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A B S T R A C T  
In the present paper we offer the epidemiological parameters of the 
Chlamydia infection and discuss its dynamics with the help of a 
fractional-order mathematical model and estimating the role of 
contact and vaccination rates in the development of interaction 
with this disease. The conditions of existence and uniqueness of 
solutions of the problem in the environment of a fractional order 
were determined. Numerical simulations are carried out to show 
how the model parameters and fractional-order influence the 
disease control and their propagation property through the use of 
the fractional Adams-Bashforth-Moulton method. Additional 
simulations show that a rise in contact rates and a subsequent 
reduction of the efficacy of vaccination are the involved factors that 
contribute to the increase of the prevalence of the Chlamydia. The 
findings indicate that a preventive strategy to reduce transmission 
of the infection is a verified method of valuing the low level of the 
infection transmission over the population. 

 
INTRODUCTION 
Chlamydia is a sexually transmitted or transferable 
disease that is most prevalent in the world today (WHO 
2022). It is projected that there are 129 million cases of 
Chlamydia trachomatis infection in the year 2020 (WHO, 
2021; 2022). This infection is caused by the same bacteria, 
Chlamydia trachomatis and it can be primarily transmitted 
through contact with an infected person or through sex-
contact using vaginal, anal and oral sex methods. It can 
also be transferred via non-sexual means and this 
includes; touching another person with bare hands, using 
of bed linen, towels or clothes, and in flies that exposed 
themselves to eye or nasal discharge. In selected 
instances, the infection occurs through infected vaginal 
fluids or semen that come in contact with the eye leading 

to conjunctivitis. It is notable that there is a parasite known 
as Chlamydia trachomatis which is the most known cause 
of blindness in the world Thylefors et al. (1995). 
It is known to affect both females and males but with 
prevalence rates of 4.2 and 2.7 respectively Newman et al. 
(2012) and WHO (2021). Sexually active women aged 15 to 
24 CDC (2022) have the highest risk especially as younger 
persons. Severely infected women may develop throat, 
rectal, and cervical diseases, which in most cases result in 
pelvic inflammatory disease (PID), sterility, and ectopic 
pregnancies or abortions Paavonen and Lehtinen (1996), 
Paavonen and Eggert-Kruse (1999). 
Mothers infected also can infect the newborns during 
childbirth CDC (2022). The effects on women comprise 
backup vaginal discharge, itching, burning, bleeding, 
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nausea and fever. In men, the problem is accompanied by 
painful urination, testicles swelling and seminal fluid 
discharge. The incubation period takes 7-20 days, and 
although the Chlamydia and infections may be cured after 
several days of taking the antibiotics such as azithromycin 
or doxycycline the infected individuals are advised to avoid 
sex during the drug treatment period. The possibility of Re-
infection is always there after successful treatment 
Diethelm (2022). 
Mathematics modeling has been of great help in the 
understanding of infectious disease transmission 
dynamics such as Chlamydia. These models examine 
sources of epidemics as well as assist in the development 
of control measures. Even though there has been vast 
application of traditional models, they tend to ignore 
memory effects or even long-term dependence embedded 
in biological processes. Fractional-order models are on 
the rise to overcome such a shortcoming. It accounts the 
non-local characteristics through which memory effects 
and abnormal diffusion in disease transmission can be 
included Podlubny (1998). 
Fractional differential equations (FDEs) are a 
generalization of the conventional integer-order 
representations, which lead to a broader landscape of 
complexity modelling. This is the paper that offers a 
fractional-order mathematical model that would model 
the transmission dynamics of Chlamydia, including 
elements of control, that is; treatment strategies (control 
through treatment) and prevention strategies to model 
transmission. The model proves to be more sufficient in 
detailing the spread of Chlamydia as it incorporates the 
merits of applying the memory effect phenomenon present 
in fractional calculus. The proposed study will also strive 
to identify the most effective way of reducing the level of 
Chlamydia infections and achieving sustainable control of 
the Chlamydia infection by playing simulation games in 
which various intervention situations will be simulated. 
The fractional derivative, capable of capturing effects of 
memory and heredity in biological systems, is particularly 
well suited to the modeling of diseases such as Chlamydia. 
They can contribute to the better understanding of the 
spread of the infection over the course of time and the 
impact of the infection history of individuals and their 
treatment regimens on the dynamics of the transmission. 
This broader focus helps to create more realistic and 
effective control measures over and above persistent 
issues of drug resistance, re-infection and poor healthcare 
resources. 
The current developments in fractional calculus, as 
indicated by Atokolo et al. (2022), have attracted a lot of 
attention due to the fact that it is used to explain the 
dynamic character of any given system. With respect to 
classical integer-order systems, which can only account 
local properties, the fraction order models represent 
memory effects exhibited by the global behavior of a 

system. Not only are these models more realistic, but also 
more applicable to the real-world setting, and thus make a 
good impact as a result of how infectious diseases like had 
Chlamydia spread. 
In the application of biology, the types of fractional 
derivatives being adopted are Routh fractional derivatives, 
Caputo and Riemann-Liouville derivative of singular 
kernels. Moreover, non-singular terms of the kernel 
derivations, like Mittag-Leffler and Atangana-Baleanu are, 
also, in the spotlight. 
Atokolo et al. (2022), demonstrated that the fractional-
order Sterile Insect Technology (SIT) model could be 
employed to regulate the onset of the Zika virus where they 
employed LADM technique to obtain infinite series 
expansions of solutions to this model that converged to a 
correct answer. 
Lassa fever, similar to Ebola, African swine fever and 
cholera, was also used by Atokolo et al. (2024)., to study 
with a fractional-order mathematical model where they 
used power-law fractional derivative to characterize the 
effects of the vaccination and treatment on the dynamics 
of the disease transmission process. 
Yunus et al. (2023) considered a Caputo fractional-order 
derivative of the control of COVID-19 in Nigeria and LADM 
and observed a high rate of recovery in the integer-order 
case owing to various factors including vaccination and 
treatment. 
Omede et al. (2024) were the first authors to propose a 
fractional-order compartmental model, in terms of Caputo 
derivatives, which was used to explain infections of soil-
transmitted helminths. On LADM, they demonstrated that 
the solutions to their model of the non-rectilinear bodies 
using the infinite series converged to perfect values, thus, 
one seeing more flexibility in the model than integer-order 
models originating in the past. 
The transmission dynamics of the hepatitis C were 
modeled as a fractional model using Adams-Bashforth-
Moulton method by Amos et al. (2024). They have 
demonstrated moderate contact rate and treatment 
improvement can serve long distance in avertive multiple 
infection spread with the fractional-order model being 
more versatile than the traditional models. 
James et al. (2024) also numerically demonstrated the 
dynamics of the HIV/AIDS infection process by means of a 
fractional order model and the Adams-Bashforth-Moulton 
method. Their findings underscored the need to decrease 
the probability of contact and improved treatment options 
which can be used to control the disease since the 
stochasticity of fractional models was higher compared to 
the conventional models. 
A fractional transmission model was introduced by Abah et 
al. (2024) who used the Adams-Bashforth-Moulton 
discretization. Their findings reflected the reduction of 
contact rates and the improvement of treatment efficacy 
reduced the spread of the disease further demonstrating 
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the benefits of using fractional-order models to model 
complicated dynamics as compared to classical models. 
An ABC-fractional order derivative model which was used 
to predict the co-epidemic dynamics of HIV and COVID-19 
model was developed by Ahmed et al. (2021). 
On the same note, Smith et al. (2023) performed an 
extensive analysis of co-infection patterns of hepatitis C 
and COVID-19. Their analysis was a synthesis equivalent 
of recent cadre of mathematical modeling studies, where 
the most frequently used techniques, key insights, and 
open holes left to be filled have been identified. 
Fractional-order models have clear benefits, since they 
are flexible and are able to describe non-local effects. 
Fractional derivatives are less approximate than classical 
derivatives and better able to approximate phenomena in 
the real world and can attain some extra flexibility. They 
can include non-local interactions that are essential 
features not present in integer-order derivatives and can 
take account of memory effects that are not readily 
tractable in models that only include integer-order 
derivatives. Such properties have motivated researchers 
to use fractional differential equations to solve complex 
equations. As a case in point, Das et al. (2024), quoted 
Ullah et al. (2020) and solved fuzzy Volterra integral 
equations that had degenerate kernels using a 
combination of Laplace transform and Adomian 
Decomposition Method. Such innovative treatment has 
earned attention to the theoretical aspect of fuzzy 
analytical dynamic equations. 
Ali et al. (2017) investigated the stability and the existence 
of solutions to a three-point boundary value problem with 
focus on the various types of Ulam stability. Their study 
used the classical non-linear fractional techniques to 
investigate the stability of the problem which adds 
valuable information to the area. The aim of this study 
includes to find conditions that give the existence and 
uniqueness of solution to the proposed fractional-order 
model; stability analysis of the endemic equilibrium point 
on the basis of the Lyapunov functions approach; solve 
numerically by the fractional Adams-Bashforth-Moulton 
method; and perform numerical experimentations to test 
the model performance. 
A survey of the literature on Chlamydia and the 
mathematical modeling of their transmission also 
demonstrated deficiency of studies to consider 
application of fractional calculus in modeling Chlamydia 
transmission by employing the use of the Adams-
Bashforth-Moulton method to model and study the 
transmission and control of Chlamydia. 
 
Preliminary 
In this section we present a short history of some of the 
most significant concepts and electrocalculi in the 
fractional calculus. This is realized in the context of the 
right and left fractional Caputo derivatives, on the grounds 

of the paradigms developed by Milici et al. (2018) and 
Bonyah et al. (2020). More importantly, the paper provides 
some kind of overview of the practical applications of 
fractional calculus towards solving challenges in the real 
world in various areas like in physics, engineering, bio-
mathematics and other scientific activities. 
 
Definition 1 
Suppose that 𝑓 ∈ Λ∞(𝑅), then the left-side and right-side 
Caputo fractional derivative of the function   is given as 
follow:  

𝐶𝐷𝑡
𝜂
𝑓(𝑡) = (𝑡0𝐷𝑡

−(𝑛−𝜂)
(
𝑑

𝑑𝑡
)
𝑛

𝑓(𝑡))  

𝐶𝐷𝑡
𝜂
𝑓(𝑡) =

1

Γ(𝑛−𝜂)
∫ ((𝑡 − 𝜆)𝑛−𝜂−1𝑓𝑛(𝜆))
𝑡

0
𝑑𝜆   (1) 

The same way  

𝐶𝐷𝑡
𝜂
𝑓(𝑡) = (𝐷𝑇

−(𝑛−𝜂)
(
−𝑑

𝑑𝑡
)
𝑛

) 𝑓(𝑡)  

𝐷𝐶 𝑇
𝜂
𝑓(𝑡) =

(−1)𝑛

Γ(𝑛−𝜂)
∫ (𝜆 − 𝑡)
𝑇

𝑡

𝑛−𝜂−1
𝑓𝑛(𝜆)𝑑𝜆  

 
Definition 2 
The generalized Mittag-Leffler function 𝐸𝛼,𝛽(𝑥) for 𝑥 ∈ 𝑅 is 
given by   

𝐸𝜂,𝛽(𝑥) = ∑
𝑥𝑛

Γ(𝜂𝑛+𝜓)
∞
𝑛=0 , 𝜂, 𝜓 > 0      (2) 

which can also be represented as  
𝐸𝜂,𝜓(𝑥) = 𝑥𝐸𝜂,𝛼+𝜂(𝑥) +

1

Γ(𝜂)
   (3) 

𝐸𝜂,𝜓(𝑥) = 𝐿[𝑡
𝜂−1𝐸𝛼,𝜂(±𝜔𝑡𝛼)] =

𝑆𝛼−𝜂

𝑆𝛼±𝜔
     (4) 

 
Proposition 1 
Let  𝑓 ∈ Λ∞(𝑅) ∩ 𝐶(𝑅)and 𝛼 ∈ 𝑅, 𝑛 − 1 < 𝜂 < 𝑛, 
therefore, the conditions given below holds: 
1. 𝑡0

𝐶 𝐷𝑡
𝜂
𝐼𝜂𝑓(𝑡) = 𝑓(𝑡) 

2. 𝑡0
𝐶 𝐷𝑡

𝜂
𝐼𝜂𝑓(𝑡) = 𝑓(𝑡) − ∑

𝑡𝑘

𝐾!

𝑛−𝑘
𝑘−0 𝑓𝑘(𝑡0) 

 
Model Formulation and Description 
The rate at which individuals are recruited into the 
susceptible population is written as Λℎ   , and therefore, 
𝛽1, 𝛽2 are the effective rate of contact between the 
susceptible and infected humans and individuals under 
treatment due to Chlamydia respectively. We denote 𝜓2 as 
the transition rates of exposed Chlamydia classes to 
infected class. The rate at which infected humans are 
treated is given by 𝛼2  and 𝜎1  is the recovery rate of human 
due to Chlamydia. The natural rate of death among human 
beings is vested as 𝜇ℎ . The Chlamydia and human’s death 
rate due to the disease in the infected and treated 
individuals is expressed as 𝛿1, 𝛿5. The proportion of 
susceptible humans vaccinated against Chlamydia is 
taken to be 𝜙1 and , 𝜙2 where is the rate of vaccine failure., 
Recovered human population become susceptible again 
at the rate of 𝜏2. 
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Model Assumptions 
1. We assumed that the vaccine is imperfect in the 

sense that there is probability of vaccine failure. 

2. We assume that even once humans recovered of 
Chlamydia, they can still be vulnerable to it in the 
aftermath of the pathogen encounter. 

3. We assume that humans die due to disease in the 
population. 

 
Model Flow Diagram of Chlamydia 

 
Figure 1: Chlamydia Model Flow Diagram 

 
Chlamydia Model Equation 
𝑑𝑆ℎ

𝑑𝑡
= Λℎ + 𝜏2𝑅𝐶 + 𝜙2𝑉𝐶 − 𝜆𝐶𝑆ℎ − (𝜙1 + 𝜇ℎ)𝑆ℎ,  

𝑑𝐸𝐶

𝑑𝑡
= 𝜆𝐶𝑆ℎ − (𝜓2 + 𝜇ℎ)𝐸𝐶 ,  

𝑑𝐼𝐶

𝑑𝑡
= 𝜓2𝐸𝐶 − (𝛼2 + 𝛿1 + 𝜇ℎ)𝐼𝐶 ,  

𝑑𝑇𝐶

𝑑𝑡
= 𝛼2𝐼𝐶 − (𝜎1 + 𝛿5 + 𝜇ℎ)𝑇𝐶 ,  

 𝑑𝑉𝐶
𝑑𝑡
= 𝜙1𝑆ℎ − (𝜙2 + 𝜇ℎ)𝑉𝐶 , 

𝑑𝑅𝐶

𝑑𝑡
= 𝜎1𝑇𝐶 − (𝜏2 + 𝜇ℎ)𝑅𝐶 .  

Where 𝜆𝐶 =
(𝛽1𝐼𝐶+𝛽2𝑇𝐶)

𝑁ℎ
. 

 

Table 1: Model Variables and Parameters Descriptions 
Variables Descriptions 
𝑆ℎ  Humans who are susceptible to Chlamydia 
𝐸𝐶  Humans population who are Exposed to Chlamydia 
𝐼𝐶  Human population infected with Chlamydia 
𝑇𝐶  Human population on Chlamydia treatment 
𝑉𝐶  Vaccinated human population against Chlamydia 
𝑅𝐶  Recovered human population from Chlamydia 
  

Parameters Descriptions 
Λℎ  Recruitment rate of Susceptibility of people to Chlamydia  
𝛽1 The frequency of contact between the susceptible human beings and human infected being 
𝛽2  
𝜓2 Rate of exposure of human subjects to infected human beings 
𝛼2 Infected peoples, treatment rate 
𝜎1 The recoverability of the human being regarding the Chlamydia treatment 
𝜇ℎ  Natural death rate of human being 
𝛿1 Mortality rate of infected human population of Chlamydia 
𝛿5 The mortality of human beings under Chlamydia drugs due to disease in mankind 
𝜙1 Vaccination in human population who are susceptible 
𝜙2 The decline in the rate of vaccine 
𝜏2 The rate of conversion of the susceptible human population back into susceptibility 
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Fractional Chlamydia Mathematical Model 
In this part, we will extend the integer model of Chlamydia, 
in Equation (5), a Caputo fractional derivative operator. The 
latter variation is less constrained than the traditional one 
expressed in Equation (5) because the outcome of the 
fractional order model can be adjusted to take on various 
characteristics. The fractional Chlamydia model is thus 
developed as follows: 
𝐷𝐶 𝑡
𝜂
𝑆ℎ = Λℎ + 𝜏2𝑅𝐶 +𝜙2𝑉𝐶 −

(𝛽1𝐼𝐶+𝛽2𝑇𝐶)

𝑁ℎ
𝑆ℎ − 𝑃1𝑆ℎ,   (5) 

𝐷𝐶 𝑡
𝜂
𝐸𝐶 =

(𝛽1𝐼𝐶+𝛽2𝑇𝐶)

𝑁ℎ
𝑆ℎ − 𝑃2𝐸𝐶 ,  

𝐷𝐶 𝑡
𝜂
𝐼𝐶 = 𝜓2𝐸𝐶 − 𝑃3𝐼𝐶 ,    (6) 

𝐷𝐶 𝑡
𝜂
𝑇𝐶 = 𝛼2𝐼𝐶 − 𝑃4𝑇𝐶 ,  

 𝐷𝐶 𝑡
𝜂
𝑉𝐶 = 𝜙1𝑆ℎ − 𝑃5𝑉𝐶 , 

𝐷𝐶 𝑡
𝜂
𝑅𝐶 = 𝜎1𝑇𝐶 − 𝑃6𝑅𝐶 .  

Where 
𝑃1 = (𝜙1 + 𝜇ℎ), 𝑃2 = (𝜓2 + 𝜇ℎ), 𝑃3 = (𝛼2 + 𝛿1 + 𝜇ℎ), 𝑃4 =
(𝜎1 + 𝛿5 + 𝜇ℎ), 𝑃5 = (𝜙2 + 𝜇ℎ), 𝑃6 = (𝜏2 + 𝜇ℎ).  
Subject to positive initial conditions  
𝑆ℎ(0) = 𝑆ℎ0, 𝐸𝐶(0) = 𝐸𝐶0, 𝐼𝐶(0) = 𝐼𝐶0 , 𝑇𝐶(0) = 𝑇𝐶0, 𝑉𝐶(0) =
𝑉𝐶0, 𝑅𝐶(0) = 𝑅𝐶0.    (7) 
 
Positivity of Model Solution 
We considered the non-negativity of the initial values 
𝑁ℎ(𝑡) ≤

Λℎ
𝜇ℎ

 as 𝑡 → ∞  

Secondly, 𝑖𝑓 𝑙𝑖𝑚𝑠𝑢𝑝𝑁ℎ0 (𝑡) ≤
Λℎ
𝜇ℎ
, then our model 

feasible domain is given by:  

Ωℎ = {(𝑆ℎ, 𝐸𝐶 , 𝐼𝐶 , 𝑇𝐶 , 𝑉𝐶 , 𝑅𝐶 ) ⊂ 𝑅+
6 : (𝑆ℎ + 𝐸𝐶 +𝐼𝐶 + 𝑇𝐶 +

𝑉𝐶 + 𝑅𝐶 ) ≤
Λℎ
𝜇ℎ
}, 

hence  Ω is positively invariant. 
If (𝑆ℎ0, 𝐸𝐶0, 𝐼𝐶0 , 𝑇𝐶0, 𝑉𝐶0, 𝑅𝐶0 )are non-negative, then the 
solution of model (6) will be non-negative for 𝑡> 0. From Eq. 
(6), selecting the first equation, we obtained: 

𝐷𝐶 𝑡
𝜂
𝑆ℎ = Λℎ + 𝜏2𝑅𝐶 + 𝜙2𝑉𝐶 −

(𝛽1𝐼𝐶 + 𝛽2𝑇𝐶)

𝑁ℎ
𝑆ℎ − 𝑃1𝑆ℎ , 

𝐷𝐶 𝑡
𝜂
𝑆ℎ +

(𝛽1𝐼𝐶+𝛽2𝑇𝐶+𝑃1)

𝑁ℎ
𝑆ℎ = Λℎ + 𝜏2𝑅𝐶 + 𝜙2𝑉𝐶 ,  

But Λℎ + 𝜏2𝑅𝐶 + 𝜙2𝑉𝐶 ≥ 0then 

𝐷𝐶 𝑡
𝜂
𝑆ℎ +

(𝛽1𝐼𝐶+𝛽2𝑇𝐶+𝑃1)

𝑁ℎ
𝑆ℎ ≥ 0.  

Applying the Laplace transform we obtained: 

𝐿[ 𝐷𝐶 𝑡
𝜂
𝑆ℎ] + 𝐿 [

(𝛽1𝐼𝐶+𝛽2𝑇𝐶+𝑃1)

𝑁ℎ
𝑆ℎ] ≥ 0.  

𝑆ℎ
𝜂
𝑆ℎ(𝑠) − 𝑆ℎ

𝜂−1
𝑆ℎ(0) +

(𝛽1𝐼𝐶+𝛽2𝑇𝐶+𝑃1)

𝑁ℎ
𝑆ℎ(𝑠) ≥ 0,  

𝑆ℎ(𝑠) ≥
𝑆ℎ
𝜂−1

𝑆ℎ
𝜂
+
(𝛽1𝐼𝐶+𝛽2𝑇𝐶+𝑃1)

𝑁ℎ
𝑆ℎ

𝑆ℎ(0).    (8)   

By taking the inverse Laplace transforms, we obtained; 

𝑆ℎ(𝑡) ≥ 𝐸𝑡𝜂,1 (
(𝛽1𝐼𝐶+𝛽2𝑇𝐶+𝑃1)

𝑁ℎ
𝑆ℎ𝑡

𝜂) 𝑆ℎ0.      (9) 

Now since the term on the right-hand side of Eq. (9) is 
positive, we conclude that 𝑆ℎ ≥ 0 for𝑡 ≥ 0. In the same 
way, we also have that (𝐸𝐶 ≥0, 𝐼𝐶 ≥ 0, 𝑇𝐶 ≥ 0, 𝑉𝐶 ≥
0, 𝑅𝐶 ≥0) are positives, therefore, the solution will remain 
in 𝑅+6  for all  𝑡 ≥ 0 with positive initial conditions. 
 
Boundedness of Fractional Model Solution 
The total human population from our model is given by; 
𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐸𝐶(𝑡) + 𝐼𝐶(𝑡) + 𝑇𝐶(𝑡) + 𝑉𝐶(𝑡) + 𝑅𝐶(𝑡) 
So from our fractional model (6), we now obtain  
𝐷𝐶 𝑡
𝜂
𝑁ℎ(𝑡) = 𝐷𝐶 𝑡

𝜂
𝑆ℎ(𝑡) + 𝐷𝐶 𝑡

𝜂
𝐸𝐶(𝑡) + 𝐷𝐶 𝑡

𝜂
𝐼𝐶(𝑡) +

𝐷𝐶 𝑡
𝜂
𝑇𝐶(𝑡) + 𝐷𝐶 𝑡

𝜂
𝑉𝐶(𝑡) + 𝐷𝐶 𝑡

𝜂
𝑅𝐶(𝑡).   (10) 

Taking the Laplace transformation of (10) we obtained; 
𝐿[𝑐𝐷𝑡

𝜂
𝑁ℎ(𝑡)] = 𝐿[Λℎ − 𝜇ℎ𝑁ℎ(𝑡)]  

𝑆ℎ
𝜂
𝑁ℎ(𝑠) − 𝑆ℎ

𝜂−1
𝑁ℎ(0) + 𝜇ℎ𝑁ℎ(𝑠) ≤

Λℎ
𝜇ℎ
,  

𝑁ℎ(𝑠) ≤
𝑆ℎ
𝜂−1

(𝑆𝜂+𝜇ℎ)
𝑁ℎ(0) +

Λℎ
𝑆ℎ(𝑆ℎ

𝜂
+𝜇ℎ)

  (11) 

 Taking the inverse Laplace transform of Eq. (11) we have; 
𝑁ℎ(𝑡) ≤ 𝐸ℎ𝜂,1(𝜇ℎ𝑡

𝜂)𝑁ℎ(0) + Λℎ𝐸ℎ𝜂,𝜂+1(𝜇ℎ𝑡𝜂)    (12)   
At 𝑡 → ∞, the limit of Eq. (12) becomes; 
𝑙𝑖𝑚
𝑡→∞
𝑆𝑢𝑝𝑁ℎ(𝑡) =

Λℎ
𝜇ℎ
.  

This means that, if 𝑁ℎ0 ≤
Λℎ
𝜇ℎ

 

then 𝑁ℎ(𝑡) ≤
Λℎ

𝜇ℎ
 which implies that,𝑁ℎ(𝑡) is bounded. 

We now conclude that, this regionΩ = Ωℎ, is well posed 
and equally feasible epidemiologically. 
 
Existence and Uniqueness of our Model Solution 
Let the real non-negative be 𝑊we consider 𝑃 = [0,𝑊]. 
All continuous function that exists on P belongs to 𝑁ℎ𝑒

0 (𝑊) 
with norm as; 
‖𝐾‖ = 𝑆𝑢𝑝{|𝐾(𝑡)|, 𝑡 ∈𝑊}.  
The modeled system (6) along with specified initial (8) 
enables solving for a system of differential equations 
presented in (13). 
𝐷𝑐 𝑡
𝜌
𝐾(𝑡) = 𝑍(𝑡, 𝐾(𝑡)), 0 < 𝑡 < 𝑊 < ∞,    (13) 

𝐾(0) = 𝐾0.  
Where 𝐾(𝑡) = (𝑆ℎ, 𝐸𝐶 , 𝐼𝐶 , 𝑇𝐶 , 𝑉𝐶 , 𝑅𝐶 ).represents the 
classes and Z be a continuous function defined as follows; 
 

 

𝑍(𝑡, 𝐾(𝑡)) =

(

 
 
 
 

𝑍1(𝑡, 𝑆ℎ(𝑡))

𝑍2(𝑡, 𝐸𝐶(𝑡))

𝑍3(𝑡, 𝐼𝐶(𝑡))

𝑍4(𝑡, 𝑇𝐶(𝑡))

𝑍5(𝑡, 𝑉𝐶(𝑡))

𝑍6(𝑡, 𝑅𝐶(𝑡)))

 
 
 
 

=

(

 
 
 
 
 

Λℎ + 𝜏2𝑅𝐶 + 𝜙2𝑉𝐶 −
(𝛽1𝐼𝐶+𝛽2𝑇𝐶)

𝑁ℎ
𝑆ℎ − (𝜙1 + 𝜇ℎ)𝑆ℎ

(𝛽1𝐼𝐶+𝛽2𝑇𝐶)

𝑁ℎ
𝑆ℎ − (𝜓2 + 𝜇ℎ)𝐸𝐶

𝜓2𝐸𝐶 − (𝛼2 + 𝛿1 + 𝜇ℎ)𝐼𝐶
𝛼2𝐼𝐶 − (𝜎1 + 𝛿5 + 𝜇ℎ)4𝑇𝐶
𝜙1𝑆ℎ − (𝜙2 + 𝜇ℎ)𝑉𝐶
𝜎1𝑇𝐶 − (𝜏2 + 𝜇ℎ)𝑅𝐶 )

 
 
 
 
 

,    (14) 
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Using proposition (2.1), we have that,   

𝑆ℎ(𝑡) = 𝑆ℎ0 + 𝐼𝑡
𝜂
[Λℎ + 𝜏2𝑅𝐶 + 𝜙2𝑉𝐶 −

(𝛽1𝐼𝐶+𝛽2𝑇𝐶)

𝑁ℎ
𝑆ℎ − (𝜙1 + 𝜇ℎ)𝑆ℎ],  

𝐸𝐶(𝑡) = 𝐸𝐶0 + 𝐼𝑡
𝜂
[
(𝛽1𝐼𝐶+𝛽2𝑇𝐶)

𝑁ℎ
𝑆ℎ − (𝜓2 + 𝜇ℎ)𝐸𝐶]        (15) 

𝐼𝐶(𝑡) = 𝐼𝐶0 + 𝐼𝑡
𝜂[𝜓2𝐸𝐶 − (𝛼2 + 𝛿1 + 𝜇ℎ)𝐼𝐶],  

𝑉𝐶(𝑡) = 𝑉𝐶0 + 𝐼𝑡
𝜂[𝜙1𝑆ℎ − (𝜎1 + 𝛿5 + 𝜇ℎ)𝑉𝐶],   

𝑇𝐶(𝑡) = 𝑇𝐶0 + 𝐼𝑡
𝜂[𝛼2𝐼𝐶 − (𝜙2 + 𝜇ℎ)𝑇𝐶],  

𝑅𝐶(𝑡) = 𝑅𝐶0 + 𝐼𝑡
𝜂[𝜎1𝑇𝐶 − (𝜏2 + 𝜇ℎ)𝑅𝐶].  

We obtain the Picard iteration of (15) as follows; 

𝑆ℎ(𝑡) = 𝑆ℎ0 +
1

Γ(𝜂)
∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑍1
𝑡

0
(𝜆, 𝑆ℎ(𝑛−1)(𝜆𝐶)) 𝑑 𝜆𝐶 ,  

𝐸𝐶(𝑡) = 𝐸𝐶0 +
1

Γ(𝜂)
∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑍2
𝑡

0
(𝜆𝐶 , 𝐸𝐶(𝑛−1)(𝜆𝐶))𝑑𝜆𝐶 ,            (16) 

𝐼𝐶(𝑡) = 𝐼𝐶0 +
1

Γ(𝜂)
∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑍3
𝑡

0
(𝜆𝐶 , 𝐼𝐶(𝑛−1)(𝜆𝐶))𝑑𝜆𝐶 ,  

𝑇𝐶(𝑡) = 𝑇𝐶0 +
1

Γ(𝜂)
∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑍4
𝑡

0
(𝜆𝐶 , 𝑇𝐶(𝑛−1)(𝜆𝐶))𝑑𝜆𝐶 ,  

𝑉𝐶(𝑡) = 𝑉𝐶0 +
1

Γ(𝜂)
∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑍5
𝑡

0
(𝜆𝐶 , 𝑉𝐶(𝑛−1)(𝜆𝐶))𝑑𝜆𝐶 ,  

𝑅𝐶(𝑡) = 𝑅𝐶0 +
1

Γ(𝜂)
∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑍6
𝑡

0
(𝜆𝐶 , 𝑅𝐶(𝑛−1)(𝜆𝐶))𝑑𝜆𝐶 .  

Transforming equation eq. (13) to get  
𝑋(𝑡) = 𝑋(0) +

1

Γ(𝜂)
∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑍
𝑡

0
(𝜆𝐶 , 𝑋(𝜆𝐶)) 𝑑 𝜆𝐶 .         (17) 

Lemma 1, The equation (14) gives us the definition of the Lipchitz condition which vector satisfies; 𝑍(𝑡, 𝐾(𝑡)) on a set 
[0,𝑊[]+

6 ] with the Lipchitz constant given as; 

𝜔 = 𝑚𝑎𝑥 ((𝛽1
* + 𝛽2

* + 𝜙1 + 𝜇ℎ), (𝜓2 + 𝜇ℎ), (𝛼2 + 𝛿1 + 𝜇ℎ), (𝜎1 + 𝛿5 + 𝜇ℎ), (𝜙2 + 𝜇ℎ), (𝜏2 + 𝜇ℎ)).  
Proof: 
‖𝑍1(𝑡, 𝑆ℎ) − 𝑍1(𝑡, 𝑆ℎ1)‖,   
= ‖Λℎ + 𝜏2𝑅𝐶 + 𝜙2𝑉𝐶 − 𝜆𝐶𝑆ℎ − (𝜙1 + 𝜇ℎ)𝑆ℎ, −Λℎ + 𝜏2𝑅𝐶 + 𝜙2𝑉𝐶 − 𝜆𝐶𝑆ℎ − (𝜙1 + 𝜇ℎ)𝑆ℎ1‖,  
= ‖−Λℎ + 𝜏2𝑅𝐶 + 𝜙2𝑉𝐶 − 𝜆𝐶𝑆ℎ − (𝜙1 + 𝜇ℎ)(𝑆ℎ − 𝑆ℎ1) + 𝜇ℎ(𝑆ℎ − 𝑆ℎ1)‖ ≤ (𝛽1

* + 𝛽1
* + 𝜙1 + 𝜇ℎ)‖𝑆ℎ − 𝑆ℎ1‖ + 𝜇ℎ‖𝑆ℎ −

𝑆ℎ1‖, ∴ ‖𝑍1(𝑡, 𝑆ℎ) − 𝑍1(𝑡, 𝑆ℎ1)‖ ≤ (𝛽1
* + 𝛽2

* + 𝜙1 + 𝜇ℎ)‖𝑆ℎ − 𝑆ℎ1‖. 
Similarly, we obtained the following: 

( ) ( ) ( )2 2 1 2 1,E ,E E E ,C C h C CZ t Z t  −  + −
 

( ) ( ) ( )3 3 1 2 1 1, I , I ,C C h C CZ t Z t I I  −  + + −
 

( ) ( ) ( )4 4 41 1 5 1,T ,T ,C h C CZ t Z t T T  −  + + −
          (18) 

( ) ( ) ( )5 5 1 2 1,V ,V ,C C h C CZ t Z t V V −  + −
  

‖𝑍6(𝑡, 𝑅𝐶 ) − 𝑍6(𝑡, 𝑅𝐶1 )‖ ≤ (𝜏2 + 𝜇ℎ)‖𝑅𝐶 − 𝑅𝐶1‖.   
Where we obtained: 
‖𝑍(𝑡, 𝐾1(𝑡)) − 𝑍(𝑡, 𝐾2(𝑡))‖ ≤ 𝜔‖𝐾1 − 𝐾2‖,  
𝜔 = 𝑚𝑎𝑥 ((𝛽1

* + 𝛽2
* + 𝜙1 + 𝜇ℎ), (𝜓2 + 𝜇ℎ), (𝛼2 + 𝛿1 + 𝜇ℎ), (𝜎1 + 𝛿5 + 𝜇ℎ), (𝜙2 + 𝜇ℎ), (𝜏2 + 𝜇ℎ)).   (19) 

Lemma 2: The initial value problem (6), (7) in Eq. (19) exists and will have a unique solution 
𝐾(𝑡) ∈ 𝐷𝑐

0(𝐸).  
Applying PicardLindelöfand fixed-point conjecture, we consider the solution of  
𝐾(𝑡) = 𝑆ℎ(𝐾(𝑡)),  
where S is defined as the Picard operator expressed as: 
𝑆ℎ: 𝐷𝑐

0(𝐸, 𝑅+
6) → 𝐷𝑐

0(𝐸, 𝑅+
6).  

Therefore, 
𝑆ℎ(𝐾(𝑡)) = 𝐾(0) +

1

Γ(𝜂)
∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑍
𝑡

0
(𝜆𝐶 , 𝐾(𝜆𝐶)) 𝑑 𝜆𝐶 .  

which becomes,  
‖𝑆ℎ(𝐾1(𝑡)) − 𝑆ℎ(𝐾2(𝑡))‖   

= ‖
1

Γ(𝜂)
[∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑍(𝜆𝐶 , 𝐾1(𝜆𝐶)) − 𝑍(𝜆𝐶 , 𝐾2(𝜆𝐶)) 𝑑 𝜆𝐶
𝑡

0
]‖  
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≤
1

Γ(𝜂)
∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑡

0
‖𝑍(𝜆𝐶 , 𝐾1(𝜆𝐶)) − 𝑍(𝜆𝐶 , 𝐾2(𝜆𝐶)) 𝑑 𝜆𝐶‖.  

≤
𝜔

Γ(𝜂)
∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑡

0
‖𝐾1 − 𝐾2‖𝑑𝜆𝐶 .  

‖𝑆ℎ(𝐾1(𝑡)) − 𝑆ℎ(𝐾2(𝑡))‖ ≤
𝜔

Γ(𝜂+1)𝑆ℎ
.  

When 𝜔

Γ(𝜂+1)
𝑆ℎ ≤ 1, 

then the Picard operator gives a contradiction, so Eq. (6), (7) solution is unique. 
Lemma 2: The initial value problem (6), (7) in Eq. (19) exists and will have a unique solution. 
𝑋(𝑡) ∈ 𝐴𝑐

0(𝑓).  
Using Picard-Lindelöf and fixed- point theory, we consider the solution of  
𝑋(𝑡) = 𝑆ℎ(𝑋(𝑡)),  
where S is defined as the Picard operator expressed as; 
𝑆ℎ: 𝐴𝑐

0(𝑓, 𝑅+
6) → 𝐴𝑐

0(𝑓, 𝑅+
6).  

Therefore, 
𝑆ℎ(𝑋(𝑡)) = 𝑋(0) +

1

Γ(𝜂)
∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑍
𝑡

0
(𝜆𝐶 , 𝑋(𝜆𝐶)) 𝑑 𝜆𝐶 .  

This becomes, 
‖𝑆ℎ(𝑋1(𝑡)) − 𝑆ℎ(𝑋2(𝑡))‖  
= ‖

1

Γ(𝜂)
[∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑍(𝜆𝐶 , 𝑋1(𝜆𝐶)) − 𝑍(𝜆𝐶 , 𝑋2(𝜆𝐶)) 𝑑 𝜆𝐶
𝑡

0
]‖,  

≤
1

Γ(𝜂)
∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑡

0
‖𝑍(𝜆𝐶 , 𝑋1(𝜆𝐶)) − 𝑍(𝜆𝐶 , 𝑋2(𝜆𝐶)) 𝑑 𝜆𝐶‖.  

≤
𝜓

Γ(𝜂)
∫ (𝑡 − 𝜆𝐶)

𝜂−1𝑡

0
‖𝑋1−𝑋2 ‖𝑑𝜆𝐶 .  

‖𝑆ℎ(𝑋1(𝑡)) − 𝑆ℎ(𝑋2(𝑡))‖ ≤
𝜓

Γ(𝜂+1)𝑆ℎ
.  

When 𝜓

Γ(𝜂+1)
𝑆ℎ ≤ 1, then the Picard operator gives a contradiction, 

So Eq. (6), (7) solution is unique. 
 
Fractional Order Model Numerical Results  
The generalized fractional Adams-Bashforth-Moulton step-by-step technique by Bonyah. et al. (2020) was used to 
numerically solve the same fractional-order Chlamydia model. Table 1 indicates the parameters values of the model and 
Table 2 indicates different fractional values of the order used and simulated by the model. 
 
Implementation of Fractional Adams–Bashforth–Moulton Method  
The method described by Baskonus. and Bulut  (2015) has been employed by the current study. Approximate solution of 
fractional Chlamydia model (6) obtained by the fractional Adams-Bashforth-Moulton method is as follows. The fractional 
heterogeneous form (6) is, then, obtained. 
𝐷𝑐 𝑡
𝜂
𝐻(𝑡) = 𝑄(𝑡, 𝑞(𝑡)), 0 < 𝑡 < 𝜔,             (20) 

𝐻(𝑛)(0) = 𝐻0
(𝑛), 𝑛 = 1,0, . . . , 𝑞, 𝑞 = [𝛼].  

The  𝐻 = (𝑆ℎ
* , 𝐸𝐶

* , 𝐼𝐶
* , 𝑇𝐶 , 𝑉𝐶

*, 𝑅𝐶
* ) ∈ 𝑅+

6and 𝑉(𝑡, 𝑞(𝑡))  
the above (open-ended delivery order (27) may thus be written in terms of the concept of fractional integral as; 

 𝐻(𝑡) = ∑ 𝐻0
(𝑛)𝑚−1

𝑛=0
𝑡𝑛

𝑛!
+

1

Γ(𝜂)
∫ (𝑡 − 𝑦)
𝑡

0

𝜂−1
𝑅(𝑘,𝑚 (𝑘))𝑑𝑘         (21) 

Using the method described in Amos et al.(2024), we let the step size 𝑔 = 𝜔

𝑁
, 𝑁 ∈ Ν with a grid that is uniform on  [0, 𝜔]. 

Where 𝑡𝑐 = 𝑐𝑟, 𝑐 = 0,1,1, . . . 𝑁. Thus, and fractional order model of Chlamydia model could be well approximated as (6) 
creates: 

𝑆ℎ(𝑘+1)(𝑡) = 𝑆ℎ0 +
𝑔𝜂

Γ(𝜂+2)
{Λℎ + 𝜏2𝑅𝐶𝑛 + 𝜙2𝑉𝐶𝑛 −

(𝛽1𝐼𝐶+𝛽2𝑇𝐶)

𝑁ℎ
𝑛 𝑆𝐶

𝑛 − (𝜙1 + 𝜇ℎ)𝑆𝐶
𝑛} +

𝑔𝜂

Γ(𝜂+2)
∑ 𝑑𝑦, 𝑘 + 1 {Λℎ + 𝜏2𝑅𝐶𝑦 +𝑘
𝑦=0

𝜙2𝑉𝐶𝑦 −
(𝛽1𝐼𝐶+𝛽2𝑇𝐶)

𝑁ℎ𝑦
𝑆ℎ𝑦 − (𝜙1 + 𝜇ℎ)𝑆ℎ𝑦},  

𝐸𝐶(𝑘+1)(𝑡) = 𝐸𝐶0 +
𝑔𝜂

Γ(𝜂+2)
{
(𝛽1𝐼𝐶

𝑛+𝛽2𝑇𝐶
𝑛)

𝑁ℎ
𝑛 𝑆𝐶

𝑛 − (𝜓2 + 𝜇ℎ)𝐸𝐶
𝑛} +

𝑔𝜂

Γ(𝜂+2)
∑ 𝑑𝑦, 𝑘 + 1 {

(𝛽1𝐼𝐶𝑦+𝛽2𝑇𝐶𝑦)

𝑁ℎ𝑦
𝑆ℎ𝑦 − (𝜓2 + 𝜇ℎ)𝐸𝐶𝑦}

𝑘
𝑦=0 ,(22) 

𝐼𝐶(𝑘+1)(𝑡) = 𝐼0 +
𝑔𝜂

Γ(𝜂+2)
{𝜓2𝐸𝐶

𝑛 − (𝛼2 + 𝛿1 + 𝜇ℎ)𝐼𝐶
𝑛} +

𝑔𝜂

Γ(𝜂+2)
∑ 𝑑𝑦, 𝑘 + 1{𝜓2𝐸𝐶𝑦 − (𝛼2 + 𝛿1 + 𝜇ℎ)𝐼𝐶𝑦}
𝑘
𝑦=0 ,  

𝑇𝐶(𝑘+1)(𝑡) = 𝑇𝐶0 +
𝑔𝜂

Γ(𝜂+2)
{𝛼2𝐼𝐶

𝑛 − (𝜎1 + 𝛿5 + 𝜇ℎ)𝑇𝐶
𝑛} +

𝑔𝜂

Γ(𝜂+2)
∑ 𝑑𝑦, 𝑘 + 1{𝛼2𝐼𝐶𝑦 − (𝜎1 + 𝛿5 + 𝜇ℎ)𝑇𝐶𝑦}
𝑘
𝑦=0 ,  

𝑉𝐶(𝑘+1)(𝑡) = 𝑉𝐶0 +
𝑔𝜂

Γ(𝜂+2)
{𝜙1𝑆ℎ

𝑛 − (𝜙2 + 𝜇ℎ)𝑉𝐶
𝑛} +

𝑔𝜂

Γ(𝜂+2)
∑ 𝑑𝑦, 𝑘 + 1{𝜙1𝑆ℎ𝑦 − (𝜙2 + 𝜇ℎ)𝑉𝐶𝑦}
𝑘
𝑦=0 ,  
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𝑅𝐶(𝑘+1)(𝑡) = 𝑅𝐶0 +
𝑔𝜂

Γ(𝜎+2)
{𝜎1𝑇𝐶

𝑛 − (𝜏2 + 𝜇ℎ)𝑅𝐶
𝑛} +

𝑔𝜂

Γ(𝜂+2)
∑ 𝑑𝑦, 𝑘 + 1{𝜎1𝑇𝐶𝑦 − (𝜏2 + 𝜇ℎ)𝑅𝐶𝑦}
𝑘
𝑦=0 .  

Where  

𝑆ℎ(𝑘+1)
𝑛 (𝑡) = 𝑆ℎ0 +

1

Γ(𝜂)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {Λℎ + 𝜏2𝑅𝐶𝑦 + 𝜙2𝑉𝐶𝑦 −

(𝛽1𝐼𝐶+𝛽2𝑇𝐶)

𝑁ℎ𝑦
𝑆ℎ𝑦 − (𝜙1 + 𝜇ℎ)𝑆ℎ𝑦},  

𝐸𝐶(𝑘+1)
𝑛 (𝑡) = 𝐸𝐶0 +

1

Γ(𝜂)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {

(𝛽1𝐼𝐶𝑦+𝛽2𝑇𝐶𝑦)

𝑁ℎ𝑦
𝑆ℎ𝑦 − (𝜓2 + 𝜇ℎ)𝐸𝐶𝑦},       (23) 

𝐼𝐶(𝑘+1)
𝑛 (𝑡) = 𝐼𝐶0 +

1

Γ(𝜂)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝜓2𝐸𝐶𝑦 − (𝛼2 + 𝛿1 + 𝜇ℎ)𝐼𝐶𝑦},  

𝑇𝐶(𝑘+1)
𝑛 (𝑡) = 𝑇𝐶0 +

1

Γ(𝜂)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝛼2𝐼𝐶𝑦 − (𝜎1 + 𝛿5 + 𝜇ℎ)𝑇𝐶𝑦},   

𝑉𝐶(𝑘+1)
𝑛 (𝑡) = 𝑉𝐶0 +

1

Γ(𝜂)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝜙1𝑆ℎ𝑦 − (𝜙2 + 𝜇ℎ)𝑉𝐶𝑦},  

𝑅𝐶(𝑘+1)
𝑛 (𝑡) = 𝑅𝐶0 +

1

Γ(𝜂)
∑ 𝑓𝑦,𝑘+1
𝑘
𝑦=0 {𝜎1𝑇𝐶𝑦 − (𝜏2 + 𝜇ℎ)𝑅𝐶𝑦}.  

From (29) and (30) obtained; 
𝑑𝑦,𝐾+1= 𝐾

𝜂+1 − (𝑘 − 𝜂)(𝑘 + 𝜂)𝜂, 𝑦 = 0.  
(𝑘 − 𝑦 + 2)𝜂+1 + (𝑘 − 𝜂)𝜂+1 − 2(𝑘 − 𝑦 + 1)𝜂+1, 1 ≤ 𝑦 ≤ 𝑘  

and 𝑓𝑦,𝑘+1 =
𝑔𝜂

𝜂
[(𝑘 − 𝑦 + 1)𝜂(𝑘 − 𝑦)𝜂], 0 ≤ 𝑦 ≤ 𝑘. 

 
Importance of using the Fractional Adam-Bashforth Moulton Method in Obtaining the Numerical Solutions of the 
Model 

i. The fractional Adams-Bashforth-Moulton scheme merely requires an additional evaluation of a single function 
per step and is of high order of accuracy. 

ii. An advantage of this approach is built-in error control, and it can frequently be used to implement ODE solvers to 
perform integration. 

 
Table 2: Parameter Values and Sources  

Parameter Value Source 
Λ 0.007 Joseph et al. (2025) 
𝛽1 0.3425 WHO (2022) 
𝛽2  Joseph et al. (2025) 
𝜓2 0.21 Estimated 
𝛼2 0.1 Joseph et al. (2025) 
𝜎1 0.05 Joseph et al. (2025) 
𝜇ℎ  0.012 WHO (2021) 
𝜏2 0.5 Estimated 
𝜙1 0.4 WHO (2021) 
𝜙2 0.67 WHO (2021) 
𝛿1 0.0054 Estimated 
𝛿2 0.0023 Estimated 

 
 
 
 
 
 
Numerical Simulation 
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Figure 2a: Simulation of Susceptible humans to 
Chlamydia 

 
Figure 2b: Simulation of Exposed humans to 
Chlamydia 

 
Figure 2c: Simulation of Infected humans population 
with Chlamydia 

 
Figure 2d: Simulation of humans on Chlamydia 
treatment 

 
Figure 2e: Simulation of Recovered humans from 
Chlamydia  

 
Figure 2f: Simulation of cumulative new cases of 
Chlamydia  

 
Figure 2g: Simulation of cumulative new cases of 
Chlamydia  

 
Figure 2h: Simulation of Exposed human population 
to Chlamydia  
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(2a) demonstrates computational modeling of the effects 
of vaccination rate (𝜙1)among susceptible individuals on 
the susceptible human population. As can be seen, 
increased rate (𝜙1) of vaccination contributes to lessening 
of the susceptible human to Chlamydia.  
(2b) illustrates the modeling of how a vaccination rate (𝜙1) 
of susceptible human population to Chlamydia affects 
exposed people. It is possible to note that the further 
increase in the rate (𝜙1) of vaccination will result in 
decreasing the number of humans exposed to Chlamydia.  
 (2c) presents the simulation of effects of the rate (𝜙1)of 
vaccination of susceptible human population to 
Chlamydia on infected human population with Chlamydia. 
This illustrates that the increment in the rate (𝜙1)of 
vaccination lead to the declining of the level of infected 
human by the Chlamydia. 
(2d) illustrates the result of the simulation of 
meaningfulness of the rate of vaccination (𝜙1) of 
susceptible human population against the Chlamydia to 
human population on Chlamydia treatment. It has been 
noted that the higher the rate of vaccination (𝜙1)the fewer 
the human beings who are under treatment in terms of 
Chlamydia disease. 
(2e) exhibits the simulation of the influence of the rate of 
vaccination (𝜙1) on people, who were susceptible to 
Chlamydia, on the population of humans who have already 
recovered, but are not immune to Chlamydia. This implies 
that the more the human population is vaccination of 
human population (𝜙1)the lower it is recovered with 
Chlamydia disease. 
(2f) illustrates the simulated effect of the rate of human 
vaccination (𝜙1) against Chlamydia on the cumulatively 
new cases of Chlamydia. This implies that the great 
population coverage of vaccination has led to the reduced 
cases of the new instances of the Chlamydia disease. 
(2g) shows the simulation of the effect of contact rate (𝛽1) 
of susceptible human population and infected human 
population with Chlamydia on cumulative new cases of 
Chlamydia. It is observed that, in effect, as the contact rate  
(𝛽1) increases the number of new cases of Chlamydia 
increases.  
(2h) shows the simulation of the impact   of contact rate 
(𝛽1)  of susceptible humans and infected human 
population to Chlamydia on exposed human population 
with Chlamydia. It is noted that, the faster the rate of 
contact (𝛽1)the higher the population of exposed human 
being to Chlamydia.  
 
CONCLUSION 
In this article, we applied Caputo fractional derivative as a 
fraction operator in developing a mathematical model that 
could enable us explore the transmission of Chlamydia 
and the actions taken to thwart the same. Our study 
triggered a profound theorization of this fractional 
Chlamydia model since it should be noted that fractional 

modeling has been deemed essential in the management 
of this disease. It numerically solved the mathematical 
model in the fractional Adams-Bashforth-Moulton 
scheme. Fractional orders of the Caputo operator and 
parameters of the model defined the evolution of the 
disease incidence according to the simulation. We carried 
out a numerical simulation of a modulus of variation in 
intensity of immunization of susceptible people and the 
exposure rate of the infected human population. The 
resultant implication was that, an increase in the 
vaccination level will decrease the prevalence rate of 
Chlamydia whereas a decrease in the contact rate would 
drasticize the prevalence rate of Chlamydia amongst the 
general population. The outcome of the study is 
recommended to address the non-linear types of partial 
differentiations by using the analytical process of solving 
of partial differentiations as described by Amos et al. 
(2024). 
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