0. Using 
(6), the first equation, we can get that: 
𝐶𝐷𝑡

𝜂
𝑆 = Λℎ − 𝜆𝐵𝑆 + 𝜎2𝑅𝐵 + 𝜔2𝑉 − (𝜔1 + 𝜇ℎ)𝑆, 

𝐶𝐷𝑡
𝜂
𝑆 + (𝜆𝐵 +𝜔1 + 𝜇ℎ)𝑆 = Λℎ + 𝜎2𝑅𝐵 + 𝜔2𝑉, 

 But Λℎ + 𝜎2𝑅𝐵 + 𝜔2𝑉 ≥ 0then, 
𝐶𝐷𝑡

𝜂
𝑆 + (𝜆𝐵 +𝜔1 + 𝜇ℎ)𝑆 ≥ 0    (8) 

By Laplace transform we get; 
𝐿[𝐶𝐷𝑡

𝜂
𝑆] + 𝐿[(𝜆𝐵 + 𝜔1 + 𝜇ℎ)𝑆] ≥ 0 

𝑆(𝑠) ≥
𝑆𝜂−1

𝑆𝜂 + (𝜆𝐵 +𝜔1 + 𝜇ℎ)
𝑆(0), 

The inverse of the Laplace transforms gave; 
𝑆(𝑡) ≥ 𝐸𝜂,1(−(𝜆𝐵 + 𝜔1 + 𝜇ℎ)𝑡

𝜂)𝑆0,   (9) 

Now that the word on the right of the Eq. We find that, in the 
case where (9) is positive, we can say that (𝑆 ≥ 0, 𝐸𝐵 ≥
0, 𝐼𝐴 ≥0, 𝐼𝐶 ≥ 0, 𝑇𝐵 ≥0, 𝑉 ≥ 0, 𝑅𝐵 ≥ 0).  
we are saying that are positives, and therefore, the solution 
will stay in 𝑅+7  for all 𝑡 > 0 with positive initial situation. 
 
Boundedness of Fractional Model Solution 
The total population of individuals from our model is given 
by; 
𝑁ℎ(𝑡) = 𝑆(𝑡) + 𝐸𝐵(𝑡) + 𝐼𝐴(𝑡) + 𝐼𝐶(𝑡) + 𝑇𝐵(𝑡) + 𝑉(𝑡) +
𝑅𝐵(𝑡).. 
So from our fractional model (6), we now obtain; 
𝐶𝐷𝑡

𝜂
𝑁(𝑡) ≤ Λℎ − 𝜇ℎ𝑁ℎ(𝑡)    (10) 

Taking the Laplace transformation of (10) we now have; 
𝐿[𝐶𝐷𝑡

𝜂
𝑁(𝑡)] ≤ 𝐿[Λℎ − 𝜇ℎ𝑁ℎ(𝑡)],, 

𝑁ℎ(𝑠) ≤
𝑆𝜂−1

(𝑆𝜂+𝜇ℎ)
𝑁ℎ(0) +

Λℎ
𝑆(𝑆𝜂+𝜇ℎ)

,    (11) 

Taking the inverse Laplace transform of Eq. (11) we have: 
𝑁ℎ(𝑡) ≤ 𝐸𝜂,1(−𝜇ℎ𝑡

𝜂)𝑁ℎ(0) + Λℎ𝐸𝜂,𝜂+1(−𝜇ℎ𝑡𝜂),  (12) 
At𝑡 → ∞,, the limit of Eq. (12) becomes 

𝑙𝑖𝑚
𝑡→∞
𝑆𝑢𝑝𝑁ℎ(𝑡) =

Λℎ
𝜇ℎ
. 

This means that, if 𝑁ℎ0 ≤
Λℎ
𝜇ℎ

 then 𝑁ℎ ≤
Λℎ
𝜇ℎ

 which implies 

that, 𝑁ℎ(𝑡) is enclosed or bounded. 
We now conclude that, this region Ω = Ω𝐵, is well posed 
and similarly feasible epidemiologically. 
 
Existence and Uniqueness of our Model Solution 
Let the real non-negative be 𝐻, we 𝑄 = [0, 𝐻[]] 
The set of all continuous function that is defined on M is 
represented by 𝑁ℎ𝑒

0 (𝑄) with norm as; 
‖𝑋‖ = 𝑆𝑢𝑝{|𝑋(𝑡)|, 𝑡 ∈ 𝑄}.    (13) 
Model (6) with initial conditions given in (8) may be taken 
into consideration and can be referred to as an initial value 
problem (IVP) as seen in (13). 
𝑐𝐷𝑡

𝜂(𝑡) = 𝑍(𝑡, 𝑋(𝑡)), 0 < 𝑡 < 𝐻 < ∞, 
𝑋(0) = 𝑋0. 
Where  
𝑌(𝑡) = (𝑆(𝑡), 𝐸𝐵(𝑡), 𝐼𝐴(𝑡) , 𝐼𝐶(𝑡), 𝑇𝐵(𝑡) , 𝑉(𝑡), 𝑅𝐵(𝑡)) 
represents the groups and 𝑍 be a continuous function 
defined as follows; 
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=

(

 
 
 
 
 
 

Λℎ −
(𝛽1𝐼𝐴+𝛽2𝐼𝐶+𝛽3𝑇𝐵)

𝑁ℎ
𝑆 + 𝜎2𝑅𝐵 + 𝜔2𝑉 − (𝜔1 + 𝜇ℎ)𝑆

(𝛽1𝐼𝐴+𝛽2𝐼𝐶+𝛽3𝑇𝐵)

𝑁ℎ
𝑆 − (𝛼2 + 𝜇ℎ)𝐸𝐵

𝛼2𝐸𝐵 − (𝛼6 + 𝜃2 + 𝛿2 + 𝜇ℎ)𝐼𝐴
𝛼6𝐼𝐴 − (𝜃6 + 𝛾4 + 𝛿7 + 𝜇ℎ)𝐼𝐶
𝜃2𝐼𝐴 + 𝜃6𝐼𝐶 − (𝛾2 + 𝛿4 + 𝜇ℎ)𝑇𝐵

𝜔1𝑆 − (𝜔2 + 𝜇ℎ)𝑉

𝛾2𝑇𝐵 + 𝛾4𝐼𝐶 − (𝜎2 + 𝜇ℎ)𝑅𝐵 )

 
 
 
 
 
 

 (14) 

Using proposition (2.1), we have that,  

𝑆(𝑡) = 𝑆0 + 𝐼𝑡
𝜂
[Λℎ −

(𝛽1𝐼𝐴+𝛽2𝐼𝐶+𝛽3𝑇𝐵)

𝑁ℎ
𝑆 + 𝜎2𝑅𝐵 + 𝜔2𝑉 −

(𝜔1 + 𝜇ℎ)𝑆], 

𝐸𝐵(𝑡) = 𝐸𝐵0 + 𝐼𝑡
𝜂
[
(𝛽1𝐼𝐴+𝛽2𝐼𝐶+𝛽3𝑇𝐵)

𝑁ℎ
𝑆 − (𝛼2 + 𝜇ℎ)𝐸𝐵], (15) 

𝐼𝐴(𝑡) = 𝐼𝐴0 + 𝐼𝑡
𝜂[𝛼2𝐸𝐵 − (𝛼6 + 𝜃2 + 𝛿2 + 𝜇ℎ)𝐼𝐴], 

𝐼𝐶(𝑡) = 𝐼𝐶0 + 𝐼𝑡
𝜂[𝛼6𝐼𝐴 − (𝜃6 + 𝛾4 + 𝛿7 + 𝜇ℎ)𝐼𝐶], 

𝑇𝐵(𝑡) = 𝑇𝐵0 + 𝐼𝑡
𝜂[𝜃2𝐼𝐴 + 𝜃6𝐼𝐶 − (𝛾2 + 𝛿4 + 𝜇ℎ)𝑇𝐵], 

𝑉(𝑡) = 𝑉0 + 𝐼𝑡
𝜂[𝜔1𝑆 − (𝜔2 + 𝜇ℎ)𝑉], 

𝑅(𝑡) = 𝑅0 + 𝐼𝑡
𝜂[𝛾2𝑇𝐵 + 𝛾4𝐼𝐶 − (𝜎2 + 𝜇ℎ)𝑅𝐵]. 

We have the Picard iteration of (15) as follows; 
𝑆(𝑡) = 𝑆0 +

1

Γ(𝜂)
∫ (𝑡 − 𝜆)𝜂−1𝑍1(𝜆, 𝑆𝑛−1(𝜆))𝑑𝜆
𝑡

0
,  (16) 

𝐸𝐵(𝑡) = 𝐸𝐵0 +
1

Γ(𝜂)
∫ (𝑡 − 𝜆)(𝜂)−1𝑍2 (𝜆, 𝐸𝐵(𝑛−1)(𝜆)) 𝑑𝜆
𝑡

0

, 

𝐼𝐴(𝑡) = 𝐼𝐴0 +
1

Γ(𝜂)
∫ (𝑡 − 𝜆)𝜂−1𝑍3 (𝜆, 𝐼(𝑛−1)(𝜆)) 𝑑𝜆
𝑡

0
,  

𝐼𝐶(𝑡) = 𝐼𝐶0 +
1

Γ(𝜂)
∫ (𝑡 − 𝜆)𝜂−1𝑍4 (𝜆, 𝐼(𝑛−1)(𝜆)) 𝑑𝜆
𝑡

0
,  

𝑇𝐵(𝑡) = 𝑇𝐵0 +
1

Γ(𝜂)
∫ (𝑡 − 𝜆)𝜎−1𝑍5 (𝜆, 𝑇𝐵(𝑛−1)(𝜆)) 𝑑𝜆
𝑡

0

, 

𝑉(𝑡) = 𝑉0 +
1

Γ(𝜂)
∫ (𝑡 − 𝜆)𝜂−1𝑍6 (𝜆, 𝑉(𝑛−1)(𝜆)) 𝑑𝜆
𝑡

0
,  

𝑅𝐵(𝑡) = 𝑅𝐵 +
1

Γ(𝜂)
∫ (𝑡 − 𝜆)𝜂−1𝑍7 (𝜆, 𝑅(𝑛−1)(𝜆)) 𝑑𝜆
𝑡

0
.  

We now transformed the initial value problem of Eq. (13) to 
obtain; 

𝑋(𝑡) = 𝑋(0) +
1

Γ(𝜂)
∫ (𝑡 − 𝜆)
𝑡

0

𝜂−1
𝑍(𝜆, 𝑋(𝜆))𝑑𝜆.  (17) 

Lemma 1, The Lipchitz condition described from Eq. (14) is 
satisfied by vector  
𝑍(𝑡, 𝑋(𝜆))on a set [0, 𝐻[]+7 ] with the Lipchitz constant given 
as: 
𝜔 =

𝑚𝑎𝑥 (
(𝛽1
* + 𝛽2

* + 𝛽3
* +𝜔1 + 𝜇ℎ), (𝛼2 + 𝜇ℎ), (𝛼6 + 𝜃2 + 𝛿2 + 𝜇ℎ),

(𝜃6 + 𝛾4 + 𝛿7 + 𝜇ℎ), (𝛾2 + 𝛿4 + 𝜇ℎ), (𝜔2 + 𝜇ℎ), (𝜎2 + 𝜇ℎ)
).

  
 
Proof: 
‖𝑍1(𝑡, 𝑆) − 𝑍1(𝑡, 𝑆1)‖  

= ‖
Λℎ −

(𝛽1𝐼𝐴+𝛽2𝐼𝐶+𝛽3𝑇𝐵)

𝑁ℎ
𝑆 + 𝜎2𝑅𝐵 +𝜔2𝑉 − (𝜔1 + 𝜇ℎ)𝑆

−Λℎ −
(𝛽1𝐼𝐴+𝛽2𝐼𝐶+𝛽3𝑇𝐵)

𝑁ℎ
𝑆 + 𝜎2𝑅𝐵 + 𝜔2𝑉 − (𝜔1 + 𝜇ℎ)𝑆1

‖, 

= ‖−Λℎ −
(𝛽1𝐼𝐴 + 𝛽2𝐼𝐶 + 𝛽3𝑇𝐵)

𝑁ℎ
𝑆 + 𝜎2𝑅𝐵 +𝜔2𝑉 − (𝜔1 + 𝜇ℎ)𝑆(𝑆 − 𝑆1) + 𝜇(𝑆 − 𝑆1)‖ , 

≤ −((𝛽1
* + 𝛽2

* + 𝛽3
*)) ‖(𝑆 − 𝑆1)‖ + ‖𝜇ℎ(𝑆 − 𝑆1)‖ 

∴ ‖𝑍1(𝑡, 𝑆) − 𝑍1(𝑡, 𝑆1)‖ ≤ (((𝛽1
* + 𝛽2

* + 𝛽3
*) + 𝜔1 + 𝜇)) ‖(𝑆 − 𝑆1)‖ + ‖𝜇ℎ(𝑆 − 𝑆1)‖ 

Similarly we obtained the following; 
‖𝑍2(𝑡, 𝐸𝐵) − 𝑍2(𝑡, 𝐸𝐵1)‖ ≤ (𝛼2 + 𝜇ℎ)‖(𝐸𝐵 − 𝐸𝐵1)‖,  
‖𝑍3(𝑡, 𝐼𝐴) − 𝑍3(𝑡, 𝐼𝐴1)‖ ≤ (𝛼6 + 𝜃2 + 𝛿2 + 𝜇ℎ)‖(𝐼𝐴 − 𝐼𝐴1)‖, 
‖𝑍4(𝑡, 𝐼𝐶) − 𝑍4(𝑡, 𝐼𝐶1)‖ ≤ (𝜃6 + 𝛾4 + 𝛿7 + 𝜇ℎ)‖(𝐼𝐶 − 𝐼𝐶1)‖, 
‖𝑍5(𝑡, 𝑇𝐵) − 𝑍5(𝑡, 𝑇𝐵1)‖ ≤ (𝛾2 + 𝛿4 + 𝜇ℎ)‖(𝑇𝐵 − 𝑇𝐵1)‖, 
‖𝑍6(𝑡, 𝑉) − 𝑍6(𝑡, 𝑉1 )‖ ≤ (𝜔2 + 𝜇ℎ)‖(𝑉 − 𝑉1)‖,        (18) 
‖𝑍7(𝑡, 𝑅𝐵) − 𝑍7(𝑡, 𝑅𝐵1)‖ ≤ (𝜎2 + 𝜇ℎ)‖(𝑅𝐵 − 𝑅𝐵1)‖. 
Where we obtained  
‖𝑍1(𝑡, 𝑋1(𝑡)) − 𝑍(𝑡, 𝑋2(𝑡))‖ ≤ 𝛽‖𝑋1 − 𝑋2‖, 

𝜔 = 𝑚𝑎𝑥 (
(𝛽1

* + 𝛽2
* + 𝛽3

* + 𝜔1 + 𝜇ℎ), (𝛼2 + 𝜇ℎ), (𝛼6 + 𝜃2 + 𝛿2 + 𝜇ℎ),

(𝜃6 + 𝛾4 + 𝛿7 + 𝜇ℎ), (𝛾2 + 𝛿4 + 𝜇ℎ), (𝜔2 + 𝜇ℎ), (𝜎2 + 𝜇ℎ)
).      (19)  

Lemma 2. The first value problem (6), (7) in Eq. It exists and is unique. 
𝑋(𝑡) ∈ 𝐴𝐵

0 (𝑓). 
Using Picard-Lindelof and fixed point theory, we estimate the solution of  
𝑋(𝑡) = 𝑆(𝑋(𝑡)), 
where S is defined as the Picard operator articulated as ; 
𝑆: 𝐴𝐵

0 (𝑓, 𝑅+
7) → 𝐴𝐵

0 (𝑓, 𝑅+
7) 

Therefore 
𝑆(𝑋(𝑡)) = 𝑋(0) +

1

Γ(𝜂)
∫ (𝑡 − 𝜆)𝜂−1𝑍1(𝜆, 𝑋(𝜆))𝑑𝜆
𝑡

0
,         (20) 

which becomes : 
‖𝑆(𝑋1(𝑡)) − 𝑆(𝑋2(𝑡))‖ 
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=
1

Γ(𝜂)
[∫ (𝑡 − 𝜆)𝜂−1𝑍(𝜆, 𝑋1(𝜆)) − 𝑍(𝜆, 𝑋2(𝜆))𝑑𝜆

𝑡

0

], 

≤
1

Γ(𝜂)
[∫ (𝑡 − 𝜆)𝜂−1𝑍(𝜆, 𝑋1(𝜆)) − 𝑍(𝜆, 𝑋2(𝜆))𝑑𝜆

𝑡

0

], 

≤
𝜔

Γ(𝜂)
[∫ (𝑡 − 𝜆)𝜂−1‖𝑋1 − 𝑋2‖𝑑𝜆

𝑡

0

], 

‖𝑆(𝑋1(𝑡) − 𝑆𝑋2(𝑡))‖ ≤
𝜔

Γ(𝜂+1)𝑆
.           (21) 

When, 𝜔

Γ(𝜂+1)
𝑆 ≤ 1. then the Picard operator gives a negation, so Eq. (6), (7) solution is unique. 

 
The Basic Reproduction Number (R0) and Model Equilibrium Points: 
The disease-free equilibrium points of the model (5) is expressed as: 
(𝑆0, 𝐸𝐵

0, 𝐼𝐴
0, 𝐼𝐶

0, 𝑇𝐵
0, 𝑉, 𝑅𝐵

0) = (
Λℎ(𝜔2+𝜇ℎ)

𝜇ℎ(𝜔2+𝜔1+𝜇ℎ)
, 0,0,0,0,

𝜔1Λℎ
𝜇ℎ(𝜔2+𝜔1+𝜇ℎ)

, 0)       (22) 

Basic Reproduction number: 
In infectious disease modeling, the most critical number is the Basic Reproduction Number denoted by 𝑅0𝐻, In simple 
terms, it measures the disease's potential to spread by calculating how many people one infected person will likely pass 
the illness to in a fully vulnerable population. 
In computing the basic reproduction number, we apply the next generation method. 

𝑅0
𝐵 =

(𝜔2+𝜇ℎ)𝛼2(𝐴3𝐴4𝛽1+𝐴3𝛽3𝜃2+𝐴4𝛼6𝛽2+𝛼6𝛽3𝜃6)

𝐴1𝐴2𝐴3𝐴4(𝜔2+𝜔1+𝜇ℎ)
.         (23) 

Where ( )1 2 ,hA  = +
𝐴2 = (𝛼6 + 𝜃2 + 𝛿2 + 𝜇ℎ),

( )3 6 4 7 ,hA    = + + +
𝐴4 = (𝛾2 + 𝛿4 + 𝜇ℎ). 

 
Endemic Equilibrium Point 
We also studied what happens if Hepatitis B becomes a permanent, ongoing presence in the community. In this scenario, 
the infection never completely disappears, but instead settles into a stable, long-term pattern where the disease 
continues to circulate at a constant level. 
(𝑆* ≠ 0, 𝐸𝐵

* ≠ 0, 𝐼𝐴
* ≠ 0, 𝐼𝐶

* ≠ 0, 𝑇𝐵
* ≠ 0, 𝑉* ≠ 0, 𝑅𝐵

* ≠ 0). 
To understand what happens when Hepatitis B becomes a long-term presence, we reworked the model's equations to 
focus on how the infection spreads. Starting with our discrete Hepatitis B model (Equation 6), we found that the steady 
state where the disease persists at a constant level is defined by the following values: 

𝑆* =
Λℎ𝐴6𝐴2𝐴3𝐴4𝐴5𝐴7

((𝐴2𝐴3𝐴7(𝜆𝐵 + 𝐴1)𝐴5 − 𝛾2𝜎2𝜃2𝜆𝐵𝛼2)𝐴4 − 𝜎2𝜆𝐵𝛼2𝛼6(𝐴5𝛾4 + 𝛾2𝜃6))𝐴6 − 𝐴2𝐴3𝐴4𝐴5𝐴7𝜔1𝜔2
, 

𝐸𝐵
* =

Λℎ𝐴6𝐴3𝐴4𝐴5𝐴7𝜆𝐵
(((𝐴2𝐴3𝐴7𝐴5−𝛼2𝛾2𝜎2𝜃2)𝐴4−𝜎2𝛼2𝛼6(𝐴5𝛾4+𝛾2𝜃6))𝜆𝐵+𝐴1𝐴2𝐴3𝐴4𝐴5𝐴7)𝐴6−𝐴2𝐴3𝐴4𝐴5𝐴7𝜔1𝜔2

,

( ) ( )( )( )
6 4 5 7 2

2 3 7 5 2 2 2 2 4 2 2 6 5 4 2 6 1 2 3 4 5 7 6 2 3 4 5 7

*

1 2

,A
h B

B

A A A A

A A A A A A A A A A A A A A A
I

A A A

 

           − + + −
=



−
 

𝐼𝐶
* =

Λℎ𝐴6𝐴5𝐴7𝜆𝐵𝛼2𝛼6

(((𝐴2𝐴3𝐴4𝐴7−𝛼2𝛼6𝛾4𝜎2)𝐴5−𝛼2𝛾2𝜎2(𝐴4𝜃2+𝛼6𝜃6))𝜆𝐵+𝐴1𝐴2𝐴3𝐴4𝐴5𝐴7)𝐴6−𝐴2𝐴3𝐴4𝐴5𝐴7𝜔1𝜔2
,

( )

( ) ( )( )( )
6 7 2 4 2 6 6

2 3 7 5 2 2 2 2 4 2 2 6 5 4 2 6 1 2 3 4 5 7 6 2 3 4 5 7

*

1 2

,
h B

B

B

A A A

A A A A A A A A A A A A A A A A A
T

A

    

           

 +

− − + + −
=

 

𝑉* =
Λℎ𝐴2𝐴3𝐴4𝐴5𝐴7𝜔1

(𝐴7𝐴2((𝜆𝐵 + 𝐴1)𝐴6 − 𝜔1𝜔2)𝐴3𝐴5 − 𝛾2𝜎2𝜃2𝜆𝐵𝐴6𝛼2)𝐴4 − 𝜎2𝜆𝐵𝐴6𝛼2𝛼6(𝐴5𝛾4 + 𝛾2𝜃6)
, 

𝑅𝐵
* =

Λℎ𝜆𝐵(𝐴4𝛾2𝜃2+𝛼6(𝐴5𝛾4+𝛾2𝜃6))𝛼2𝐴6
(((𝐴2𝐴3𝐴5𝐴7−𝛼2𝛾2𝜎2𝜃2)𝐴4−𝜎2𝛼2𝛼6(𝐴5𝛾4+𝛾2𝜃6))𝜆𝐵+𝐴1𝐴2𝐴3𝐴4𝐴5𝐴7)𝐴6−𝐴2𝐴3𝐴4𝐴5𝐴7𝜔1𝜔2

.    (24) 

Substituting into the force of infection  

𝜆𝐵 =
(𝛽1𝐼𝐴 + 𝛽2𝐼𝐶 + 𝛽3𝑇𝐵)

𝑁ℎ
, 

We obtained; 
𝑄1𝜆𝐵 + 𝑄2 = 0.             (25) 
 
 



Ojonimi et al.,  JOSRAR 2(5) SEP-OCT 2025 33-48 
 

40 

Where  

𝑄1 = Λℎ (
𝐴3𝐴4𝐴5𝐴6𝐴7 + 𝐴4𝐴5𝐴6𝐴7𝛼2 + 𝐴4𝐴6𝐴7𝛼2𝜃2
+𝐴4𝐴6𝛼2𝛾2𝜃2 + 𝐴5𝐴6𝐴7𝛼2𝛼6 + 𝐴5𝐴6𝛼2𝛼6𝛾4
+𝐴6𝐴7𝛼2𝛼6𝜃6 + 𝐴6𝛼2𝛼6𝛾2𝜃6

), 

𝑄2 = Λℎ(𝐴6𝐴2𝐴3𝐴4𝐴5𝐴7 + (𝐴2𝐴3𝐴4𝐴5𝐴7𝜔1)(1 − 𝑅0𝐵)). 
This implies that the model has a stable endemic equilibrium point. 
 
Global Stability of Hepatitis B Disease 
Theorem 1: Prove that the system (5) is globally asymptotically stable at Disease free equilibrium, moreover, at 𝑅0 < 1. 
 
Proof: 
We construct the Lyapunov function to prove the results, 
𝐿 = 𝑢1(𝑆 − 𝑆0) + 𝑢2(𝐸𝐵 − 𝐸𝐵0) + 𝑢3(𝐼𝐴 − 𝐼𝐴0) + 𝑢4(𝐼𝐶 − 𝐼𝐶0) + 𝑢5(𝑇𝐵 − 𝑇𝐵0) + 𝑢6(𝑉 − 𝑉0) + 𝑢7(𝑅𝐵 − 𝑅𝐵0).  (26) 
Where 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7 are positive constants. 
Taking the derivative of a Lyapunov function, we obtained; 
𝐿′ = Λℎ𝑢1 + 𝜔2𝑆𝐸𝐵(𝑢2 − 𝑢1) + (1 − 𝜔1)(𝑢3 − 𝑢1) + 𝛼2(𝑢3 − 𝑢2) + 𝜔1(𝑢4 − 𝑢2) 
+𝜃2(𝑢4 − 𝑢3) + 𝜔1(𝑢5 − 𝑢4) + 𝛼2(𝑢6 − 𝑢4) + 𝛼1(𝑢7 − 𝑢4) − 𝜇ℎ𝑢1𝑆 − 𝜇ℎ𝑢2𝐸𝐵  
−𝜇ℎ𝑢3𝐼𝐴 − 𝜇ℎ𝑢4𝐼𝐶 − 𝜇ℎ𝑢5𝑉 − 𝜇ℎ𝑢6𝑇𝐵 − 𝜇ℎ𝑢7𝑅𝐵 . 
Choosing the positive constants 𝑢1 = 𝑢2 = 𝑢3 = 𝑢4 = 𝑢5 = 𝑢6 = 𝑢7 = 1 
And𝑁ℎ >

Λℎ
𝜇ℎ

 then, we obtained; 

𝐿′ = Λℎ − 𝜇ℎ𝑁ℎ  
𝐿′ = −[𝜇ℎ𝑁ℎ − Λℎ] < 0.            (27) 
Hence the system (5) is globally asymptotically stable at the Disease-free equilibrium and at 𝑅0𝐵 < 1. 
 
Fractional Order Model Numerical Results  
The fractional-order Hepatitis B model was numerically solved using the generalized fractional Adams–Bashforth–
Moulton method as described by Bonyah et al.(2020). Table 1 presents the parameter values used in the model, while 
Table 2 displays the different fractional-order values applied and simulated in the analysis. 
 
Implementation of Fractional Adams–Bashforth–Moulton Method 
The technique described by Baskonus. and Bulut (2015), and Ren et al.(2012) was employed in the present study. The 
approximate solution for the fractional-order Hepatitis B model in Equation (6) was developed using the fractional Adams–
Bashforth–Moulton method. The fractional form of Equation (6) is presented as follows: 
𝐷𝑐 𝑡
𝜂
𝐻(𝑡) = 𝑄(𝑡, 𝑞(𝑡)), 0 < 𝑡 < 𝜔,          (28) 

𝐻(𝑛)(0) = 𝐻0
(𝑛), 𝑛 = 1,0, . . . , 𝑞, 𝑞 = [𝛼]. 

The 𝐻 = (𝑆*, 𝐸𝐵* , 𝐼𝐴* , 𝐼𝐶* , 𝑇𝐵 , 𝑉*, 𝑅𝐵* ) ∈ 𝑅+
7and 𝑉(𝑡, 𝑞(𝑡))is a continuous function of a real value. Equation (27) can hence be 

expressed in terms of the idea of fractional integral as follows: 

𝐻(𝑡) = ∑ 𝐻0
(𝑛)𝑚−1

𝑛=0
𝑡𝑛

𝑛!
+

1

Γ(𝜂)
∫ (𝑡 − 𝑦)
𝑡

0

𝜂−1
𝑅(𝑘,𝑚 (𝑘))𝑑𝑘       (29) 

Using the method described in [43], we let the step size 𝑔 = 𝜔

𝑁
, 𝑁 ∈ Ν with a grid that is uniform on [0, 𝜔]. Where 𝑡𝑐 =

𝑐𝑟, 𝑐 = 0,1,1, . . . 𝑁. Thus, and fractional order model of Hepatitis B model could be well approximated as (6) creates: 

( )
( )

( ) ( )

( )
( ) ( )

1 0 1 2 3 2 2 1

1 2 3 2 2 1

0

2

, 1 ,
2

n
n n n n n n

k h A C B B hn

h

k
y

h Ay Cy By By y h y

y hy

g S
S t S I I T R V S

N

Sg
dy k I I T R V S

N





      


      


+

=

 
= +  − + + + + − + + 

 +  

  
+  − + + + + − + 

 +   


 
𝐸𝐵(𝑘+1)(𝑡) = 𝐸𝐵0 +

𝑔𝜂

Γ(𝜂+2)
{(𝛽1𝐼𝐴

𝑛 + 𝛽2𝐼𝐶
𝑛 + 𝛽3𝑇𝐵

𝑛)
𝑆𝑛

𝑁ℎ
𝑛 − (𝛼2 + 𝜇ℎ)𝐸𝐵

𝑛} +
𝑔𝜂

Γ(𝜂+2)
∑ 𝑑𝑦, 𝑘 + 1 {(𝛽1𝐼𝐴𝑦 + 𝛽2𝐼𝐶𝑦 + 𝛽3𝑇𝐵𝑦)

𝑆𝑦

𝑁ℎ𝑦
−𝑘

𝑦=0

(𝛼2 + 𝜇ℎ)𝐸𝐵𝑦},             (30) 

𝐼𝐴(𝑘+1)(𝑡) = 𝐼0 +
𝑔𝜂

Γ(𝜂+2)
𝛼2𝐸𝐵

𝑛 − (𝛼6 + 𝜃2 + 𝛿2 + 𝜇ℎ)𝐼𝐴
𝑛 +

𝑔𝜂

Γ(𝜂+2)
∑ 𝑑𝑦, 𝑘 + 1{𝛼2𝐸𝐵𝑦 − (𝛼6 + 𝜃2 + 𝛿2 + 𝜇ℎ)𝐼𝐴𝑦}
𝑘
𝑦=0 ,  

𝐼𝐶(𝑘+1)(𝑡) = 𝐼0 +
𝑔𝜂

Γ(𝜂+2)
{𝛼6𝐼𝐴

𝑛 − (𝜃6 + 𝛾4 + 𝛿7 + 𝜇ℎ)𝐼𝐶
𝑛} +

𝑔𝜂

Γ(𝜂+2)
∑ 𝑑𝑦, 𝑘 + 1{𝛼6𝐼𝐴𝑦 − (𝜃6 + 𝛾4 + 𝛿7 + 𝜇ℎ)𝐼𝐶𝑦}
𝑘
𝑦=0 ,  
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𝑇𝐵(𝑘+1)(𝑡) = 𝑇𝐵0 +
𝑔𝜂

Γ(𝜂+2)
{𝜃2𝐼𝐴

𝑛 + 𝜃6𝐼𝐶
𝑛 − (𝛾2 + 𝛿4 + 𝜇ℎ)𝑇𝐵

𝑛} +
𝑔𝜂

Γ(𝜂+2)
∑ 𝑑𝑦, 𝑘 + 1{𝜃2𝐼𝐴𝑦 + 𝜃6𝐼𝐶𝑦 − (𝛾2 + 𝛿4 + 𝜇ℎ)𝑇𝐵𝑦}
𝑘
𝑦=0 ,  

𝑉𝑘+1(𝑡) = 𝑉0 +
𝑔𝜂

Γ(𝜂+2)
{𝜔1𝑆

𝑛 − (𝜔2 + 𝜇ℎ)𝑉
𝑛} +

𝑔𝜂

Γ(𝜂+2)
∑ 𝑑𝑦, 𝑘 + 1{𝜔1𝑆𝑦 − (𝜔2 + 𝜇ℎ)𝑉𝑦}
𝑘
𝑦=0 ,  

𝑅𝐵(𝑘+1)(𝑡) = 𝐼0 +
𝑔𝜂

Γ(𝜎+2)
{𝛾2𝑇𝐵

𝑛 + 𝛾4𝐼𝐶
𝑛 − (𝜎2 + 𝜇ℎ)𝑅𝐵

𝑛} +
𝑔𝜂

Γ(𝜂+2)
∑ 𝑑𝑦, 𝑘 + 1{𝛾2𝑇𝐵𝑦 + 𝛾4𝐼𝐶𝑦 − (𝜎2 + 𝜇ℎ)𝑅𝐵𝑦}
𝑘
𝑦=0 .  

Where  

𝑆𝑘+1
𝑛 (𝑡) = 𝑆0 +

1

Γ(𝜂)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {Λℎ − (𝛽1𝐼𝐴𝑦 + 𝛽2𝐼𝐶𝑦 + 𝛽3𝑇𝐵𝑦)

𝑆𝑦

𝑁ℎ𝑦
+ 𝜎2𝑅𝐵𝑦 + 𝜔2𝑉𝑦 − (𝜔1 + 𝜇ℎ)𝑆𝑦},  

𝐸𝐵(𝑘+1)
𝑛 (𝑡) = 𝐸𝐵0 +

1

Γ(𝜂)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {(𝛽1𝐼𝐴𝑦 + 𝛽2𝐼𝐶𝑦 + 𝛽3𝑇𝐵𝑦)

𝑆𝑦

𝑁ℎ𝑦
− (𝛼2 + 𝜇ℎ)𝐸𝐵𝑦},     (31) 

𝐼𝐴(𝑘+1)
𝑛 (𝑡) = 𝐼0 +

1

Γ(𝜂)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝛼2𝐸𝐵𝑦 − (𝛼6 + 𝜃2 + 𝛿2 + 𝜇ℎ)𝐼𝐴𝑦},  

𝐼𝐶(𝑘+1)
𝑛 (𝑡) = 𝐼0 +

1

Γ(𝜂)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝛼6𝐼𝐴𝑦 − (𝜃6 + 𝛾4 + 𝛿7 + 𝜇ℎ)𝐼𝐶𝑦},  

𝑇𝐵(𝑘+1)
𝑛 (𝑡) = 𝑇𝐵0 +

1

Γ(𝜂)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝜃2𝐼𝐴𝑦 + 𝜃6𝐼𝐶𝑦 − (𝛾2 + 𝛿4 + 𝜇ℎ)𝑇𝐵𝑦},  

𝑉𝑘+1
𝑛 (𝑡) = 𝑉0 +

1

Γ(𝜂)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝜔1𝑆𝑦 − (𝜔2 + 𝜇ℎ)𝑉𝑦},  

𝑅𝐵(𝑘+1)
𝑛 (𝑡) = 𝑅𝐵0 +

1

Γ(𝜂)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝛾2𝑇𝐵𝑦 + 𝛾4𝐼𝐶𝑦 − (𝜎2 + 𝜇ℎ)𝑅𝐵𝑦}.  

From (29) and (30) obtained; 
𝑑𝑦,𝐾+1= 𝐾

𝜂+1 − (𝑘 − 𝜂)(𝑘 + 𝜂)𝜂, 𝑦 = 0. 
(𝑘 − 𝑦 + 2)𝜂+1 + (𝑘 − 𝜂)𝜂+1 − 2(𝑘 − 𝑦 + 1)𝜂+1, 1 ≤ 𝑦 ≤ 𝑘 

and 𝑓𝑦,𝑘+1 =
𝑔𝜂

𝜂
[(𝑘 − 𝑦 + 1)𝜂(𝑘 − 𝑦)𝜂], 0 ≤ 𝑦 ≤ 𝑘. 

 
Importance of using the Fractional Adam-Bashforth-Moulton Method in Obtaining the Numerical Solutions of the 
Model 

i. The fractional Adams-Bashforth-Moulton scheme strictly just needs one extra function evaluation per step and has 
high-order of accuracy. 

ii. This approach has the advantage of automatic error control, and can often be applied to ODE solvers to accomplish 
integration. 

iii. This means that it has wide applicability in other fields such as engineering, chemistry and medicine and as such, it 
is a useful method in numerically solving partial and fractional-order differential equations. 

 
Table 2: Parameter Values used for Numerical Simulation  

Parameters Values Sources 
Λℎ 16540000 CDC (2023) 
𝛽1 1 × 10−9  Boukanjime and Fatini (2019) 
𝛽2 0.8328 Assumed 
𝛽3 0.8214 Assumed 
𝛼2 0.058426 Fitted 
𝛼4 0.143597 Fitted 
𝛾2 0.278267 Fitted 
𝛾4 0.5 Fitted 
𝜃2 0.032 Boukanjime and Fatini (2019) 
𝜎2 0.05 Fitted 
𝜇ℎ 0.07 CDC (2023) 
𝛿2 0.3 Assumed 
𝛿7 0.0200 Assumed 
𝛿4 0.02 Assumed 
𝜔1 0.5521 Assumed 
𝜔2 0.1 Granas and Dugundji (2003) 
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Table 3: Number of Cases of Potential Hepatitis B Virus Infections K and the Proportion of K in the 
Compartment of Diseased Individuals from China 

YEAR CASES 
2004 368,566 
2005 432,541 
2006 454,624 
2007 462,366 
2008 465,379 
2009 466,907 
2010 468,028 
2011 469,102 
2012 470,246 
2013 471,495 
2014 472,866 
2015 474,361 
2016 475,983 
2017 477,732 
2018 479,609 
2019 481,614 
2020 483,749 
2021 486,013 

 
Numerical Simulation 

 
Figure 3a: Simulation of susceptible population to 
hepatitis B 

 
Figure 3b: Simulation of Exposed population to hepatitis 
B 

 
Figure 3c: Simulation of acute infected population to 
hepatitis B 
 

 
Figure 3d: Simulation of acute infected population to 
hepatitis B 
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Figure 3e: Simulation of population hepatitis B treatment 

 
Figure 3f: Simulation of vaccinated humans against 
hepatitis B 

 
Figure 3g: Simulation of Recovered humans from hepatitis 
B 

 
Figure 3h: Simulation of cumulative new cases of hepatitis 
B 

 
Figure 3i: Simulation of cumulative new cases of hepatitis 
B 

 
Figure 3j: Simulation of acute infected with hepatitis B 
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Figure 3k: Simulation of chronic infected with hepatitis B 
 

  
Figure 3l: Simulation of humans on treatment hepatitis B 

 

 
Figure 4: Hepatitis B Data Fitting 

 

 
Figure 5a: Contour plot showing the impact of 𝜃6and 𝜔1on 
𝑅0
𝐻  

Figure 5b: Contour plot showing the impact of 𝜃6and 𝜔1on 
𝑅0
𝐻  
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(3a) shows simulation of the impact of vaccination rate 
(𝜔1)among people with Hepatitis B infection on the 
susceptible human population. It can be observed that 
higher vaccination rate (𝜔1)leads to the reduction of 
susceptible human to the two diseases. (3b) shows 
simulation of the impact of vaccination rate (𝜔1)among 
people with Hepatitis B infection on the exposed human 
population. It can be observed that higher vaccination rate 
(𝜔1)leads to the reduction of exposed human to the two 
diseases. (3c) reveals the simulation of influence of 
vaccination rate (𝜔1) of humans that are vulnerable to 
Hepatitis B on acute population people that are affected by 
Hepatitis B. This demonstrates that the increasing of 
vaccination rate (𝜔1) contributed towards the reduction of 
the number of acute infected human of Hepatitis B. (3d) 
reveals the simulation of influence of vaccination rate (𝜔1) 
of humans that are vulnerable to Hepatitis B on chronic 
infected population with Hepatitis B. This demonstrates 
that the increasing of vaccination rate (𝜔1) contributed 
towards the reduction of the number of chronic infected 
human of Hepatitis B. (3e) shows the simulation of the 
impact of the vaccination rate (𝜔1)of infected individuals 
with the Hepatitis B on the human population in regard to 
the Hepatitis B treatment. It has been observed that the 
more the vaccination rate (𝜔1)is enhanced, the lower the 
number of human beings of Hepatitis B disease who are on 
treatment as depicted by (3f). the effect of the vaccination 
rate (𝜔1)of individuals susceptible to Hepatitis B on 
vaccinated human population against Hepatitis B is 
simulated. This demonstrates that the more the 
vaccination rate(𝜔1), the more the humans that are 
vaccinated against the Hepatitis B disease. (3g) illustrates 
the model of the impact of vaccination rate (𝜔1)that is 
placed on individuals susceptible to Hepatitis B on 
Recovered human population that is infected by hepatitis 
B. This indicates that the higher the level of vaccination 
activities (𝜔1)the lesser the human population is found to 
be recovered from Hepatitis B disease. (3h). displays the 
simulation of the influence of the rate at which humans are 
vaccinated against Hepatitis B (𝜔1) on the total new cases 
of Hepatitis B. This indicates that the high level of 
vaccination (𝜔1) contributes to the rise of the new cases 
of the Hepatitis B disease. In (3i)., the influence of the rate 
of treatment (𝜃2) of Hepatitis B infected people on the total 
new cases of Hepatitis B is simulated. This indicates that it 
is important to raise the rate of treatment (𝜃2) which will 
promote the decline of the incident cases of Hepatitis B 
disease. (3j). demonstrates how the rate of the spread of 
Hepatitis B (𝜃2) affects the treatability of acute infected 
humans with Hepatitis B. This indicates that higher rate of 
treatment (𝜃2)would contribute to the reduction in the 
acute population infected with Hepatitis B by human 
beings. 
(3k) describes the simulation of effect of the treatment rate 
(𝜃2) of those infected with Hepatitis B on chronically 

infected human with Hepatitis B. This indicates that the 
rise in treatment rate (𝜃2) will result in the reduction in the 
number of people who have been chronically infected with 
Hepatitis B. (3l) The effect of the treatment rate (𝜃2)of 
people infected with Hepatitis B on the people on the 
Hepatitis B treatment can be seen in the figure. This 
indicates that rise in treatment (𝜃2) gives increases the 
human population on Hepatitis B treatment. (4a) shows 
the contour plot of 𝜃6𝑎𝑛𝑑𝜔1on𝑅0𝐻  . In the graph under 
discussion, the numerical data curve starts at the value of 
0.6 which is the maximum value of the data to be and that 
the correlation between the variations of 𝜃6𝑎𝑛𝑑𝜔1in the 
measurement of the transmission rate would be less than 
one (1). Higher values of 𝜃6𝑎𝑛𝑑𝜔1indicate that the 
outbreak of Hepatitis B among the population is 
decreasing. (4b) indicated that when the values of𝑅0𝐻  reach 
a minimum of less than one (1), there is an indication of 
reduction of the basic reproduction number. 
𝜃6𝑎𝑛𝑑𝜔1should be reduced to ensure that the effects of 
Hepatitis B on the population are reduced. The lack of 
appropriate measures undertaken including will enhance 
the current prevalence of Hepatitis B. 
 
CONCLUSION 
In this research, we set out to better understand the spread 
of Hepatitis B using a more nuanced type of mathematics 
known as fractional calculus. Think of it as an upgrade 
from a simple on/off switch to a dimmer switch it allows for 
more gradual and realistic transitions, which is crucial for 
modeling complex processes like disease transmission. 
By building a fractional-order model, we were able to 
simulate how Hepatitis B progresses through a community 
and how key interventions, like vaccination and treatment, 
can change its course. Our simulations revealed a clear 
and hopeful finding: when we increase vaccination efforts 
among healthy individuals and improve treatment access 
for those who are infected, the overall burden of the 
disease drops significantly. The real power of this 
approach is its ability to capture the "memory" of biological 
systems meaning past conditions can influence future 
outcomes in a way traditional models often miss. This 
makes our model not just a theoretical exercise, but a 
more flexible and realistic tool that could one day help 
guide public health strategies. Of course, our study is a 
starting point, not a final answer. To keep things 
manageable, we made some simplifying assumptions for 
instance, we modeled the population as a single, uniform 
group, without accounting for geographical differences or 
the random chance events that affect real-world 
outbreaks. We also used real case data. To build on this 
work, the next steps are exciting. Future researchers 
could: Add a sense of place by incorporating geography to 
see how the disease moves across different regions, By 
tackling these challenges, we can transform this promising 
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theoretical framework into a powerful, practical tool for 
the ongoing battle against Hepatitis B. 
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