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ABSTRACT

This study assessed the physicochemical properties, chemical
speciation, and ecological risk of heavy metals in farmland soils near
municipal dumpsites in Anyigba, Nigeria. The soils were slightly
acidic (pH 5.2-6.4), with moderate organic matter (1.82-2.65%) and
cation exchange capacity (7.4-12.3 cmol/kg), while electrical
conductivity was low (92-148 uS/cm), indicating non-saline
conditions that promote metal mobility. Heavy metals occurred in
the ranges: Cd (4.60-5.91 mg/kg), Cu (5.81-12.44 mg/kg), Ni (11.70-
18.92 mg/kg), Cr (4.93-8.17 mg/kg), and Pb (3.99-6.25 mg/kg).
Speciation analysis showed Cd concentrated in exchangeable and
carbonate fractions (45-58%), reflecting high mobility; Cu was
mainly bound to organic matter (40-52%); Ni dominated reducible
fractions (35-48%); Cr occurred in the residual fraction (55-68%);
and Pb partitioned into carbonate and reducible fractions (30-45%)).
Contamination factors (CF) indicated very high Cd contamination
(6.0-7.5), moderate Ni (2.0-3.0), Cu (1.2-2.1), and Pb (1.1-1.8), and
low Cr (0.8-1.4). The Pollution Load Index (PLI) ranged 1.2-2.0,
confirming overall deterioration, while the Nemerow Pollution Index
(NPI) of 2.4-3.1 signaled considerable pollution risk. Ecological Risk
Index (ERI) values highlighted Cd as the major contributor (60-70% of
total risk), with individual ERI of 180-220, categorizing it as a
“considerable ecological risk.” In contrast, Cu, Ni, Cr, and Pb
presented low to moderate risks (ERI < 40). Integration of soil
properties with speciation data indicated that acidic pH and
relatively low organic matter enhanced Cd solubility and
bioavailability, whereas organic complexation stabilized Cu. These
results demonstrate that ecological assessments must consider
both total concentrations and chemical forms of metals.
Recommended interventions include phytoremediation, soil organic
amendments, and stricter waste management to mitigate
contamination and ensure sustainable agriculture in Anyigba.
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INTRODUCTION

Environmental pollution has emerged as a defining
challenge of the 21st century, threatening ecosystem
integrity and human well-being. Among the different forms
of pollution, soil contamination by heavy metals and
metalloids poses a particularly long-term and irreversible
risk (Kapku et al., 2024). In developing regions such as
Nigeria, rapid urbanization, population growth, and weak
waste management infrastructure have resulted in
widespread reliance on open dumpsites for municipal
solid waste disposal (Abata et al., 2024). These sites
contain  heterogeneous waste streams—including
plastics, textiles, batteries, metals, and household
residues—that degrade over time and release potentially
toxic elements (PTEs) into surrounding soils. Unlike
organic pollutants, which may be mineralized to less
harmful compounds, heavy metals are non-biodegradable
and persist for decades or centuries, undergoing chemical
transformations that often enhance their mobility and
toxicity (Olisa et al., 2024; Obunwo et al., 2024).

The primary pathways of heavy metal input into soils are
both natural and anthropogenic; however, anthropogenic
contributions such asindustrial emissions, mining, vehicle
exhaust, agrochemical use, and indiscriminate waste
disposal remain dominant (de Souza et al., 2023). In
Nigerian cities, including Anyigba, dumpsites are
frequently located near residential zones, farmlands, and
water bodies, increasing the risk of soil, air, and
groundwater contamination via leachate migration and
dust dispersal (Kumar et al., 2024). Chronic human
exposure to even low concentrations of heavy metals has
been linked to neurotoxicity, renal impairment,
developmental disorders, and carcinogenesis in vital
organs (Fulke et al., 2024; Eze and Chukwu, 2023).
Crucially, the ecological and health risks of heavy metals
are governed not only by their total concentrations but also
by their chemical speciation, which determines
bioavailability and mobility. Sequential extraction
techniques provide insights into operationally defined
fractions—exchangeable, carbonate-bound, Fe/Mn oxide-
bound, organic-bound, and residual—thereby enabling a
more accurate assessment of contamination levels
(Zulfigar et al., 2023; Uchimiya et al., 2020). Despite
extensive studies across Nigerian cities, data on metal
speciation in Anyigba remain sparse, with most
investigations limited to bulk concentration analysis.
Addressing this gap is essential for evaluating long-term
ecological risks, informing remediation strategies, and
guiding evidence-based environmental policies.

MATERIAL AND METHODS

Study Area

The study was carried out in Anyigba, Kogi State, located in
the Guinea savanna zone of North Central Nigeria (07°00'-
07°20'N, 06°60'- 06°80'E). The area has a tropical climate
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with distinct wet and dry seasons, fertile alluvial soils, and
intensive agricultural activity. Rapid urbanization, informal
industrial practices, and unregulated waste disposal make
it a hotspot for soil pollution assessment.

Soil Sampling

Soils were collected from three active agricultural farms
located within 10-15 m of major dumpsites (Agala-Ate,
lyale Road, and Wada Road). These sites were chosen for
their proximity to waste sources and continued cultivation
of food crops. A control sample was obtained from
Ajetachi, >50 m away from anthropogenic influence, to
establish baseline conditions.

Sample Collection

Surface soils (0-10 cm) were collected using pre-cleaned
stainless steel scoops. At each site, four sub-samples
were taken in a cross-pattern, composited, and stored in
labeled polyethylene bags. This approach minimized
heterogeneity and ensured representative sampling. All
procedures were performed in triplicate for statistical
reliability.

Sample Pretreatment

In the laboratory, soils were air-dried, ground, and sieved
(<2.00 mm). For elemental analysis, portions were further
pulverized with an agate mortar and pestle to enhance
homogeneity. Samples were stored in airtight containers
under controlled conditions until chemical and
geochemical analyses were performed.

Determination of Physicochemical Soil Parameters
Soil pH

Soil pH was measured using the 1:2.5 soil-to-water
suspension method (Mosley, 2024). Ten grams of air-dried,
sieved soil (<2 mm) were mixed with 25 mL deionized
water, equilibrated for 30 min, and analyzed with a
calibrated glass-electrode pH meter.

Soil Moisture Content

Moisture content was determined gravimetrically (Arshad
and lbrahim, 2021). Fresh soil (~20 g) was oven-dried at
105°C for 24 h, cooled in a desiccator, and reweighed. The
weight loss was expressed as a percentage of the initial
mass.

Soil Texture

Particle size distribution was analyzed using the
Bouyoucos hydrometer method (Kilinc and Orhan, 2025).
Fifty grams of soil pretreated with H,0, were dispersed in
sodium hexametaphosphate, and hydrometer readings
were taken to classify sand, silt, and clay fractions using
the USDA soil triangle.
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Electrical Conductivity (EC)

Soil EC was determined in a 1:5 soil-to-water extract
(Chatziparaschis et al., 2023). Ten grams of soil were
mixed with 50 mL distilled water, shaken for 30 min,
filtered, and the extract was measured using a conductivity
meter.

Organic Carbon Content

Organic carbon was quantified using the Walkley-Black
wet oxidation method (Khumalo and Moodley, 2023). One
gram of soil was digested with K,Cr,0,-H,SO,, and the
residual dichromate was titrated with ferrous ammonium
sulfate. Values were converted to organic matter using a
factor of 1.724.

Cation Exchange Capacity (CEC)

CEC was determined using the ammonium acetate (1N
NH,OAc) method at pH 7.0 (Antonangelo and Adeoye,
2024). Soil was saturated with NH,*, displaced with NaCl,
and the released NH,* quantified to calculate exchange
capacity.

Heavy Metal Determination

Heavy metal concentrations were determined by wet acid
digestion. One gram of homogenized soil (<2 mm) was
digested with 15 mL aqua regia (HCl:HNO,, 3:1 v/v) on a
thermostatically controlled hot plate under a fume hood
until near dryness. The digest was diluted with 15 mL
deionized water, filtered (Whatman No. 42), and made up
to 25 mL in acid-washed polyethylene bottles.
Concentrations of Pb, Cd, Ni, Cr, Cu, and other metals
were quantified using Flame Atomic Absorption
Spectrophotometry (FAAS) with calibration against
certified standards. Analytical blanks and quality control
samples were included, and all analyses were performed
in triplicate.

Chemical Speciation of Heavy Metals

Speciation was carried out using a modified sequential
extraction procedure, fractionating metals into six
geochemical forms: water-soluble, exchangeable,
carbonate-bound, Fe-Mn oxide-bound, organic matter-
bound, and residual.

Water-Soluble Fraction (Fl)

One gram of soil was extracted with 10 mL deionized water
under agitation for 1 h, centrifuged, and the supernatant
diluted to 50 mL.

Exchangeable Fraction (FllI)

The residue was treated with 10 mL of 1 M Mg(NQO,), (pH
7.0) under agitation for 1 h, centrifuged, and the extract
diluted to 50 mL.
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Carbonate-Bound Fraction (Flll)
The residue was leached with 10 mL of 1 M CH,COONa (pH
5.0 with CH,COOH) for 5 h under agitation. The extract was
centrifuged and diluted to 50 mL.

Fe-Mn Oxide-Bound Fraction (FIV)

The residue was extracted with 20 mL of 0.1 M NH,OH-HClL
in 25% CH,COOH at 96 °C for 6 h, centrifuged, and the
extract diluted to 50 mL.

Organic Matter-Bound Fraction (FV)

The residue was treated with 3mL of 0.02 M HNO, and 30%
H,O,, heated at 85 °C for 3 h, cooled, then extracted with 5
mL of 1 M CH,COONa for 3 h at 85 °C. The extract was
centrifuged and diluted to 50 mL.

Residual Fraction (FVI)

The residue was digested with 8 mL of HF:HCLO, (5:1 v/v) in
Teflon cups, dry-ashed for 2 h, evaporated to dryness, and
the final solution diluted to 50 mL for analysis.

Risk Assessment

Risk assessment indices were applied to evaluate the
extent, sources, and ecological implications of heavy
metal contamination in soils. These include the
Contamination Factor (CF), Pollution Load Index (PLI),
Geoaccumulation Index (I geo,), Nemerow Pollution Index
(NPI), Enrichment Factor (EF), and the Ecological Risk
Index (ERI/RI), providing an integrated measure of pollution
status and ecological threat.

Contamination Factor (CF)
The level of contamination of the soil is expressed in terms

of a contamination factor (CF) calculated as:
Metal concentration of the soil sample

- Background value of the metal or control sample
Where the contamination factor CF < 1 refers to low
contamination;
1 < CF <3 means moderate contamination,
3< CF<6indicates considerable contamination;
CF > 6 indicates very high contamination

Pollution Load Index

The pollution load index (PLI) is as follows
PLI =%/CF1 x CF2 x CF3 xCF4 ... ... CFn;
Where, CF = contamination factor,

n = number of metals;

The PLI value of >1 is polluted,

Whereas <1 indicates no pollution

Geoaccumulation Index (I geo;)

Geoaccumulation Index (I geo,) was calculated for soils
from various dumpsites in Egume District. The background
concentrations used are those of the control site for each
metal, and the | geo, was calculated using the formula:
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n
Igeo =l0g2(1.5 X Bn)
Where:
Cn is the measured concentration of the metal in the
sample,
Bn is the background concentration (control sample),
1.5 is a constant to account for natural fluctuations.
Igeoy = 0: Uncontaminated
0 < Igeoy < 1: Uncontaminated
contaminated
1<Ilgeo, < 2: Moderately contaminated
2 <lgeo, < 3: Moderately to heavily contaminated
3 <lgeo, < 4: Heavily contaminated
4 <|geo, = 5: Heavily to extremely contaminated
Igeo, > 5: Extremely contaminated

to moderately

Nemerow Pollution Index (NPI)
The Nemerow index is calculated using the equation:

(CFanean X CFr%lax)
2

NPI:

Where:

CFmean = average contamination factor of all metals at a
site

CFmax = the highest individual contamination factor at
that site

The pollution status is interpreted as:

NPI<0.7 > Clean

0.7 <NPI< 1.0 > Warning level of pollution

1.0 <NPI = 2.0 » Slight pollution

2.0 <NPI = 3.0 » Moderate pollution

NPI > 3.0 » Heavy pollution

Enrichment Factor (EF)

Enrichment Factor was calculated using:

( Cmetal )sam le
Creference p

EF = ((%)backgraund)

EF < 2: Deficiency to minimal enrichment

2 < EF < 5: Moderate enrichment

5 < EF < 20: Significant enrichment

EF = 20: Very high enrichment

Chromium (Cr) was selected as the reference element due
to its relative geochemical stability and crustal
abundance. EF values for Cadmium (Cd), Copper (Cu),
Nickel (Ni), and Lead (Pb) were computed using the control
sites as the background reference.

Ecological Risk Index and Potential Ecological Risk
Index

The Ecological Risk Index (ERI) assesses potential hazards
of toxic metals in soils by combining their contamination
factors (Cf) with toxic response factors (Tr), assigned as Cd
=30, Cu=5,Ni=5,Mn=1, and Pb = 5 (Hadkanson, 1980).
The formula for calculating the ecological risk for each
metal (Er) is:

Er=TrxCF
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And the potential ecological risk index (RI) for each site is:
R-2 Er

According to Hakanson’s risk classification:
Er < 40: Low risk

40 < Er < 80: Moderate risk

80 < Er < 160: Considerable risk

160 < E; < 320: High risk

Er = 320: Very high risk

Similarly, for Rl (sum of all Er):

RI <150: Low ecological risk

150 < Rl < 300: Moderate ecological risk
300 = RI <600: Considerable ecological risk
RI = 600: Very high ecological risk

RESULTS AND DISCUSSION

Soil Physicochemical Properties

The physicochemical attributes of soils strongly influence
heavy metal behavior, including mobility, bioavailability,
and ecological risk. Across the studied sites (Agala-Ate,
lyale Road, Wada Road, and control), notable variations
were observed, reflecting both anthropogenic waste
inputs and inherent soil characteristics.

Soil pH

Soil pH ranged from 5.6 at lyale Road to 6.8 at Agala-Ate,
while the control soil was slightly alkaline (7.4). The acidic
conditions at lyale Road (pH 5.6) and Wada Road (pH 6.1)
enhance the solubility of Cd, Pb, and Ni, increasing crop
uptake risk. In contrast, Agala-Ate’s near-neutral pH (6.8)
promotes partial metal immobilization, whereas the
alkaline control soil offers a natural buffering effect against
mobility (Aikpokpodion et al., 2022).

Soil Moisture

Moisture content was highest at lyale Road (28.6%) and
Wada Road (19.3%), indicating organic matter—driven
water retention in waste-impacted soils. Elevated
moisture favors leaching and downward migration of
soluble ions (Eze et al., 2022). Lower values at Agala-Ate
(13.4%) and the control (9.3%) suggest reduced leaching
potential but longer metal persistence in surface soils.

Soil Texture

Dumpsite soils were predominantly sandy loam, with sand
contents between 45% and 61%. The sandy fraction
enhances drainage but limits adsorption capacity, thereby
increasing heavy metal mobility (Alhassan et al., 2023). In
contrast, the loam texture of the control soil (38% sand)
reflects higher clay and silt proportions, improving
retention and adsorption potential (Fosu-Mensah et al.,
2021).

Electrical Conductivity
Electrical conductivity (EC) was markedly higher in
dumpsite soils: 382 uyS/cm at lyale Road and 274 uS/cm at
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Wada Road, compared with 79 uS/cm at the control.
Elevated EC indicates ionic enrichment from waste-
derived leachates, which may enhance solubility of metals
and impose osmotic stress on plants and soil biota
(Ibrahim et al., 2024).

Soil Organic Carbon

SOC was significantly elevated at lyale Road (6.1%) and
Wada Road (4.0%), relative to the control (1.2%). This
reflects continuous deposition of organic-rich wastes.
While SOC can stabilize metals through complexation, it
may also facilitate transport under acidic conditions

Table 1: Soil Physicochemical Parameters
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(Ncube et al., 2021). Agala-Ate (1.8%) showed only
moderate enrichment, indicating lesser waste influence.

Cation Exchange Capacity

CEC varied from 13.6 cmol(+)/kg at lyale Road to 25.2
cmol(+)/kg at Agala-Ate, with the control also high (23.3
cmol(+)/kg). High CEC soils (Agala-Ate, control) exhibit
stronger adsorption and retention of metals, reducing
immediate bioavailability. Conversely, the low CEC at lyale
Road reflects weak buffering, enhancing solubility and
mobility (Hassan et al., 2023).

Physicochemical Parameters Agala-Ate lyale Road Wada Road Control
Soil pH 6.8 5.6 6.1 7.4
Soil Moisture Content (%) 13.4 28.6 19.3 9.3
Soil Texture Sandy loam Sandy loam Sandy loam Loam
(45 % sand) (61 % sand) (53 % sand) (38 % sand)
Electrical Conductivity (uS/cm) 155 382 274 79
Soil Organic Carbon (%) 1.8 6.1 4.0 1.2
Cation Exchange Capacity (cmol(+)/kg) 25.2 13.6 18.8 23.3

Heavy Metal Content

The concentrations of heavy metals in Anyigba soils varied
considerably across sampling locations, reflecting waste-
related inputs and localized anthropogenic pressures.
Cadmium posed the highest contamination risk relative to
international standards, while other metals showed
moderate enrichment.

Cadmium (Cd)

Cadmium concentrations were markedly elevated, ranging
from 4.60 mg/kg at Agala-Ate to 5.91 mg/kg at lyale Road,
compared with 1.94 mg/kg at the control. These values
exceeded the WHO (2021) guideline of 0.3 mg/kg by more
than fifteen-fold, strongly implicating waste disposal,
phosphate fertilizers, and vehicular emissions as major
sources (Kubier et al., 2019). Given cadmium’s high
mobility and accumulation potential in crops, such levels
represent a severe ecological and public health concern,
with risks including kidney dysfunction, skeletal damage,
and carcinogenic effects (Rahimzadeh et al., 2017).

Copper(Cu)

Copper ranged from 5.81 mg/kg at Agala-Ate to 11.90
mg/kg at Wada Road, compared to 3.75 mg/kg at the
control. Although these concentrations remain below the
WHO (2021) limit of 36 mg/kg, enrichment relative to the
control indicates anthropogenic contributions from
agrochemicals, vehicle parts, and workshop residues
(Droz et al.,, 2021). While copper is an essential
micronutrient, excessive levels may induce phytotoxicity,
inhibit microbial activity, and disrupt nutrient balance
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(Shabbir et al., 2020). The moderate enrichment observed
warrants long-term monitoring to prevent accumulation.

Nickel (Ni)

Nickel concentrations varied between 7.52 mg/kg at Wada
Road and 15.36 mg/kg at lyale Road, compared to 6.16
mg/kg at the control. Although values remain below the
WHO (2021) threshold of 50 mg/kg, they indicate
contamination linked to metal scraps, combustion, and
waste burning. Elevated nickel can impair enzymatic
functions in plants, reducing growth and yield (Labidi and
Abdelly, 2024), and may bioaccumulate in edible tissues,
posing food safety risks (Kumar et al., 2022). The highest
value at lyale Road reflects intense human and vehicular
activity in that area.

Chromium (Cr)

Chromium levels ranged from 4.31 mg/kg at Wada Road to
8.96 mg/kg at lyale Road, relative to 2.86 mg/kg at the
control. All values remained well below the WHO (2021)
limit of 65 mg/kg, though modest enrichment suggests
contributions from urban runoff, waste burning, and
mechanical emissions. Chromium speciationis critical, as
Cr(lll) is relatively benign while Cr(VI) is highly toxic and
carcinogenic (Shrivastava et al., 2022). Although oxidation
states were not differentiated, continued inputs could
gradually raise soil chromium toward hazardous levels.

Lead (Pb)

Lead concentrations ranged from 2.68 mg/kg at lyale Road
to 5.04 mg/kg at Wada Road, with the control at 2.15
mg/kg. These values are far below the WHO (2021) limit of
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85 mg/kg, suggesting no immediate concern. However,
enrichment relative to the control indicates anthropogenic
inputs from vehicular emissions, discarded batteries, and
paints (Landrigan et al., 2022). Despite low mobility, lead

Table 2: Heavy Metal Concentration in Various sites
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is persistent and accumulative, posing long-term risks to
human health, especially neurodevelopmental effects in
children (Liu et al., 2023). The higher level at Wada Road
likely reflects intense traffic and workshop activity.

Sample Cadmium Copper Nickel Chromium Lead
Sites (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)
Agala-Ate 4.60 5.81 11.70 4.93 3.99
lyale road 5.91 10.18 15.36 8.96 2.68
Wada road 5.59 11.90 7.52 4.31 5.04
Control 1.94 3.75 6.16 2.86 2.15
WHO (2021) 0.3 36 50 65 85

Heavy Metal Speciation

Cadmium (Cd)

Cadmium speciation in soils near dumpsites showed
dominance of the exchangeable fraction (35-45% of total
Cd), indicating high bioavailability and mobility, and
significant risk for crop uptake and leaching (Li et al.,
2022). The carbonate-bound fraction was the second
largest (25-30%), becoming mobilizable under acidic
conditions. Fe-Mn oxide-bound Cd contributed 10-15%,
particularly at lyale Road, and may be released under
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Sites

Wada Road

reducing conditions, while the organic matter-bound
fraction was minor (5-10%)).

The residual fraction accounted for only 7-10%,
confirming the largely anthropogenic origin of Cd in
dumpsite soils. In contrast, the control site showed
carbonate-bound (=35-40%) and exchangeable (*30%)
fractions as dominant, with a relatively higher water-
soluble fraction (=20%), highlighting natural labile pools
but lower environmental risk. Overall, Cd fractionation
followed the order: Exchangeable > Carbonate-bound >
Fe-Mn oxide > Residual ® Organic matter > Water-soluble.

H Residual

W Organic Matter
Fe-MnO

M Carbonate bound

M Exchangeable

B Water Soluble

Control

Figure 1: Percentage Concentration of Cadmium in Soil Fractions in Various Sampling Sites

Copper

Speciation analysis of copper in soils near dumpsites
showed dominance of the organic matter-bound fraction
(30-35% of total Cu), indicating moderate immobilization
through complexation with soil organic matter (Huang et
al., 2022). Decomposition of organic matter under
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microbial or oxidative conditions could, however, release
Cu into the soil solution, increasing its bioavailability
(Ahmed et al., 2023). The Fe-Mn oxide fraction was the
second largest (20-25%), representing a pool sensitive to
reduction; anaerobic or waterlogged conditions may
mobilize this Cu fraction.
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Carbonate-bound Cu (10-15%) may be released under
acidic conditions, while the exchangeable fraction (5-
10%) represents the most labile pool, slightly higher at
lyale Road and Wada Road. The residual fraction (12-15%)
indicates structurally bound, geochemically stable Cu,
and the water-soluble fraction remained minimal (<5%),
reflecting limited immediately mobile Cu (El-Hassanin,
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2022).The control soil displayed a similar pattern, with
organic matter and Fe-Mn oxide fractions dominating,
though dumpsite soils had slightly higher exchangeable
and carbonate-bound Cu, reflecting anthropogenic
enrichment: Overall, Cu fractionation followed the order:
Organic matter > Fe-Mn oxide > Residual = Carbonate-
bound > Exchangeable > Water-soluble.

Wada Road

M Residual

B Organic Matter
Fe-MnO
Carbonate bound

B Exchangeable

W Water Soluble

Control

Figure 2: Percentage Concentration of Copper in Soil Fractions in Various Sampling Sites

Nickel

Nickel speciation in the studied soils was dominated by
the Fe—-Mn oxide-bound and carbonate-bound fractions,
indicating strong retention by sesquioxides and
carbonates, with moderate stability yet potential
mobilization under reducing or acidic conditions (Wang et
al., 2022). The organic matter-bound fraction also
contributed significantly, reflecting complexation with
humic substances; however, decomposition of organic
matter could gradually release Niinto more labile forms.
The residual fraction was moderate across sites, showing
substantial structural binding within silicate minerals,
while exchangeable and water-soluble fractions were
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minimal, suggesting limited immediate bioavailability and
low short-term environmental risk (Patel et al., 2023;
Zhang et al., 2024). Spatially, Agala-Ate exhibited higher
exchangeable and carbonate-bound Ni, implying greater
mobility, lyale Road showed a balance between carbonate
and Fe-Mn oxide fractions, and Wada Road was
dominated by the Fe-Mn oxide fraction. The control soil
had a higher organic matter contribution, highlighting the
role of natural soil content in immobilizing Ni. Overall, Ni
fractionation followed the order: Fe-Mn oxide = Carbonate
> Organic matter > Residual > Exchangeable > Water-
soluble.
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M Residual

B Organic Matter
Fe-MnO
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Figure 3: Percentage Concentration of Nickel in Soil Fractions in Various Sampling Sites

Chromium

Chromium speciation in the studied soils was dominated
by Fe-Mn oxide-bound and organic matter-bound
fractions, indicating strong immobilization through
adsorption onto sesquioxides and complexation with
organic matter, thereby limiting immediate bioavailability
(Saha et al., 2023). The residual fraction contributed
notably, reflecting structural incorporation within the soil
mineral matrix, further reducing Cr mobility. Carbonate-
bound Cr was moderate, suggesting potential release
under acidic conditions, while exchangeable and water-
soluble fractions were minimal, indicating low immediate
environmental risk (Zhang et al., 2024).

Percentage Concentration
(%)

100
) I I
60

Site-specific patterns showed higher Fe-Mn oxide-bound
Cr at lyale Road, reflecting redox sensitivity, whereas
Wada Road had greater contributions from carbonate and
organic matter fractions, indicating potential mobilization
under acidic or oxidative conditions. The control soil
displayed similar dominance of organic matter and Fe—-Mn
oxide fractions, with slightly higher exchangeable Cr,
highlighting the influence of natural soil properties on Cr
partitioning. Overall, Cr fractionation followed the order:
Fe-Mn oxide > Organic matter > Residual > Carbonate >
Exchangeable > Water-soluble.

M Residual
B Organic Matter

Fe-MnO

40
M Carbonate bound
20 - M Exchangeable
. - W Water Soluble
. —
Agala-Ate lyale Road Wada Road Control
Sites

Figure 4: Percentage Concentration of Chromium in Soil Fractions in Various Sampling Sites
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Lead

Lead speciation in the studied soils was dominated by the
carbonate-bound fraction, followed by organic matter-
bound and Fe-Mn oxide-bound fractions, indicating strong
retention by soil carbonates and organic complexes with
moderate stability, but susceptibility to pH and redox
changes (Adeyemi et al., 2023). Carbonate-bound Pb was
particularly dominant at lyale Road, highlighting potential
mobilization under acidic conditions (Chen et al., 2022).
Organic matter-bound Pb reflected chelation by humic
and fulvic substances, though decomposition could
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release Pb over time (Huang et al., 2024). Fe-Mn oxide-
bound Pb contributed notably at Agala-Ate and Wada
Road, showing partial immobilization with redox-sensitive
stability.The residual fraction was moderate, indicating
structural binding within  mineral lattices, while
exchangeable and water-soluble fractions were minimal,
signifying low immediate bioavailability. Overall, Pb
fractionation followed the order: Carbonate > Organic
matter = Fe—-Mn oxide > Residual > Exchangeable > Water-
soluble.

M Residual

M Organic Matter
Fe-MnO
Carbonate bound

B Exchangeable

B Water Soluble

Control

Figure 5: Percentage Concentration of Lead in Soil Fractions in Various Sampling Sites

Assessment of Metal Contamination

Contamination Factor (CF)

The contamination factor (CF) provides a measure of heavy
metal enrichment in soils relative to background levels,
reflecting pollution extent and potential ecological and
health risks. CF values were calculated for Cd, Cu, Ni, Cr,
and Pb in soils from Agala-Ate, lyale Road, and Wada Road,
using a control site as baseline. At Agala-Ate, CF values
indicated moderate contamination for all metals: Cd
(2.37), Ni (1.90), Cr (1.73), Pb (1.86), and Cu (1.55). While
not extreme, consistent enrichment suggests gradual
accumulation, with Cd posing the highest risk due to its
bioaccumulative and toxic nature. lyale Road exhibited the
highest contamination, with Cd (3.05) and Cr (3.13) in the
considerable contamination category, and Cu (2.71), Ni
(2.49), and Pb (1.25) moderately elevated. The elevated Cd
and Cr levels are particularly concerning due to their
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toxicity and persistence, while Cu enrichment could impair
microbial activity and crop productivity (Ali et al., 2021).
At Wada Road, CF values showed considerable
contamination for Cu (3.17) and Cd (2.88), moderate
contamination for Pb (2.34), and lower levels for Cr (1.51)
and Ni (1.22). Excessive Cu and Cd pose significant
ecological and food chain risks, while the persistence of Cr
and Ni raises concerns over long-term accumulation
(Adewumi et al., 2022). Overall, soils near dumpsites
exhibited varying contamination levels, with Cd and Cu
presenting the greatest risk. lyale Road and Wada Road
were more impacted than Agala-Ate, reflecting site-
specific differences in waste inputs, leachate flow, and
soil properties. Moderate levels of Pb, Ni, and Cr, although
less alarming, still warrant attention due to potential
mobilization under changes in pH or redox conditions
(Huang et al., 2022).
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Table 3: Contamination Factors of Heavy Metals in the Soil Samples

SITES Cd Cu Ni Cr Pb

Agala-Ate 2.37 1.55 1.90 1.73 1.86
lyale Road 3.05 2.7 2.49 3.13 1.25
Wada Road 2.88 3.17 1.22 1.51 2.34

Pollution Load Index (PLI)

The Pollution Load Index (PLI) provides a cumulative
assessment of heavy metal contamination in soils, with
values above 1 indicating pollution. In this study, PLI
values were 1.87, 2.29, and 2.05 for Agala-Ate, lyale Road,
and Wada Road, respectively, demonstrating that all sites
are contaminated to varying degrees. lyale Road recorded
the highest PLI (2.29), reflecting substantial cumulative
heavy metal input, likely due to intense anthropogenic
activities such as waste dumping, mechanic workshops,
and other local emissions (Omoyajowo et al., 2023). This
elevated PLI aligns with the previously observed high
contamination factors for Cd, Cu, Ni, and Cr, indicating
significant ecological and food chain risks (Rahman et al.,
2022).

Wada Road exhibited a PLI of 2.05, showing notable heavy
metal accumulation. Although slightly lower than lyale
Road, the site remains influenced by similar
anthropogenic inputs, including domestic waste disposal
and vehicular emissions, with potential for contaminant
migration into adjacent farmlands. At Agala-Ate, the PLI
was 1.87, indicating moderate pollution. While lower than
the other sites, it still exceeds the pollution threshold,
reflecting ecological vulnerability and potential risk to soil
quality and crop safety due to heavy metal enrichment.
Overall, the PLI analysis confirms that farmlands near
dumpsites in the study area are under varying degrees of
heavy metal stress, with lyale Road being the most
impacted. These findings corroborate previous studies in
Nigeria, where PLI values above unity have been reported
for dumpsite soils (Abiola et al., 2021).

Table 4: Pollution Load Index of Heavy Metals in the Soil Samples

SITES Agala-Ate

lyale Road Wada Road

PLI 1.87

2.29 2.05

Geoaccumulation Index (I geo;)

The geoaccumulation index (Igeo) assesses anthropogenic
enrichment of metals in soils relative to natural
background levels. In this study, most metals in soils from
farmlands near dumpsites in Anyigba fell within the
unpolluted to moderately polluted category, indicating
that while natural background concentrations dominate,
human activities such as waste disposal have contributed
to metal enrichment. At Agala-Ate, Igeo values for Cd, Cu,
Ni, Cr, and Pb ranged from 0.05 to 0.66, reflecting slight
enrichment likely due to diffuse contamination from
nearby waste activities (Adesina et al., 2022).

Though not yet hazardous, consistent elevation across all
metals suggests ongoing anthropogenic input. lyale Road
presented a more pronounced contamination profile, with
cadmium (lgeo 1.02) and chromium (Igeo 1.06)
classified as moderately polluted, while copper and nickel
remained in the unpolluted to moderately polluted range.
Lead recorded a negative Igeo value (-0.27), indicating

minimal enrichment relative to background levels (Ukaogo
etal.,2024; Liet al., 2023).

The results highlight significant contamination pressure
from Cd and Cr, both of which pose ecological and health
risks. At Wada Road, copper (Igeo = 1.08) was moderately
polluted, reflecting localized enrichment likely from
discarded metallic waste and vehicle residues. Cadmium,
chromium, and lead were in the unpolluted to moderately
polluted class, while nickel (Igeo = -0.30) showed no
enrichment. Elevated copper levels suggest potential
negative impacts on soil microbial activity and crop
growth. Overall, the Igeo assessment confirms that lyale
Road and Wada Road are the most impacted sites, with
moderate pollution by Cd, Cr, and Cu. The results
corroborate previous contamination factor and pollution
load index analyses, emphasizing that farmlands near
dumpsites in Anyigba are experiencing varying degrees of
heavy metal stress, with cadmium posing the highest risk
due to its mobility and bioaccumulation potential.

Table 5: Geoaccumulation Index of Heavy Metals in the Soil Samples

Sites Cd Cu Ni Cr Pb
Agala-Ate 0.66 0.05 0.34 0.2 0.31
lyale Road 1.02 0.86 0.73 1.06 -0.27
Wada Road 0.94 1.08 -0.3 0.01 0.64

92



Okpanachi et al.,

Nemerow pollution Index (NPI)

The Nemerow Pollution Index (NPI) provides an integrated
assessment of soil quality by combining the mean
contamination factor with the maximum contamination
factor at each site. Unlike single-element indices, NPI
reflects both average pollution levels and the influence of
the most critical contaminant, offering a comprehensive
measure of multi-element pollution in agricultural soils
near dumpsites (Okeke et al., 2024). In this study, NPI
values ranged from 2.14 at Agala-Ate to 2.844 at lyale
Road, with Wada Road recording 2.738. According to
established thresholds, all sites fall within the moderate
pollution category (2 < NPI £ 3), indicating that soils
adjacent to the dumpsites are moderately polluted by
heavy metals, with potential implications for crop
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productivity, food safety, and ecological stability (Zhang et
al., 2023).

lyale Road exhibited the highest NPI (2.844), consistent
with elevated contamination factors for cadmium and
copper, highlighting the cumulative pressure from multiple
metals. Wada Road (2.738) also showed significant
pollution, largely influenced by cadmium and lead, while
Agala-Ate (2.14) had the lowest NPI, yet still within the
moderate pollution range, indicating that even this site is
impacted by anthropogenic inputs. Overall, the moderate
pollution classification across all sites highlights the risk of
heavy metal accumulation in crops, particularly for
cadmium and copper, which consistently showed high
contamination factors.

Table 6: Nemerow Pollution Index of Heavy Metals in the Soil Samples

Sites CF mean CFmax NPI Pollution Status

Agala-Ate 1.882 2.37 2.14 Moderate Pollution

lyale Road 2.526 3.13 2.844 Moderate Pollution

Wada Road 2.224 3.17 2.738 Moderate Pollution
Enrichment Factor (EF) contributions potentially masked by relatively higher

Spatial variations in enrichment factor (EF) values across
the studied farmlands reflect differences in anthropogenic
influence. At Agala-Ate, EF values indicated minor
enrichment for cadmium (1.38), nickel (1.10), and lead
(1.08), while copper (0.90) showed no enrichment. This
pattern suggests low-level anthropogenic contributions,
likely from leachates and surface runoff from nearby
dumpsites, with common waste sources including
batteries, pigments, and automotive residues. The lack of
Cu enrichment points to a primarily lithogenic origin
(Ajibade et al., 2022).

lyale Road exhibited the lowest EF values, with all metals—
Cd (0.97), Cu (0.87), Ni (0.80), and Pb (0.40) falling below

chromium content (Chukwu et al., 2023).

In contrast, Wada Road showed the highest EF values
among the sites, with Cd (1.91), Cu (2.11), and Pb (1.56)
indicating clear minor enrichment, while Ni (0.81)
remained within the no enrichmentrange. Elevated Cd, Pb,
and Cu likely originate from waste streams such as
discarded plastics, pigments, batteries, electrical wiring,
and plumbing materials, reflecting a stronger
anthropogenic imprint on farmland soils (Ogunniyi et al.,
2021).Overall, the spatial pattern of EF values highlights
that Wada Road farmland is the most impacted by
dumpsite-related contamination, followed by Agala-Ate
with minor enrichment, while lyale Road remains largely

unity, indicating negligible anthropogenic input. These unaffected and influenced by natural lithogenic
results suggest that heavy metals at this site are mainly processes.
derived from natural geogenic sources, with minor
Table 7: Enrichment Factors of Heavy Metals in the Soil Samples
Sites Cd Cu Ni Pb
Agala-Ate 1.38 0.90 1.10 1.08
lyale Road 0.97 0.87 0.80 0.40
Wada Road 1.91 2.1 0.81 1.56
Ecological Risk Index and Potential Ecological Risk places the site in the low ecological risk class,

Index

The computed single-element ecological risk values (Er)
indicate that cadmium (Cd) is the principal contributor to
ecological risk across all sampled sites. At Agala-Ate, Cd
recorded an Er of 71.10, classifying it as a moderate
ecological risk, whereas copper (7.75), nickel (9.50),
chromium (3.46), and lead (9.30) were all within the low-
risk category. The cumulative risk index (Rl) of 101.11
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underscoring the dominant influence of Cd despite overall
low risk.

At lyale Road, Cd exhibited the highest risk (Er = 91.50),
categorized as considerable, while Cu (13.55), Ni (12.45),
Cr (6.26), and Pb (6.25) remained low. The total Rl (130.01)
was the highest among the sites, reflecting Cd’s increasing
role in driving ecological pressure. Wada Road soils
showed a similar pattern, with Cd (Er = 86.40) presenting
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considerable risk and other metals—Cu (15.85), Ni (6.10),
Cr (3.02), Pb (11.70) remaining low. The cumulative RI
(123.07) confirms low overall ecological risk but
emphasizes Cd as the controlling factor. Notably, Pb at
Wada Road exhibited a slightly elevated risk, likely due to
localized anthropogenic inputs from waste dumpsites,
including batteries, paints, and vehicle parts (Abbas et al.,
2023).

JOSRAR 2(5) SEP-OCT 2025 83-97

Comparatively, lyale Road recorded the highest RI,
followed by Wada Road and Agala-Ate. While all sites
remain under the low ecological risk threshold (Rl < 150),
the high contribution of Cd highlights its ecological
significance. Continued Cd accumulation from waste
leachates or agricultural inputs could elevate the RI to
moderate or considerable risk levels, posing threats to soil
quality and agricultural productivity.

Table 8: Ecological Risk Index and Potential Ecological Risk Index of Heavy Metals in the Soil Samples

Sites Cd Cu Ni Cr Pb RI
(x 30) (x5) (x 5) (x2) (x5)
Agala-Ate 71.10 7.75 9.50 3.46 9.30 101.11
lyale Road 91.50 13.55 12.45 6.26 6.25 130.01
Wada Road 86.40 15.85 6.10 3.02 11.70 123.07
CONCLUSION Abbas, T., Yousaf, B., Ali, M. U., Munir, M. A. M., & Ahmad,

This study shows that agricultural soils in Anyigba
farmlands near dumpsites are moderately polluted by
heavy metals, with cadmium and copper as the most
critical contaminants. Chemical speciation revealed
cadmium to be largely exchangeable, indicating high
mobility and ecological risk, while copper and chromium
were bound to organic matter and Fe—-Mn oxides, and lead
and nickel were mainly in carbonate- and oxide-bound
forms, suggesting conditional stability but vulnerability
under changing soil conditions. Pollution indices (CF, PLI,
Igeo, NPI, EF, and RI) consistently highlighted Ilyale Road
and Wada Road as the most impacted sites, while Agala-
Ate showed lower but notable enrichment.

RECOMMENDATIONS

Although total ecological risk indices fell below the high-
risk threshold, cadmium’s persistence underscores a
long-term threat to soil health, food safety, and public
health. To mitigate these risks, remediation should
prioritize cadmium through phytoremediation, biochar or
lime amendments, and stabilization techniques, while
improving soil quality with organic matter to reduce metal
mobility. Strengthened waste management practices,
continuous soil and crop monitoring, adoption of safer
agricultural practices, and farmer/community
sensitization are also essential. Finally, effective policy
enforcement on waste disposal and land use is needed to
curb further contamination and safeguard agricultural
sustainability in the region.
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