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ABSTRACT

In the present paper we offer the epidemiological parameters of the
Chlamydia infection and discuss its dynamics with the help of a
fractional-order mathematical model and estimating the role of
contact and vaccination rates in the development of interaction
with this disease. The conditions of existence and uniqueness of
solutions of the problem in the environment of a fractional order
were determined. Numerical simulations are carried out to show
how the model parameters and fractional-order influence the
disease control and their propagation property through the use of
the fractional Adams-Bashforth-Moulton method. Additional
simulations show that a rise in contact rates and a subsequent
reduction of the efficacy of vaccination are the involved factors that
contribute to the increase of the prevalence of the Chlamydia. The
findings indicate that a preventive strategy to reduce transmission
of the infection is a verified method of valuing the low level of the
infection transmission over the population.

INTRODUCTION

to conjunctivitis. Itis notable that there is a parasite known

Chlamydia is a sexually transmitted or transferable
disease that is most prevalent in the world today (WHO
2022). It is projected that there are 129 million cases of
Chlamydia trachomatis infection in the year 2020 (WHO,
2021; 2022). This infection is caused by the same bacteria,
Chlamydia trachomatis and it can be primarily transmitted
through contact with an infected person or through sex-
contact using vaginal, anal and oral sex methods. It can
also be transferred via non-sexual means and this
includes; touching another person with bare hands, using
of bed linen, towels or clothes, and in flies that exposed
themselves to eye or nasal discharge. In selected
instances, the infection occurs through infected vaginal
fluids or semen that come in contact with the eye leading

This work is licensed under the Creative Commons
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as Chlamydia trachomatis which is the most known cause
of blindness in the world Thylefors et al. (1995).

It is known to affect both females and males but with
prevalence rates of 4.2 and 2.7 respectively Newman et al.
(2012) and WHO (2021). Sexually active women aged 15 to
24 CDC (2022) have the highest risk especially as younger
persons. Severely infected women may develop throat,
rectal, and cervical diseases, which in most cases resultin
pelvic inflammatory disease (PID), sterility, and ectopic
pregnancies or abortions Paavonen and Lehtinen (1996),
Paavonen and Eggert-Kruse (1999).

Mothers infected also can infect the newborns during
childbirth CDC (2022). The effects on women comprise
backup vaginal discharge, itching, burning, bleeding,
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nausea and fever. In men, the problem is accompanied by
painful urination, testicles swelling and seminal fluid
discharge. The incubation period takes 7-20 days, and
although the Chlamydia and infections may be cured after
several days of taking the antibiotics such as azithromycin
or doxycycline the infected individuals are advised to avoid
sex during the drug treatment period. The possibility of Re-
infection is always there after successful treatment
Diethelm (2022).

Mathematics modeling has been of great help in the
understanding of infectious disease transmission
dynamics such as Chlamydia. These models examine
sources of epidemics as well as assist in the development
of control measures. Even though there has been vast
application of traditional models, they tend to ignore
memory effects or even long-term dependence embedded
in biological processes. Fractional-order models are on
the rise to overcome such a shortcoming. It accounts the
non-local characteristics through which memory effects
and abnormal diffusion in disease transmission can be
included Podlubny (1998).

Fractional differential equations (FDEs) are a
generalization of the conventional integer-order
representations, which lead to a broader landscape of
complexity modelling. This is the paper that offers a
fractional-order mathematical model that would model
the transmission dynamics of Chlamydia, including
elements of control, that is; treatment strategies (control
through treatment) and prevention strategies to model
transmission. The model proves to be more sufficient in
detailing the spread of Chlamydia as it incorporates the
merits of applying the memory effect phenomenon present
in fractional calculus. The proposed study will also strive
to identify the most effective way of reducing the level of
Chlamydia infections and achieving sustainable control of
the Chlamydia infection by playing simulation games in
which various intervention situations will be simulated.
The fractional derivative, capable of capturing effects of
memory and heredity in biological systems, is particularly
well suited to the modeling of diseases such as Chlamydia.
They can contribute to the better understanding of the
spread of the infection over the course of time and the
impact of the infection history of individuals and their
treatment regimens on the dynamics of the transmission.
This broader focus helps to create more realistic and
effective control measures over and above persistent
issues of drug resistance, re-infection and poor healthcare
resources.

The current developments in fractional calculus, as
indicated by Atokolo et al. (2022), have attracted a lot of
attention due to the fact that it is used to explain the
dynamic character of any given system. With respect to
classical integer-order systems, which can only account
local properties, the fraction order models represent
memory effects exhibited by the global behavior of a
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system. Not only are these models more realistic, but also
more applicable to the real-world setting, and thus make a
good impact as a result of how infectious diseases like had
Chlamydia spread.

In the application of biology, the types of fractional
derivatives being adopted are Routh fractional derivatives,
Caputo and Riemann-Liouville derivative of singular
kernels. Moreover, non-singular terms of the kernel
derivations, like Mittag-Leffler and Atangana-Baleanu are,
also, in the spotlight.

Atokolo et al. (2022), demonstrated that the fractional-
order Sterile Insect Technology (SIT) model could be
employed to regulate the onset of the Zika virus where they
employed LADM technique to obtain infinite series
expansions of solutions to this model that converged to a
correct answer.

Lassa fever, similar to Ebola, African swine fever and
cholera, was also used by Atokolo et al. (2024)., to study
with a fractional-order mathematical model where they
used power-law fractional derivative to characterize the
effects of the vaccination and treatment on the dynamics
of the disease transmission process.

Yunus et al. (2023) considered a Caputo fractional-order
derivative of the control of COVID-19 in Nigeria and LADM
and observed a high rate of recovery in the integer-order
case owing to various factors including vaccination and
treatment.

Omede et al. (2024) were the first authors to propose a
fractional-order compartmental model, in terms of Caputo
derivatives, which was used to explain infections of soil-
transmitted helminths. On LADM, they demonstrated that
the solutions to their model of the non-rectilinear bodies
using the infinite series converged to perfect values, thus,
one seeing more flexibility in the model than integer-order
models originating in the past.

The transmission dynamics of the hepatitis C were
modeled as a fractional model using Adams-Bashforth-
Moulton method by Amos et al. (2024). They have
demonstrated moderate contact rate and treatment
improvement can serve long distance in avertive multiple
infection spread with the fractional-order model being
more versatile than the traditional models.

James et al. (2024) also numerically demonstrated the
dynamics of the HIV/AIDS infection process by means of a
fractional order model and the Adams-Bashforth-Moulton
method. Their findings underscored the need to decrease
the probability of contact and improved treatment options
which can be used to control the disease since the
stochasticity of fractional models was higher compared to
the conventional models.

Afractionaltransmission modelwas introduced by Abah et
al. (2024) who used the Adams-Bashforth-Moulton
discretization. Their findings reflected the reduction of
contact rates and the improvement of treatment efficacy
reduced the spread of the disease further demonstrating
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the benefits of using fractional-order models to model
complicated dynamics as compared to classical models.
An ABC-fractional order derivative model which was used
to predict the co-epidemic dynamics of HIV and COVID-19
model was developed by Ahmed et al. (2021).

On the same note, Smith et al. (2023) performed an
extensive analysis of co-infection patterns of hepatitis C
and COVID-19. Their analysis was a synthesis equivalent
of recent cadre of mathematical modeling studies, where
the most frequently used techniques, key insights, and
open holes left to be filled have been identified.
Fractional-order models have clear benefits, since they
are flexible and are able to describe non-local effects.
Fractional derivatives are less approximate than classical
derivatives and better able to approximate phenomena in
the real world and can attain some extra flexibility. They
can include non-local interactions that are essential
features not present in integer-order derivatives and can
take account of memory effects that are not readily
tractable in models that only include integer-order
derivatives. Such properties have motivated researchers
to use fractional differential equations to solve complex
equations. As a case in point, Das et al. (2024), quoted

Ullah et al. (2020) and solved fuzzy Volterra integral
equations that had degenerate kernels wusing a
combination of Laplace transform and Adomian

Decomposition Method. Such innovative treatment has
earned attention to the theoretical aspect of fuzzy
analytical dynamic equations.

Ali et al. (2017) investigated the stability and the existence
of solutions to a three-point boundary value problem with
focus on the various types of Ulam stability. Their study
used the classical non-linear fractional techniques to
investigate the stability of the problem which adds
valuable information to the area. The aim of this study
includes to find conditions that give the existence and
uniqueness of solution to the proposed fractional-order
model; stability analysis of the endemic equilibrium point
on the basis of the Lyapunov functions approach; solve
numerically by the fractional Adams-Bashforth-Moulton
method; and perform numerical experimentations to test
the model performance.

A survey of the literature on Chlamydia and the
mathematical modeling of their transmission also
demonstrated deficiency of studies to consider
application of fractional calculus in modeling Chlamydia
transmission by employing the use of the Adams-
Bashforth-Moulton method to model and study the
transmission and control of Chlamydia.

Preliminary

In this section we present a short history of some of the
most significant concepts and electrocalculi in the
fractional calculus. This is realized in the context of the
right and left fractional Caputo derivatives, on the grounds
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of the paradigms developed by Milici et al. (2018) and
Bonyah et al. (2020). More importantly, the paper provides
some kind of overview of the practical applications of
fractional calculus towards solving challenges in the real
world in various areas like in physics, engineering, bio-
mathematics and other scientific activities.

Definition 1

Suppose that f € A”(R), then the left-side and right-side
Caputo fractional derivative of the function is given as
follow:

COYF() = ( 007" (L) e ))
COYF®) = 7 = DMTH@) da
The same way

cpfe) = (D7 (=2 ))f(t)

DI =S [T0 -0

(1

" yda

Definition 2
The generalized Mittag-Leffler function E, z(x) forx € R is
given by

En.B(x) Zn= 0/’(nn+1/1)’ nY>0 (2)
which can also be represented as
1
Epyp(x) = XEpqinm + ) (3)
- sa-n
Eypp () = L[t" Eqpsare)] = STre (4)

Proposition 1
Let fEAT(R)NC(R)anda ER,n—1<n<n,
therefore, the conditions given below holds:

1. EDMf() = F(D)

2. EDIITF(D) = F(O) — Tk FE(to)

Model Formulation and Description

The rate at which individuals are recruited into the
susceptible population is written as A, , and therefore,
B, B, are the effective rate of contact between the
susceptible and infected humans and individuals under
treatment due to Chlamydia respectively. We denote ), as
the transition rates of exposed Chlamydia classes to
infected class. The rate at which infected humans are
treated is given by @, and g; is the recovery rate of human
due to Chlamydia. The natural rate of death among human
beings is vested as u; . The Chlamydia and human’s death
rate due to the disease in the infected and treated
individuals is expressed as §;,60s. The proportion of
susceptible humans vaccinated against Chlamydia is
taken to be ¢; and, ¢, where is the rate of vaccine failure.,
Recovered human population become susceptible again
at the rate of 7,.
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Model Assumptions 2. We assume that even once humans recovered of
1. We assumed that the vaccine is imperfect in the Chlamydia, they can still be vulnerable to it in the
sense that there is probability of vaccine failure. aftermath of the pathogen encounter.
3. We assume that humans die due to disease in the
population.
Model Flow Diagram of Chlamydia
7, R
A, AS, 2 e ol
LS N 1. 1. R-
L, E Os + 1, )T R,
&S, V. Halte (51 +/1;r)Ic C 'Lh) “ il
LV,
VC h™ C
Figure 1: Chlamydia Model Flow Diagram
. . dT
6?Slzlamydla Model Equation d_tC = a,l; — (0, + 85 + up)Te,
— =N, +T,Rc + Ve — AcSy — + Sn, av
ddEtC h 2Re + ¢,V cSn — (@1 + up)Sy d_tC = ¢Sy — (s + u)Ve,
— =S, — + E., dR
d%i- cSh— (W2 + un)Ec d_tC = 0,T; — (1, + )R-
o = 2B — (ap + 8 + ), Where . = (&Icgiﬁﬂc)
h

Table 1: Model Variables and Parameters Descriptions

Variables Descriptions

Sh Humans who are susceptible to Chlamydia

E. Humans population who are Exposed to Chlamydia

Ic Human population infected with Chlamydia

Tc Human population on Chlamydia treatment

Ve Vaccinated human population against Chlamydia

R¢ Recovered human population from Chlamydia

Parameters Descriptions

Ny, Recruitment rate of Susceptibility of people to Chlamydia

By The frequency of contact between the susceptible human beings and human infected being
B>

P, Rate of exposure of human subjects to infected human beings

a; Infected peoples, treatment rate

o, The recoverability of the human being regarding the Chlamydia treatment

Un Natural death rate of human being

61 Mortality rate of infected human population of Chlamydia

s The mortality of human beings under Chlamydia drugs due to disease in mankind
ol Vaccination in human population who are susceptible

b, The decline in the rate of vaccine

T, The rate of conversion of the susceptible human population back into susceptibility
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Fractional Chlamydia Mathematical Model

In this part, we will extend the integer model of Chlamydia,
in Equation (5), a Caputo fractional derivative operator. The
latter variation is less constrained than the traditional one
expressed in Equation (5) because the outcome of the
fractional order model can be adjusted to take on various
characteristics. The fractional Chlamydia model is thus
developed as follows:

D,"Sy = Ay + 2R + b2V — %Sh = P1Sp, )]
CDtnEc _ (B1lc;ﬁzTc) S, — P,E,,
h
n
‘D, "I = Y,Ec — P31, (6)

CDtnTC = aylc — BT,
D"V = 1Sn — PsVe,
‘D,"R. = 0,T, — P4R,.
Where
Py = (1 +pp) Po = (Y +pn), P = (ay + 61 + ), P =
(01 + 85 + up), Ps = (¢ + up), Ps = (72 + up)-
Subject to positive initial conditions
Sp(0) = Spo, Ec(0) = E¢o, Ic(0) = Igo, Tc(0) = Tgo, V(0) =
Veo, Rc(0) = Reo. (7)

Positivity of Model Solution

We considered the non-negativity of the initial values

Np(t) < A as
Un

t > o

Secondly, iflimsupNhO(t)S%, then our model
h

feasible domain is given by:
O = {(SuEc1e, Te, Ve, Re ) © RE: (Sy + B +1c +Te +
A

Ve+Re )< #h},

hence Qs positively invariant.

If (Sho, Eco. Ico, Teo, Veoo Reco )are non-negative, then the

solution of model (6) will be non-negative for t> 0. From Eq.

(6), selecting the first equation, we obtained:

(ﬁlIC + ﬁZTC)

75"1
Ny,

=Ny + 2R + ¢,V

But A, + 7,Rc + ¢,V = Othen
CDtnsh + (,8115+§2TC+P1) S, = 0.
h

CDtnsh =AM + TR + Ve — — Py Sy,

CDtnsh + (,8115+§2TC+P1) S,

Applying the Laplace transform we obtained:
o (B1Ic+B2Tc+P1)
L[] + 1 [frerfelesi g, | > g,

S7S,(s) — ST, (0) + %ﬁfc“’”sh(s) >0,

265, @)\ [t TeRetdaVe -
Zy(t, Ec(D) BulctBaT0)
2, K@) = | Z3&1e(®) | _ N

Z,(t, Tc (1))
Zs(t, Ve (6)
Ze(t,Rc (1))

azlc —

(B1lc+B2Tc)
Np Sh
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st
Sp(s) = h Sp(0). (8)
h S},Z+(511C+£§1TC+P1)Sh h
By taking the inverse Laplace transforms, we obtained;
(B1Ic+B2Tc+P1)
Sp(t) = Eeyq (%Shtn)sho- 9)

Now since the term on the right-hand side of Eq. (9) is
positive, we conclude that S, = 0 fort = 0. In the same
way, we also have that (E;=0,I;=>0,T, =0,V >
0,R; =0) are positives, therefore, the solution will remain
in RS forall t > 0 with positive initial conditions.

Boundedness of Fractional Model Solution
The total human population from our modelis given by;
Np(t) = Sp(t) + Ec(t) + Ic(8) + Tc(8) + Ve (6) + Re (D)
So from our fractional model (6), we now obtain
D" Ny(6) = D;"Su(t) + °D"Ec(6) + DI () +
D" Te(8) + D" Ve(8) + D" Re(2): (10)
Taking the Laplace transformation of (10) we obtained;
L[CD:’Nh(t)] = L[Ap — pp Ny (2)]

_ A
SENu(s) = Sy Nu(0) + ppNn(s) < 71,

5’7_1

Nn(s) = Gy Na(0) + m
Taking the inverse Laplace transform of Eq. (11) we have;
Ny () < Epp 1 (UptMINR(0) + ApEppy 1 (Unt™) (12)
At t — oo, the limit of Eq. (12) becomes;
iimSupNh(t) =

(11)

This means that, if Ny < a3

then N, (t) < ;iwhich implies that, N, () is bounded.
h

We now conclude that, this regionQ = Q,, is well posed
and equally feasible epidemiologically.

Existence and Uniqueness of our Model Solution

Let the real non-negative be Wwe consider P = [0, W].

All continuous function that exists on P belongs to N2, (W)
with norm as;

IKIl = Sup{IK(©)|,t eW}.

The modeled system (6) along with specified initial (8)
enables solving for a system of differential equations
presented in (13).

‘DEK() =Z(t,K(£),0 <t <W < o, (13)
K(0) = K,.
Where  K(t) = (Sp, Ec, Ic, T, Ve, R ).represents  the

classes and Z be a continuous function defined as follows;

— (1 + un)Sn

Sp— (Y + up)Ec

YoEc — (az + 61 + up)lc ’ (14)
(01 + 85 + up)4Tc

1S — (@2 + up)Ve

01T¢c — (T2 + pr)Re
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Using proposition (2.1), we have that,

(B1Ic+PB2Tc)
Sh(®) = Suo + I} [y + ToRe + Ve — PEELIE S, — () + )i |

(B11 Tc)
Ec(t) = Ego + 1] [Bl+fzc5h - W, + ,uh)Ec] (15)

Ic(®) =1, + MY Ec — (az + 6, + up)lc],
Ve(@®) =V, + I [¢1S, — (07 + 85 + up)Vel,
Te(t) =Te, + azle — (2 + un)Tel,

Re(t) = Reo + 1[04 T — (12 + up)Rc]-

We obtain the Picard iteration of (15) as follows;

1t _

Sn() = Sno + 75 Jy (& = A7 23 (A Sugn-1y () ) d Ac,

Ec(t) = Eco + %n)fot(t - A)"1Z, (Ao EC(n—l)(ﬂ'C))dﬂ-Cv (16)
1t _

Ic(t) = ICO + Tn)fo (t - /‘{C)77 1Z3 (/‘lc, Ic(n_l)(lc))dlc,

To(t) = Teo s [o (¢ = 2624 (A, Togony () e,

Ve®) = Veo + s [{(t = 26)771 25 (A, Voo () dc,

t -
Re(®) = Reo + 15 Jy (6 = 20" Z (A, Rouony (Ac) ) dc.
Transforming equation eq. (13) to get
t -
X(©) = X(0) + 15 Jy (= 20" Z (26, X(A)) d Ac. (17)
Lemma 1, The equation (14) gives us the definition of the Lipchitz condition which vector satisfies; Z(t, K(t)) on a set
[0, W[]4] with the Lipchitz constant given as;
w =max (B + B3 + b1 + 1n), @z + ), (@ + 81 + 1y, (03 + 85 + 1a), (2 + 1a), (72 + ) ).
Proof:
1Z1 (¢, Sp) — Z1 (&, Sp)l,
= [N\ + T2Re + @2Ve — AcSh — (1 + pr)Sh, —An + T2Re + 2 Ve — AcSp — (‘I{’} + lih)shlll'
= ”_Ah + T2Rc + Ve — AcSp — (91 + llh)(sh - Shl) + llh(Sh - Shl)” < (51 + B+ ¢ + .Uh)”Sh = Spall + upllSy —
Spall, = 121t Sp) = Z1 (@& Sp) Il < (B + B + ¢4 + .uh)”Sh = Spall-
Similarly, we obtained the following:
||Z2 (taEc ) - Zz (taEa )” = (l//z T4, )”Ec_ ECl
|2, (.10 )= Z, (1.10))|| < (@, + 6, + 1, ) [ = I

|z, (6. T.) -2, (6.1, < (01 + & + )| T ~ T,

”Zs (taVc)_Zs (taVa )” = (¢2 + 4, )”Vc - Va

IZe(t,Rc ) —Zs(t,Rc1 DIl < (x2 + w)lIRc — Reall-
Where we obtained:
I1Z (¢, K1 (1)) — Z(t, K, ()] < wllKy — Ko,
w = max ((B] + B + b1 + 1), (z + 1a), (2 + 81 + ), (01 + 65 + ), (o + un), (12 + 1y)). (19)
Lemma 2: The initial value problem (6), (7) in Eq. (19) exists and will have a unique solution
K(t) € D2(E).
Applying PicardLindel6éfand fixed-point conjecture, we consider the solution of
K(t) = Sp(K (@),
where S is defined as the Picard operator expressed as:
Sp:D2(E,RS) - DO (E,RS).
Therefore,
Sn(K(®) = K(0) +
which becomes,
||Sh(K1(t)) - Sh(Kz(f))”
1 t -
= |5 [ € = 202G, K1 Ae)) = 20 Ko 2e) d Ac |

5

b

b

1

S o =22 G KA d 2.
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f = 2" Z A, K1 (M) = Z(Ae, Ko (W) d Acl.
,_( )f E=2)" K, — K2||d/1c

”5}1 (K1 (t)) Sh(KZ (t))” =

When o +1)Sh <1,

then the Picard operator gives a contradiction, so Eq. (6), (7) solution is unique.
Lemma 2: The initial value problem (6), (7) in Eq. (19) exists and will have a unique solution.

X () € A(f).

Using Picard-Lindelof and fixed- point theory, we consider the solution of

X(t) = Sp(X (),
where S is defined as the Picard operator expressed as;

Sp: A2(f,RS) = A2(f,RS).
Therefore,

Sn(X(®) = X(0) +
This becomes,

15 (X1(£)) — Sp(X2 ()l

= ”%ﬂ) [ft(t = A" Z(Ae, X1 (A¢)) — Z(Ae, X, (Ac)) d /16] ”

— [3t = A" Z (e, X1 (Ae)) = Z(Ae, X2 (Ac)) d Ac

I' (17)

r(T]+1)Sh

o )f t=2)"1Z (A, X(Ae)) d A

F(n)
<[t =2" X =X, ldAc.
P
||sh(xl(t>) — Sy < b
When Sh < 1, thenthe Picard operator gives a contradiction,

So Eq. (6), ( ) solution is unique.

Fractional Order Model Numerical Results

The generalized fractional Adams-Bashforth-Moulton step-by-step technique by Bonyah. et al. (2020) was used to
numerically solve the same fractional-order Chlamydia model. Table 1 indicates the parameters values of the model and
Table 2 indicates different fractional values of the order used and simulated by the model.

Implementation of Fractional Adams-Bashforth-Moulton Method
The method described by Baskonus. and Bulut (2015) has been employed by the current study. Approximate solution of
fractional Chlamydia model (6) obtained by the fractional Adams-Bashforth-Moulton method is as follows. The fractional
heterogeneous form (6) is, then, obtained.

‘DJH() = Q(t,q(1),0< t < w, (20)
H™(0) = Hén),n =1,0,...,q,q =[a].
The H = (Sp, Ec, Ic, Tc, Ve, Re ) € RSand V (¢, q(t))

the above (open -ended delivery order (27) may thus be written in terms of the concept of fractional integral as;

tn
H(t) = SR HYV 5+ s f (6= " R(k,m (k))dk (21)
Using the method descrlbed in Amos et al.(2024), we let the step size g = %, N € N with a grid that is uniform on [0, w].
Where t. = cr,c = 0,1,1,... N. Thus, and fractional order model of Chlamydia model could be well approximated as (6)
creates:

Shk+1) () = Spo + o +2)

b2Vey — %Shy — (¢ + .uh)Shy}:
Eceen(®) = Eco + r(;ffz) (RO 5 — (o, + uh)EE}
Iegerny(@) = lo + ——{YE¢ — (az + 61 + p) 0} + —— e +2)
Tesny (@) = Teo + e +2)

——{a,I¢ — (01 + 85 + up )T} +
Veasy (@) = Vo + o +2) ——— {1 Sy — (¢ + up)VZ'} +

(B1lc+ T)
{Ah + T,RC + V¢ — % — (1 + /ih)Sc} Zy ody, k+1 {Ah + 7R¢y +

rn+2)
s Sheody o+ 1 {0, 4 ) B, 22
YK _ody, k + 1 Ec, — (ay + 8 + pp)ley )
r( +2)Zy ody k + l{azlcy (01 + 65 + /Jh)TCy},
Zy ody, k + 1{¢15hy (¢, + /Jh)VCy}:
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n n
Re+1)(t) = Rgo + ﬁ{aﬂ? — (t3 + upRE} + ﬁZLo dy, k + 1{01TCy — (1, + .“h)RCy}-
Where

1

(B1Ic+B2Tc)
Snkr1) ) = Spo + ) Zfz:O fy g+ {Ah + TRcy + P2V, — Mshy — (1 + ,uh)Shy}:

Nhy
1 (B1lcy+B2Tcy)
Ef(+1)(t) = Ego + T,I)Z§=ofy,k+1 {%Shy -, + .Uh)ECy}, (23)

1

1?(k+1)(t) =1Ig + Tn)Zf/:o fyk+1 {szCy —(a; +6, + .uh)ICy}'
1

TE‘(k+1)(t) =Teo + Tn)z‘g{/:ofy,k+1 {“210y —(0y + 85 + .uh)TCy}'

1

Vctl(k+1)(t) =Veo + @Zﬁ:o fy,k+1 {¢1Shy — (¢ + ,uh)VCy}:
1

Re(k+1)(t) = Reo + Tng‘/:o fy g+ {0'1TCy — (1 + :uh)RCy}-

From (29) and (30) obtained;

dy,s1= K" = (k —=n)(k +m)",y = 0.

k—y+2)" + (k—m)"-2(k—y+D"L1<y<k

n
and fypin =2 [k =y + D"k =»)",0<y < k.

Importance of using the Fractional Adam-Bashforth Moulton Method in Obtaining the Numerical Solutions of the
Model

i. The fractional Adams-Bashforth-Moulton scheme merely requires an additional evaluation of a single function
per step and is of high order of accuracy.

ii. An advantage of this approach is built-in error control, and it can frequently be used to implement ODE solvers to
perform integration.

Table 2: Parameter Values and Sources

Parameter Value Source

A 0.007 Joseph et al. (2025)
B1 0.3425 WHO (2022)

B, Joseph et al. (2025)
Y, 0.21 Estimated

a; 0.1 Joseph et al. (2025)
o, 0.05 Joseph et al. (2025)
Un 0.012 WHO (2021)

T, 0.5 Estimated

b1 0.4 WHO (2021)

b, 0.67 WHO (2021)

o 0.0054 Estimated

P 0.0023 Estimated

Numerical Simulation
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(2a) demonstrates computational modeling of the effects
of vaccination rate (¢;)among susceptible individuals on
the susceptible human population. As can be seen,
increased rate (¢, ) of vaccination contributes to lessening
of the susceptible human to Chlamydia.

(2b) illustrates the modeling of how a vaccination rate (¢,)
of susceptible human population to Chlamydia affects
exposed people. It is possible to note that the further
increase in the rate (¢,) of vaccination will result in
decreasing the number of humans exposed to Chlamydia.
(2c) presents the simulation of effects of the rate (¢,)of
vaccination of susceptible human population to
Chlamydia on infected human population with Chlamydia.
This illustrates that the increment in the rate (¢,)of
vaccination lead to the declining of the level of infected
human by the Chlamydia.

(2d) illustrates the result of the simulation of
meaningfulness of the rate of vaccination (¢,) of
susceptible human population against the Chlamydia to
human population on Chlamydia treatment. It has been
noted that the higher the rate of vaccination (¢, )the fewer
the human beings who are under treatment in terms of
Chlamydia disease.

(2e) exhibits the simulation of the influence of the rate of
vaccination (¢;) on people, who were susceptible to
Chlamydia, on the population of humans who have already
recovered, but are not immune to Chlamydia. This implies
that the more the human population is vaccination of
human population (¢,)the lower it is recovered with
Chlamydia disease.

(2f) illustrates the simulated effect of the rate of human
vaccination (¢,) against Chlamydia on the cumulatively
new cases of Chlamydia. This implies that the great
population coverage of vaccination has led to the reduced
cases of the new instances of the Chlamydia disease.

(2g) shows the simulation of the effect of contact rate ()
of susceptible human population and infected human
population with Chlamydia on cumulative new cases of
Chlamydia. Itis observed that, in effect, as the contactrate
(B;) increases the number of new cases of Chlamydia
increases.

(2h) shows the simulation of the impact of contact rate
(B1)  of susceptible humans and infected human
population to Chlamydia on exposed human population
with Chlamydia. It is noted that, the faster the rate of
contact (B;)the higher the population of exposed human
being to Chlamydia.

CONCLUSION

In this article, we applied Caputo fractional derivative as a
fraction operator in developing a mathematical model that
could enable us explore the transmission of Chlamydia
and the actions taken to thwart the same. Our study
triggered a profound theorization of this fractional
Chlamydia model since it should be noted that fractional
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modeling has been deemed essential in the management
of this disease. It numerically solved the mathematical
model in the fractional Adams-Bashforth-Moulton
scheme. Fractional orders of the Caputo operator and
parameters of the model defined the evolution of the
disease incidence according to the simulation. We carried
out a numerical simulation of a modulus of variation in
intensity of immunization of susceptible people and the
exposure rate of the infected human population. The
resultant implication was that, an increase in the
vaccination level will decrease the prevalence rate of
Chlamydia whereas a decrease in the contact rate would
drasticize the prevalence rate of Chlamydia amongst the
general population. The outcome of the study is
recommended to address the non-linear types of partial
differentiations by using the analytical process of solving
of partial differentiations as described by Amos et al.
(2024).
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