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A B S T R A C T  
The rapid proliferation of healthcare Internet of Things (IoT) systems 
has intensified the need for robust encryption mechanisms capable 
of securing sensitive medical data, particularly Digital Imaging and 
Communications in Medicine (DICOM) images. This research 
introduces a novel Modified Encryption Algorithm designed to 
enhance data confidentiality, integrity, and resilience against cyber 
threats within resource-constrained IoT environments. Through 
extensive simulation evaluations, the proposed algorithm 
demonstrates superior performance compared to widely used 
lightweight encryption schemes such as PRESENT, SIMON, and LEA. 
The algorithm achieves a remarkably high entropy value of 15.469, 
indicating strong randomness and resistance to statistical attacks. 
Additionally, the low correlation coefficients—vertical (0.0182), 
horizontal (–0.0132), and diagonal (0.0625) which confirm effective 
pixel decorrelation and robust cipher strength. The research 
obtained Unified Average Changing Intensity (UACI) value of 33.362 
further validates the algorithm’s capability to withstand differential 
attacks, while a Structural Similarity Index (SSIM) score of 0.175 
confirms that essential image characteristics remain intact, 
ensuring acceptable visual quality where required for clinical 
interpretation. 

 
INTRODUCTION 
The integration of Internet of Things (IoT) devices into 
healthcare systems has revolutionized the way medical 
data is transmitted and managed. However, this 
transformation also brings forth significant challenges, 
particularly concerning the security of sensitive medical 
data, such as Digital Imaging and Communications in 
Medicine (DICOM) images. Despite efforts to secure this 
data through encryption and watermarking techniques, 
traditional methods have proven inadequate, leaving 
healthcare systems vulnerable to cyber threats (Omolara 
et al., 2022). 

The motivation behind this study stems from the pressing 
need to address these security challenges and enhance 
the protection of DICOM images in IoT systems used in 
healthcare. As IoT devices become increasingly ubiquitous 
in healthcare settings, ensuring the confidentiality, 
integrity, and availability of patient data becomes 
paramount (Zaman et al., 2022). By shifting towards 
lightweight DICOM image encryption tailored to the 
resource constraints of IoT devices, we aim to bolster the 
security posture of healthcare systems while maintaining 
efficiency and performance (Katzis et al., 2022). Through 
this study, we seek to explore the limitations of current 
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encryption techniques and advocate for the adoption of 
enhanced security measures. By exploring into the 
intricacies of lightweight encryption algorithms and their 
application in IoT systems, we aim to uncover 
vulnerabilities and propose solutions to mitigate them. 
Ultimately, our goal is to pave the way for the development 
and implementation of robust encryption techniques that 
can safeguard sensitive medical data effectively in IoT-
enabled healthcare environments. By addressing these 
challenges and advancing lightweight DICOM image 
encryption, we aim to contribute to the realization of a 
secure and resilient healthcare ecosystem. Through 
collaboration with stakeholders and leveraging 
advancements in cryptography and IoT technologies, we 
aspire to facilitate the delivery of high-quality healthcare 
services while upholding patient confidentiality and 
integrity. This study represents a crucial step towards 
enhancing the security posture of IoT systems in 
healthcare and ensuring the trust and confidence of 
patients and healthcare providers alike. The current 
techniques used to secure healthcare IoT devices, 
particularly Digital Imaging and Communications in 
Medicine (DICOM) images, primarily rely on encryption and 
watermarking methods (Isaac et al., 2024). Encryption 
algorithms are employed to encode DICOM images, 
ensuring confidentiality during transmission and storage, 
while watermarking techniques embed unique identifiers 
for authentication and tracking purposes (Manikandan & 
Amirtharajan, 2022). However, these traditional methods 
exhibit several limitations: Encryption and watermarking 
techniques often impose significant computational 
overhead, particularly in resource-constrained IoT 
environments, leading to performance degradation and 
increased energy consumption (Sadhu et al., 2022). 
Healthcare IoT devices typically have limited 
computational resources, such as processing power and 
memory, which restrict the use of resource-intensive 
encryption algorithms and protocols (Aledhari et al., 2022). 
Despite providing a basic level of security, traditional 
encryption methods may be susceptible to sophisticated 
cyberattacks, such as brute-force attacks, side-channel 
attacks, and cryptographic vulnerabilities. The goal of this 
study is to advance lightweight DICOM image encryption 
techniques tailored to IoT systems in healthcare. This 
involves addressing the limitations of current approaches 
while enhancing both security and efficiency. Specifically, 
we aim to improve resilience to cyberattacks by designing 
encryption algorithms with robust security features, 
including resistance to brute-force attacks, side-channel 
attacks, and cryptographic vulnerabilities. The proposed 
DICOM image encryption technique will be evaluated 
based on computational complexity of the encryption 
algorithm, including processing time and memory usage, 
to assess its efficiency in resource The DICOM image 
encryption technique offers stakeholders enhanced 

security, optimized performance, robust key 
management, and cost efficiency in healthcare IoT 
systems. The widespread adoption of Internet of Things 
(IoT) devices across various domains such as hospitals, 
smart homes, wearable technology, industrial 
automation, and vehicle connectivity has significantly 
transformed interactions with the physical environment 
(Almotairi, 2023). However, this interconnected nature 
poses a critical challenge: protecting sensitive information 
exchanged and stored in these environments, which often 
have limited resources. Traditional encryption methods, 
while effective in providing strong security, typically 
require significant computational power, making them 
impractical for IoT devices with limited processing 
capabilities and memory (Kornaros et al., 2022). This 
explores the existing discussions on cryptographic 
strategies relevant to IoT security, highlighting key 
research efforts, areas warranting further investigation, 
and the motivations behind the development of an 
Advanced Lightweight Chaos-Based Encryption Model. 
Several studies have addressed security concerns in 
healthcare IoT systems, employing various encryption 
techniques. Kavitha et al. (2024) proposed a method for 
securing tuberculosis disease detection using IoT-driven 
Improved AlexNet and RSA encryption, offering strong 
security for key exchange. However, the RSA encryption 
method employed in their approach exhibits high 
computational complexity, rendering it unsuitable for real-
time applications on resource-constrained devices. 
Similarly, Kumari et al. (2023) explored two-stage secure 
medical data transmission for IoT-based e-health 
applications, leveraging RSA encryption for robust key 
exchange. Despite its strong security attributes, the 
computational complexity of RSA encryption poses 
challenges for real-time implementations on resource-
constrained devices. Pavaiyarkarasi et al. (2022) 
introduced a hybrid security model for protecting 
diagnostic text data in medical images over the Internet of 
Things (IoT), combining unspecified techniques to 
enhance security. While this approach offers increased 
security compared to single algorithms, it may entail 
greater complexity in implementation and potentially 
lower efficiency than lightweight alternatives. Hatem & 
Hameedi (2023) proposed lightweight digital imaging and 
communications in medicine (DICOM) image encryption 
for IoT systems, likely utilizing an AES variant. While AES is 
a widely accepted standard known for its strong security, 
its high computational complexity may pose challenges for 
resource-constrained devices, depending on the variant 
employed. El-Shafai et al. (2022) introduced a neural SAE-
based medical image cryptography framework, harnessing 
neural network-based techniques for potential high-
security applications. However, limited information is 
available regarding the computational complexity of their 
approach, which may present challenges for resource-
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constrained devices. Shahane and Nagarjuna (2022) 
addressed medical data transmission using IoT, 
employing AES encryption for strong security. 
Nonetheless, the computational complexity associated 
with AES encryption may limit its feasibility for resource-
constrained devices. Additionally, Chhabra and Lata 
(2022) proposed an obfuscated AES cryptosystem for 
secure medical imaging systems in Internet of Medical 
Things (IoMT) edge devices, enhancing security compared 
to standard AES. However, the introduction of obfuscation 
may introduce additional complexity, particularly for 
resource-constrained devices. Tradition encryption 
methods, while robust, can be too computationally 
expensive for resource-limited devices in the Internet of 
Things (IoT) for healthcare. Recognizing this limitation, 
researchers are exploring lightweight cryptography 
techniques. These techniques prioritize a balance 
between security and efficiency. The goal is to achieve 
adequate data protection for sensitive information, like 
DICOM images, while minimizing the processing power 
and memory required for encryption and decryption on 
these resource-constrained devices (Pandey & Bhushan, 
2024; Samson et al., 2024). Existing research explores into 
various lightweight ciphers and block cipher modes 
specifically designed for such environments. Lightweight 
ciphers, like XTEA, SIMON, SPECK, PRESENT, and SKINNY, 
offer promising solutions. Compared to traditional 
algorithms, these ciphers boast significantly reduced 
complexity, making them more suitable for resource-
constrained devices in healthcare IoT applications 
(Alluhaidan & Prabu, 2023; Isaac et. al., 2024). Sarosh et al. 
(2022) proposed an efficient image encryption scheme for 
healthcare applications. However, the authors did not 
specify the encryption algorithm used, making it difficult to 
assess its suitability. Narayana et al. (2022) presented a 
medical image cryptanalysis using an adaptive, lightweight 
neural network-based algorithm for IoT-secured cloud 
storage. This approach shows potential for high security 
and adaptation but provides limited information on the 
specific neural network and its effectiveness. Dash et al. 
(2023) developed an efficient intra-inter pixel encryption 
scheme to secure healthcare images for an IoT 
environment. This method achieves good security by 
modifying pixel values but may be computationally 
expensive compared to other lightweight techniques. 
Islam et al. (2024) proposed a lightweight medical-image 
encryption technique for IoMT-based healthcare 
applications. While it offers lower computational 
complexity compared to traditional algorithms, there is a 
potential trade-off with security. Kaur et al. (2023) 
introduced a lightweight biomedical image encryption 
approach. This method offers lower computational 
complexity compared to traditional algorithms but may 
also result in lower security levels. Selvaraj et al. (2023) 
discussed cryptographic encryption and optimization for 

IoT-based medical image security. The paper likely 
combines encryption with optimization techniques but 
lacks details on the specific encryption algorithm used, 
which limits a comprehensive evaluation. Nadhan & Jacob 
(2024) focused on enhancing healthcare security in the 
digital era by safeguarding medical images with lightweight 
cryptographic techniques in IoT healthcare applications. 
While these techniques lower computational complexity, 
they might also compromise security compared to more 
robust traditional algorithms. Samiullah et al. (2022) 
developed a chaos-based cryptographic mechanism for 
smart healthcare IoT systems, highlighting the potential for 
high security and randomness. However, the specific 
chaos-based mechanism was not detailed, raising 
concerns about possible computational expense and 
unclear implementation details. Sarosh et al. (2022) 
presented an efficient image encryption scheme for 
healthcare applications but did not specify the encryption 
algorithm used, making it difficult to evaluate its 
effectiveness. Hatem et al. (2023) discussed a lightweight 
digital imaging and communications in medicine image 
encryption system for IoT, likely using a lightweight variant 
of a block cipher. This approach reduces computational 
complexity compared to traditional algorithms but may 
sacrifice some security, especially given the unspecified 
variant. El-Shafai et al. (2024) proposed a 3D chaos-based 
medical image cryptosystem designed for secure cloud-
IoMT eHealth communication services. This system 
leverages a 3D chaotic map, providing potentially high 
security and randomness, though it may be 
computationally expensive compared to some lightweight 
techniques. Clemente-Lopez et al. (2024) introduced a 
lightweight chaos-based encryption scheme tailored for 
IoT healthcare systems, which offers lower complexity 
compared to traditional chaotic systems but might have 
lower security compared to more complex alternatives. 
The chaos-based encryption offers promising potential for 
securing data in IoT applications. However, the security 
requirements, resource constraints, and implementation 
practicality is crucial when selecting or developing an 
appropriate scheme for a specific use case. 
 
MATERIALS AND METHODS 
The Modified Pseudocode 1: Data Acquisition and 
Encryption Stage with Cryptographic Enhancements. This 
improved version of Algorithm 1 incorporates the 
Bjørklund-Demytko function and other security 
enhancements for a cryptographically secure PRNG: 
 
Input: IR ← bitstream (data to be encrypted) 
 
Functions 
Gray_code(data): Converts data bits to Gray code 
representation (reduces bit flips during transmission). 



Isaac et al.,  JOSRAR 2(5) SEP-OCT 2025 74-82 
 

77 

Permutation (x1, cryptogram): Permutes the cryptogram 
using a key derived from x1 (scrambles the data). 
key_application (IR): Applies additional key-based 
operations to the data (optional, can be encryption with a 
secret key). 
 
Steps 
Gray Code Representation 
u = [Gray_code(y) for y in IR]: Convert each bit (y) in the data 
stream (IR) to its Gray code equivalent and store them in a 
list u. 
 
Improved Seed Generation 
Incorporate additional system parameters from the 
chosen chaotic system into the initial seed for the PRNG. 
This increases the key space size (number of possible 
keys) for better security. Aim for a larger key space size (p 
> 9). 
 
Chaotic System and Transient Period 
Analyse the specific chaotic system to determine the 
optimal transient period (number of initial iterations to 
discard). Discard these initial transient values to ensure 
randomness. 
 
Keystream Generation with Bjørklund-Demytko 
Function 
v = [x1 XOR x2 XOR x3 for i in range(length(u))]: Generate 
the initial keystream by XORing the chaotic sequences (x1, 
x2, x3). 
w = []: Initialize an empty list to store the final keystream. 
 
For each triplet of bits in v 
Extract three bits (a, b, c) from the current position in v. 
Apply the Bjørklund-Demytko function: bit = (a XOR b) & 
(NOT(a) XOR c). 
Append the generated bit (bit) to the list w. 
This process adds an extra layer of randomness and 
security to the keystream using the lightweight Bjørklund-
Demytko function. 
 
Encryption 
encrypted_data = [u[i] XOR w[i]  
for i in range(len(u))]:  
XOR the Gray code data (u) with the final keystream (w) to 
generate the encrypted data. 
 
Permutation 
perm = Permutation (x1, encrypted_data): Permute the 
encrypted data using a key derived from x1. 
 
Transmission 
Send perm through Bluetooth protocol. 
 
 

Enhancements 
Improved Seed Generation: Addresses the potential 
weakness of a limited key space by increasing the seed 
size. 
Transient Period Adjustment: Improves efficiency by 
discarding only the necessary non-random initial values. 
Keystream Generation with Bjørklund-Demytko Function: 
Enhances randomness and security of the keystream. 
Larger Modulus:  
Using a larger modulus (M) in the original keystream 
generation step  
v = [x1 XOR x2 XOR x3 mod M] 
 
Modified Pseudocode 2: Decryption Stage and Data 
Processing with Synchronization 
This improved version of Algorithm 2 incorporates 
synchronization with the encryption process (Algorithm 1) 
and utilizes the Bjørklund-Demytko function for enhanced 
security: 
 
Input: Encrypted_data ← bitstream (received encrypted 
data) 
 
Functions 
decoding(data): Decodes the data (optional, might involve 
reversing Gray code conversion). 
Permutation (x1, cryptogram): Permutes the cryptogram 
using a key derived from x1 (unscrambles the data). 
key_application (Encrypted_data): Applies additional key-
based operations to the encrypted data (optional, can be 
decryption with a secret key). 
 
Steps 
PRNG Computation (Synchronized with Algorithm 1) 
[x1, x2, x3] = *Computation of the 2D Chaotic System 
(replace "*" with the specific system's equations). This 
computation should be identical to the one used in 
Algorithm 1 to ensure synchronization. 
Analyse the specific chaotic system used to determine the 
optimal transient period (number of initial iterations to 
discard). Discard these initial transient values based on 
the same criteria used in Algorithm 1. 
 
Keystream Generation with Bjørklund-Demytko 
Function 
v = [x1 XOR x2 XOR x3 for _ in range (length (Encrypted 
data))]: Generate the initial keystream by XORing the 
chaotic sequences (x1, x2, x3). This remains unchanged 
from the original algorithm. 
w = []: Initialize an empty list to store the final keystream. 
For each triplet of bits in v 
Extract three bits (a, b, c) from the current position in v. 
Apply the Bjørklund-Demytko function: bit = (a XOR b) & 
(NOT(a) XOR c). 
Append the generated bit (bit) to the list w. 
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This process adds an extra layer of randomness and 
complexity to the keystream  
using the lightweight Bjørklund-Demytko function. 
 
Decryption 
retrieved data = [Permutation (x1, Encrypted data) ⊕ w]: 
XOR the received encrypted data with the final keystream 
(w) to recover the original data. 
 
Gray Code Decoding (Optional) 
IR = [decoding(y) for y in retrieved data]: If Gray code was 
used in encryption, decode the retrieved data back to its 
original binary representation using the decoding function. 
 
Data Processing 
Frequency = FFT(IR): Apply the Fast Fourier Transform (FFT) 
to the retrieved data to extract the frequency information. 
Heartrate = Frequency * 60: Calculate the heart rate based 
on the extracted frequency. 
 
Synchronization and Enhancements 
Keystream Generation 
The keystream generation process aligns with Algorithm 1, 
ensuring both use the same larger modulus (M) for 
consistency and potentially stronger security. 

Seed Generation and Transient Period 
If modifications were made to seed generation or the 
transient period in Algorithm 1, ensure the same 
adjustments are reflected in Algorithm 2 to maintain 
synchronization. This ensures both algorithms use the 
same chaotic sequences for decryption. 
 
Bjørklund-Demytko Function 
The inclusion of this function enhances the randomness 
and security of the keystream. 
 
Data Collection 
This study uses the DICOM image of brain that consists of 
25 slices, each slice consists of 2d matrix (256×256), each 
pixel represented by integer (16-bits). Figure 1 explain all 
DICOM slices of used image. The use of DICOM images is 
common in medical imaging, and the encryption of these 
images is important for ensuring patient privacy and data 
security. By applying the proposed method to a DICOM 
image of the brain, the authors demonstrate the 
effectiveness of their approach in encrypting complex and 
sensitive medical data. 
 

 

 
Figure 1: DICOM image of brain 

 
Performance Evaluation 
Throughput measures the rate at which data can be 
encrypted or decrypted by the scheme.  
the throughput as T measured in megabits per second 
(Mbps). The throughput represents the rate at which data 
can be encrypted or decrypted by the encryption scheme. 
Mathematically, we can express this as: 
𝑇 =

𝑡

𝐷
…      (1) 

Where: 
T is the throughput in Mbps, 
D is the amount of data processed (in megabits), and 
t is the time taken to process the data (in seconds). 

This equation quantifies how much data can be processed 
per unit of time, providing a measure of the speed or 
efficiency of the encryption or decryption process. In the 
context of IoT systems, higher throughput values are 
desirable as they indicate faster processing of data, 
enabling efficient communication and reducing latency in 
handling real-time data streams. This is crucial for IoT 
systems as they often handle real-time data streams. 
Higher throughput translates to faster processing of data, 
which is essential for efficient communication and low 
latency. Also, the Information entropy is a measure of 
randomness or uncertainty in the data. For a secure 
encryption scheme, the information entropy of the 
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encrypted data should be close to the maximum possible 
value (which depends on the data size). This indicates that 
the encrypted data contains no exploitable information 
about the original data. 

𝐻(𝑠) = ∑ 𝑃(𝑆𝑖) 𝑙𝑜𝑔2 (
1

𝑃(𝑆𝑖)
)𝑄=255

𝑖=0 …  (2) 

This equation represents the entropy H(s) of a discrete 
random variable S, which can take on Q+1 different values 
Si, where i=0,1, 2,,Q. 
where 
P(Si): This represents the probability of the random 
variable S taking on the value Si. 
log2(1/P(Si)): This is the base-2 logarithm of the reciprocal 
of the probability P(Si). It measures the amount of surprise 
associated with the event Si. If P(Si) is high, the logarithm 
of the reciprocal will be low, indicating less surprise, and 
vice versa. 
∑i=0Q: This symbolizes the summation over all possible 
values of Si, from i=0 to Q. 
So, putting it all together, the equation calculates the 
entropy of the random variable S by summing up the 

products of the probability of each outcome and the 
surprise associated with that outcome. In information 
theory, entropy measures the uncertainty or randomness 
of a random variable. In this context, the equation 
quantifies the average amount of information (in bits) 
needed to represent the outcomes of the random variable 
S. If the entropy is high, it indicates higher uncertainty or 
randomness, whereas lower entropy suggests more 
predictability. 
Key Size: This refers to the length of the secret key used for 
encryption and decryption. A larger key size provides better 
security but may also impact processing speed 
 
RESULTS AND DISCUSSION 
Key Length 
The Key length is a critical factor that determines the 
security and efficiency of encryption algorithms. Longer 
key lengths typically provide higher security by making it 
more difficult for attackers to perform brute force attacks. 
Table 1 shows the key lengths of four different 
cryptographic models used for image encryption: 

 
Table 1: The Key length of the models 

Parameter PRESENT SIMON LEA Proposed Model 
Key length 128 192 128 128 

 
Table 1 shows that the PRESENT algorithm had a key length 
of 128 bits which offered a good balance between security 
and computational efficiency. For image encryption, this 
key length was sufficient to protect against most brute 
force attacks while maintaining a reasonable encryption 
and decryption speed. The SIMON algorithm featured the 
longest key length among the models, at 192 bits. This 
provided the highest level of security, making it extremely 
resistant to brute force attacks. However, the increased 
key length also meant higher computational demands, 
which could lead to slower encryption and decryption 
processes, especially for large image files. Similar to 
PRESENT, the LEA algorithm utilized a 128-bit key length. 
This allowed it to achieve a similar balance of security and 
performance. It was effective for image encryption, 
providing adequate security without significant 
performance drawbacks. The proposed algorithm also 
employed a 128-bit key length. This choice indicated a 
focus on maintaining strong security while ensuring 
efficient processing. It suggested that the aim was to 

provide a robust encryption method suitable for practical 
use in image encryption applications. The key lengths of 
the PRESENT, SIMON, LEA, and the proposed models had 
significant implications for image encryption. While 
SIMON's 192-bit key length provided the highest security, 
it came with increased computational costs. In contrast, 
the 128-bit key lengths of PRESENT, LEA, and the proposed 
model offered a balanced approach, delivering strong 
security with efficient performance. Choosing the 
appropriate key length involved considering the specific 
security needs and computational resources available for 
image encryption tasks. 
 
Information Entropy 
The Information entropy is a measure of the uncertainty or 
randomness in a system. It quantifies the amount of 
information needed to describe the state of the system. In 
the context of models, entropy can indicate the complexity 
or unpredictability of the models' output. The entropy 
values for different models are compared in Table 2. 

 
Table 2: The Entropy of the models 

Metric PRESENT SIMON LEA Proposed Model 
Entropy 15.48 15.79 15.89 15.469 

 
Table 2 entropy measures the randomness and 
unpredictability of the encrypted image, which is crucial 
for ensuring security. Higher entropy values indicate more 
randomness and thus better security, as it makes it harder 

for unauthorized parties to predict or deduce the original 
image. The RESENT Model obtained an entropy of 15.48. 
the SIMON Model achieved a slightly higher entropy of 
15.79. The LEA Model obtained the highest entropy at 
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15.89. The Proposed Model: Has the lowest entropy at 
15.469. 
From Table 2, it can be inferred that the proposed model 
has the least randomness among the compared models, 
as indicated by its lower entropy value. This might imply 
that the proposed model is less secure in terms of image 
encryption because lower entropy signifies less 
randomness, making it potentially easier to break or 
predict the encryption. Therefore, while the proposed 
model may be more efficient in terms of performance, it 

may need additional measures to enhance its security for 
image encryption applications. 
 
Correlation 
The correlation performance of different models for image 
encryption was evaluated based on vertical, horizontal, 
and diagonal correlation parameters. These correlations 
indicate the relationship between adjacent pixels in an 
encrypted image. Lower correlation values suggest better 
encryption performance, as it indicates reduced 
predictability of pixel values, thus enhancing security. 

 
Table 3: The Correlation performance of the models 

Parameter PRESENT SIMON LEA Proposed Model 
Vertical Correlation 0.00183 0.00184 0.00183 0.0182 
Horizontal Correlation -0.146 -0.142 -0.137 -0.0132 
Diagonal Correlation 0.073 0.0735 0.0745 0.0625 

 
Table 3 shows the correlation values for all models. The 
PRESENT model had a vertical correlation of 0.00123, 
SIMON had 0.00143, LEA had 0.00133, and the proposed 
model had 0. 0182.The PRESENT model had a horizontal 
correlation of -0.146, SIMON had -0.142, LEA had -0.137, 
and the proposed model had -0. 0132.The PRESENT model 
had a diagonal correlation of 0.073, SIMON had 0.0735, 

LEA had 0.0745, and the proposed model had 0.0625. The 
proposed model had slightly lower vertical and diagonal 
correlation values compared to the other models, which 
might imply better encryption performance in these 
aspects. Overall, the proposed model achieved lower 
correlation values, ensuring better security for encrypted 
images. 

 
Unified Average Changing Intensity 
Table 4: The Unified Average Changing Intensity performance of the models 

Metric PRESENT SIMON LEA Proposed Model 
UACI 33.34 33.441 33.381 33.362 

 
Table 4 presented the Unified Average Changing Intensity 
(UACI) values for each model. The UACI is a metric used to 
evaluate the effectiveness of image encryption by 
measuring the average change in pixel intensity values 
between the original and encrypted images. A higher UACI 
indicates a greater change in intensity, which generally 
signifies better encryption performance as it reflects 
greater pixel intensity variability and thus increased 
security. 
The PRESENT model had a UACI of 33.34, SIMON had 
33.441, LEA had 33.381, and the proposed model had 

33.362. The values were relatively close to each other, 
indicating that all models performed similarly in terms of 
average pixel intensity change. However, the proposed 
model had the lowest UACI among the compared models. 
This slight variation in UACI values suggested that while all 
models demonstrated comparable performance in terms 
of changing pixel intensity, the proposed model had a 
marginally lower intensity change. This might imply a 
subtle difference in encryption strength, with the proposed 
model potentially providing slightly less variability in pixel 
intensity compared to the others.  

 
Structural Similarity Index 
Table 4: The Structural Similarity Index performance of the models 

Metric PRESENT SIMON LEA Proposed Model 
SSIM 0.182 0.183 0.172 0.175 

 
Table 5 displayed the Structural Similarity Index (SSIM) 
values for each model. The SSIM is a metric used to assess 
the perceived quality of the encrypted image by measuring 
the similarity between the original and encrypted images. 
A higher SSIM value indicates greater structural similarity, 
which typically suggests that the encryption method 
preserves more of the original image’s structural details, 

potentially impacting the perceived quality and 
effectiveness of the encryption. 
The PRESENT model had an SSIM of 0.182, SIMON had 
0.183, LEA had 0.172, and the proposed model had 0.175. 
The SSIM values indicated that the SIMON model achieved 
the highest structural similarity, followed closely by the 
PRESENT model. The LEA model had the lowest SSIM 
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value, suggesting it preserved the least structural 
similarity, while the proposed model fell between the 
SIMON and LEA models in terms of preserving structural 
details. 
This variation in SSIM values implied that while all models 
provided varying degrees of structural preservation, the 
SIMON model was the most effective at maintaining the 
image's structural integrity after encryption. The proposed 
model showed a slight decrease in SSIM compared to 
SIMON, suggesting a marginal reduction in the 
preservation of structural details. 
 
CONCLUSION 
This research endeavor sought to enhance image 
encryption through the development of a modified 
PRESENT-Chaotic Block Permutation algorithm. The study 
underscored the paramount importance of healthcare 
image encryption and accentuated the necessity for 
continuous advancements in this domain. By strategically 
merging the strengths of these constituent elements, the 
proposed algorithm effectively tackled the inherent 
challenges associated with image encryption. The model 
exhibited exceptional performance, characterized by 
impressive correlation, demonstrably high entropy, 
remarkable preservation of image quality, and robust 
security metrics. These compelling results solidify the 
research as a significant contribution to the field, 
proffering a practical and secure solution applicable to 
real-world scenarios. This study serves as a foundational 
platform for future research endeavors aimed at 
developing even more intricate and resilient image 
encryption systems. Leveraging the success achieved in 
this work, researchers can embark upon the creation of 
innovative solutions to address the ever-evolving demands 
of secure image transmission and storage 
 
Future Research 
The domain of image encryption is dynamic and 
continuously evolving, marked by the constant emergence 
of new threats and countermeasures. While this research 
has established a foundation by leveraging the strengths of 
the PRESENT algorithm and Chaotic 2D Logistic Maps, 
there is considerable potential for future investigations to 
enhance the efficacy and robustness of image encryption 
systems significantly in the following ways: 

1. Explore combining block ciphers, stream ciphers, 
and hash functions to create hybrid encryption 
schemes that offer enhanced security and 
performance. 

2. Investigate hardware-accelerated implementations 
of image encryption algorithms to improve processing 
speed and reduce computational overhead, making 
them suitable for real-time applications. 

3. Prioritize designing intuitive encryption and 
decryption processes that minimize disruptions to 

clinical workflows, ensuring that user experience and 
usability are at the forefront. 

4. Explore the design of efficient image encryption 
algorithms tailored for resource-constrained devices, 
such as mobile phones and wearable healthcare 
devices. 

By focusing on these areas, researchers can contribute 
to developing robust and resilient image encryption 
systems that effectively safeguard sensitive healthcare 
information in an increasingly interconnected world. 
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